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Curcumin (diferuloylmethane) is a major component of turmeric, which is isolated from the rhizomes of Curcuma longa L. from the
family Zingiberaceae. It is used as a dietary pigment for curry and in traditional Indian medicine for its anti-inflammatory and
attenuating pain effects. This study aimed to evaluate the beneficial effects of curcumin in a rat model of diabetic neuropathic pain.
Additionally, we investigated the involvement of the phosphorylated form of c-Jun N-terminal kinase (pJNK) located in the neurons
and astrocytes of the dorsal root ganglion (DRG). To induce diabetic neuropathic pain in rats, 50 mg/kg of streptozotocin (STZ) was
intraperitoneally injected. After 4 weeks, rats were administered the vehicle, 10 mg/kg/day curcumin, or 50 mg/kg/day curcumin
orally for 4 consecutive weeks. One day after the final drug administration, we performed behavioral tests to measure responses of rats
to mechanical, heat, cold, and acetone-induced cold stimuli. After behavioral tests, pJNK expression in the DRG was evaluated using
western blot assay and immunohistochemistry. Curcumin treatment for 4 consecutive weeks in STZ-induced diabetic neuropathic
pain rats improved behavioral responses to mechanical, cold, and thermal stimuli. Increased pJNK expression in the astrocytes and
neurons of the DRG in STZ-induced diabetic neuropathic pain rats was reduced by curcumin treatment for 4 consecutive weeks. We
suggest that curcumin can be an option for the treatment of diabetes-related neuropathic pain, and one of the mechanisms that
underlie the action of curcumin may involve pJNK expression in the astrocytes and neurons of the DRG.

1. Introduction

Neuropathic pain is one of the most common complications
of diabetes mellitus (DM) and an estimated one-third of
patients with DM have painful diabetic neuropathy [1]. It is
characterized by hyperalgesia (increased sensitivity to pain),
allodynia (pain sensation to nonpainful stimulation), dys-
esthesia (an unpleasant sense of touch), and paresthesia
(abnormal sensation without a cause) and is caused by either
peripheral nerve damage or changed neuronal signaling.
However, molecular and cellular mechanisms that underlie
neuropathic pain are not fully understood.

Curcumin (diferuloylmethane) is a natural product from
the Curcuma longa L. from the family Zingiberaceae. It is a

member of the curcuminoid family and used as a dietary
pigment in curry and an ancient medicine for many pur-
poses including asthma, allergy, anorexia, coryza, cough,
hepatic disease, and sinusitis. Nowadays, curcumin is known
to play an important role in inflammatory conditions.
Curcumin decreases postsurgical allodynia [2], mitigates
diabetic neuropathic pain [3], prevents the development of
diabetic neuropathy [4], and decreases pain associated with
depression [5]. Currently, the main analgesic mechanism of
curcumin is thought to involve signals such as tumor ne-
crosis factor-a (TNF-«), nitric oxide (NO) [6], and extra-
cellular signal-regulated kinase (ERK) [7] in the anti-
inflammatory pathway. Also, there are other analgesic
mechanisms involved in curcumin such as activation of
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NF-«B [8], noradrenergic and serotoninergic system [32-
adrenoreceptor and 5-HT1A receptor [9], NO-cGMP-ATP-
sensitive K+ channel pathways [10], TTX-R sodium currents
[11], and opioid system [12].

Similar to ERK, c-Jun N-terminal kinase (JNK) is a
member of the mitogen-activated protein kinase (MAPK)
family. It regulates neuronal functions, immunological ac-
tions, and embryonic development [13]. JNK is also acti-
vated in the neurons of the dorsal root ganglion (DRG) and
spinal cord after the ligation of a spinal nerve resulting in
neuropathic pain [14]. JNK is activated when it becomes
phosphorylated (phosphorylated JNK (pJNK)) [13]. Inter-
estingly, JNK is also one of the most important kinases
implicated in hyperglycemia and the pathogenesis of dia-
betes [15].

Curcumin is known to inhibit JNK activation [16-18].
However, it is unknown whether curcumin affects JNK in
the neurons and astrocytes of the DRG. DRG is important
for communication between the peripheral and the central
nervous systems, and it is a target for pain management [19].
Therefore, the present study investigated the effects of
curcumin on diabetic neuropathic pain induced by strep-
tozotocin (STZ) in rats and on pJNK expression in the
astrocytes and neurons of the DRG.

2. Materials and Methods

This study was approved by the Institutional Animal Care
and Use Committee of the Asan Institute for Life Sciences,
Asan Medical Center (approval number 2012-13-211). The
committee follows the guidelines of the Institute of Labo-
ratory Animal Resources. We performed all experiments
according to the ethical guidelines of the International
Association for the Study of Pain [20]. The animals were
euthanized painlessly after the completion of all the
experiments.

2.1. Experimental Animals. Male Sprague-Dawley rats
(200~250 g) were housed in a standard cage under a 12-hour
light-dark cycle. Humidity and temperature were controlled
at 65+ 5% and 21 + 1°C, respectively. Water and food were
freely provided. The animals were allowed to habituate to the
laboratory environment for at least 2 hours before per-
forming behavioral experiments.

2.2. Generation of the Diabetic Neuropathic Pain Model and
the Experiment Protocol. Diabetic neuropathic pain can be
easily induced by the systemic administration of STZ
[21-24]. Usually, rats can manifest diabetic neuropathy 4
weeks after a single administration of STZ [22, 25].

As shown in the graphical abstract (Figure 1), rats were
randomly assigned to six groups (n=10 per group): (1)
control (Ctr) +vehicle (Veh), (2) Ctr+10mg/kg/day of
curcumin (Ctr+ CMN10), (3) Ctr+50 mg/kg/day of cur-
cumin (Ctr + CMN50), (4) STZ+ Veh, (5) STZ+ CMNI10,
and (6) STZ + CMN50. Initially, saline solution at 0.9% (Ctr)
or 50 mg/kg of STZ was injected intraperitoneally (IP). After
4 weeks, rats were also orally treated with 10 mg/kg/day
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curcumin, dissolved in 5% alcohol and 5% dextrose in water
(5DW), and either 50 mg/kg/day CMN or vehicle (Veh,
5DW) for 4 consecutive weeks. One day after the final drug
administration, we performed behavioral tests to measure
the responses of rats to mechanical, heat, cold, and acetone-
induced cold stimuli. After behavioral tests, we performed
western blot assay and immunohistochemistry for pJNK in
the DRG. The Ctr + CMN10 and STZ + CMN10 groups were
excluded from western blot analysis and immunohisto-
chemistry because the CMN50 groups showed better be-
havioral effects of curcumin than the CMN10 groups.

2.3. Curcumin and Antibodies. We used curcumin (Santa-
cruz, Dallas, Texas, USA, #sc-200509) in this study. Glial
fibrillary acidic protein (GFAP, Cell Signaling Technology,
Danvers, USA, #3670, 1:100), pJNK (Cell Signaling Tech-
nology, Danvers, USA, #5668, 1:50 for IHC, 1:1000 for
western blot), Neurofilament 200 (NF200, Sigma-Aldrich, St.
Louis, Missouri, USA, N5389, 1:40), and $-actin (BETHYL,
Montgomery, Texas, USA, A300-491, 1:10000) were used as
primary antibodies. BETHYL A120-101D3, A90-116D2, and
A120-101P were used as secondary antibodies.

2.4. Behavioral Tests. Behavioral tests were performed to
measure responses to mechanical, heat, cold, and acetone-
induced cold stimuli. All experiments were performed
during the light phase (10:00-16:00).

Mechanical allodynia was tested using a Von Frey fila-
ment (Stoelting, Wood Dale, IL). The plantar surface of the
hindfoot was tested. We used eight types of calibrated von
Frey filaments (0.41g, 0.70g, 1.20g, 2.00g, 3.63g, 5.50¢,
8.50g, and 15.10 g). We pressed the plantar surface of the
feet for 6 seconds with these filaments. Rapid withdrawal or
startling was measured as a positive response. The 50%
withdrawal threshold was measured by using the up-down
method [26].

Cold allodynia against chemical stimuli was tested using
the acetone [27]. A drop of acetone was applied to the
midplantar surface of the hind paw for five times. The
frequency of the paw withdrawals in response to the acetone
was measured.

Allodynia and hypersensitivity to thermal and cold
stimuli were analyzed using a hot/cold plate apparatus (Ugo
Basile, Comerico, Italy). For thermal allodynia and hyper-
sensitivity testing, the hot plate temperature was adjusted to
42 +0.1°C and 50 + 0.1°C, respectively [28]. For cold allodynia
and hypersensitivity testing, the cold plate temperature was
adjusted to 10+0.1°C and 4+ 0.1°C, respectively [28]. The
latency to first hind paw withdrawal or licking was measured.
Every rat was tested three times. The cut-off time for allodynia
was 30 seconds for the thermal test and 100 seconds for the
cold test [29]. The cut-off time for hypersensitivity was 15
seconds for both thermal and cold tests [28].

2.5. Western Blot. After the final behavioral test, DRG tissues
were isolated for western blot analysis. Tissues were washed
twice with cold Tris-buffered saline and lysed with 2% SDS
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FIGURE 1: Simple experimental scheme. (a, b) Groups of rats were injected with saline solution at 0.9% intraperitoneally (IP). Four weeks
later, they received either vehicle (Ctr + Veh), 10 mg/kg/day (Ctr + CMNI10), or 50 mg/kg/day of curcumin (Ctr + CMN50) orally for 4
consecutive weeks. The experiments were subsequently conducted. (c, d) Groups of rats were injected with 50 mg/kg of streptozotocin (STZ)
IP. Four weeks later, they received vehicle (STZ + Veh), curcumin 10 mg/kg/day (STZ + CMN10), or 50 mg/kg/day (STZ + CMN50) orally

for 4 weeks before the start of the experiments.

lysis buffer containing 0.1 mM Na3VO,, 3 mg/mL aprotinin,
and 20 mM NaF. Because the DRG of a single rat was not
sufficient for western blotting, we mixed samples from six
rats for each group. After sonication, the protein concen-
tration was measured using a detergent compatible protein
assay reagent (Bio-Rad Laboratories, Hercules, California,
USA). The total protein samples (40 ug) were used for the
blotting. After immunoblotting with the antibodies, the
ECL-plus solution (Amersham Pharmacia Bioscience, Pis-
cataway, New Jersey, USA) was used. The specific blotted
signals for pJNK and f-actin were quantified using the
Image]J freeware (NIH, Betheseda, Maryland, USA).

2.6. Immunohistochemistry. After the completion of be-
havioral tests, we injected rats with zoletil (60 mg/kg) and
xylazine (10 mg/kg) intraperitoneally to enable DRG sam-
pling for immunostaining. We perfused rats with 4%
paraformaldehyde via the left ventricle of the heart for the
fixation. The DRG was isolated and fixed immediately in 4%
paraformaldehyde. The fixed DRG samples were embedded
in paraffin. We sectioned the DRG samples into 10 ym thick
sections using a microtome and mounted the sections onto
slides. Deparaffinization was performed using xylene and
ethanol. The blocking solution comprised 5% donkey serum,
0.3% Triton X-100, and 1% bovine serum albumin in
phosphate-buffered saline. After incubating overnight with
GFAP, NF200, and pJNK antibodies, the tissues were in-
cubated with secondary antibodies for 2 hours. We acquired
images using a confocal microscope (LSM780, Carl Zeiss,

Obercochen, Germany) and used Image pro plus ver 5.1
imaging software (Media Cybernetics, Rockville, Maryland,
USA) for analysis.

2.7.  Statistical ~ Analysis. Data are presented as
means + standard error. Behavioral test data were evaluated
using one-way analysis of variance (ANOVA) with Bon-
ferroni post hoc test using GraphPad Prism Version 5.01 for
Windows (GraphPad Software, San Diego, CA, USA). p
value <0.05 was considered as significant.

3. Results

3.1. Effects of Curcumin on STZ-Induced Diabetic Neuropathic
Painful Responses in Rats: Behavioral Responses to Mechanical
and Thermal Stimuli. We subjected the STZ-induced dia-
betic neuropathic pain rats to a battery of allodynia and
hyperalgesia tests (Figure 2). STZ-induced diabetic neuro-
pathic pain rats showed significantly reduced paw with-
drawal threshold to mechanical stimuli. Consecutive
treatment of diabetic neuropathic pain rats with curcumin
for 4 weeks increased the withdrawal threshold to me-
chanical stimuli (p <0.05) although the threshold was not
tully recovered to the level of the control group (Figure 2(a)).
STZ-induced diabetic neuropathic pain rats also exhibited
increased frequency of paw withdrawal in response to ac-
etone-induced cold stimuli. This increased frequency of the
paw withdrawals induced by acetone in STZ-induced dia-
betic neuropathic pain rats significantly reduced following
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FiGure 2: Effects of curcumin (CMN) administered orally on the diabetic neuropathic painful behavior induced by streptozotocin (STZ).
STZ (50 mg/kg) was intraperitoneally injected to induce diabetic neuropathy in rats. After 4 weeks, rats were treated orally with vehicle and
either 10 mg/kg/day or 50 mg/kg/day of CMN for 4 consecutive weeks. One day after final drug administration, behavioral tests were
performed to measure responses to mechanical (a), acetone-induced cold (b), thermal ((c) 42°C and (d) 50°C), and cold ((e) 10°C and (f) 4°C)
stimuli (n =10 animals per group, one-way ANOVA with Bonferroni post hoc). *p <0.05, **p <0.001, and *** p <0.001 compared to the
Ctr + Veh group. p<0.05, " p<0.01, and " p <0.001 compared to the STZ + Veh group.

consecutive

treatment with curcumin for
(Figure 2(b), p<0.001). As shown in Figures 2(c) and 2(d),
paw withdrawal latency to thermal stimuli (42°C and 50°C)
also significantly decreased in STZ-induced diabetic

4 weeks

neuropathic pain rats. Consecutive treatment of diabetic
neuropathic pain rats with curcumin for 4 weeks signifi-
cantly reversed the decreased paw withdrawal latency to
thermal stimuli (thermal allodynia, Figure 2(c), p < 0.05; and
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thermal hyperalgesia, Figure 2(d), p <0.01). Similarly, paw
withdrawal latencies to cold stimuli (10°C and 4°C) signif-
icantly decreased in STZ-induced diabetic neuropathic pain
rats (Figure 2(e), p <0.01; Figure 2(f), p <0.001). Consec-
utive treatment of diabetic neuropathic pain rats with
curcumin for 4 weeks reversed the decreased paw with-
drawal latency to 10°C (Figure 2(e), p>0.05) and 4°C cold
stimuli (Figure 2(f), p < 0.001). Although the reversal of paw
withdrawal latency to 10°C was not significant (Figure 2(e)),
the tendency was prominent.

3.2. Effects of Curcumin on pJNK Expression in STZ-Induced
Diabetic Neuropathic Pain Rats: Involvement of pJNK in the
Astrocytes and Neurons of the DRG. Immunoblot analyses of
the DRG revealed that the levels of pJNK protein expression
were elevated in STZ-induced diabetic neuropathic pain rats
(Figure 3). Consecutive treatment with 50 mg/kg curcumin
for 4 consecutive weeks decreased the elevated pJNK ex-
pression induced by STZ administration. The treatment of
sham control groups with curcumin did not change the
amount of pJNK protein expressed.

Immunohistochemical analysis revealed an increase in
pJNK immunoreactivity of DRG cells. These cells colocalized
with GFAP (astrocyte marker) and NF200 (neuronal
marker) positive cells, as shown in Figures 4(c) and 5(c),
respectively. Consecutive treatment of STZ-induced diabetic
neuropathic pain rats with 50 mg/kg curcumin for 4 weeks
decreased the number of pJNK immunoreactive cells that
were colocalized with both GFAP and NF200 in the DRG
(Figures 4(d) and 5(d), respectively). Vehicle (control) or
curcumin administration to the control group did not alter
the pJNK immunoreactivity of the DRG cells (Figures 4(a)
and 4(b) and 5(a)and 5(b), respectively).

4, Discussion

We examined the ability of curcumin to ameliorate neuro-
pathic pain behaviors in STZ-induced diabetic neuropathic
pain rats. Curcumin treatment decreased mechanical, cold,
and thermal allodynia and hyperalgesia. Consistent with the
findings of this study, previous studies also showed similar
effects of curcumin on neuropathic pain. The treatment of
STZ-induced diabetic neuropathic pain animals with cur-
cumin reduced paw licking and tail-withdrawal response [3],
decreased mechanical allodynia [12], improved sensorimotor
deficits [12], and decreased thermal and mechanical hyper-
algesia [30]. In another rat model of neuropathic pain from
brachial plexus avulsion, administration of curcumin mark-
edly increased mechanical withdrawal threshold and de-
creased paw-withdrawal frequency to cold stimuli [31].
Additionally, two clinical trials involving curcumin confirmed
its beneficial effects on diabetic neuropathy [32, 33]. Parallel,
double-blind randomized, placebo-controlled trials showed
that the treatment of patients with type 2 DM complicated by
peripheral neuropathy with nanocurcumin supplements re-
duced glycated hemoglobin (HbAlc), fasting blood sugar,
total neuropathy score, total reflex score, temperature, de-
pression, and anxiety scores [32, 33].

The mechanism of action of curcumin effect in diabetic
neuropathy is currently under investigation. The patho-
genesis of neuropathic pain is complex, making it difficult to
identify the mechanism underlying the effect of curcumin on
neuropathy. Diabetic neuropathy is thought to occur as a
result of hyperglycemia and lack of neurotrophic support
from insulin/C-peptide [34]. Hyperglycemia causes cytokine
releases, oxidative stress, lipid peroxidation, and neuro-
inflammation [35, 36]. Curcumin exhibited anti-inflam-
matory effects through the inhibition of TNF-a, NO, ERK,
and nuclear factor-kappa B [6, 7, 34, 37]. Liu and coworkers
have also showed that curcumin can decrease neuropathic
pain by downregulation of spinal interleukin-1p via sup-
pressing NAcht leucine-rich-repeat protein 1 inflamma-
some, and activation of Janus kinase 2-signal transducer and
activator of transcription 3 cascade [38]. Furthermore, it has
been reported that curcumin downregulates the activation of
the JNK pathway in hyperglycemia models in vitro and in
vivo. The in vitro model was induced by applying bisphenol
A (BPA) into LO2 cells [16], while the in vivo model was
induced using STZ followed by the examination of the spinal
cord [18]. In western blot analysis of the DRG in the present
study, curcumin treatment normalized the increased DRG
PINK expression induced by STZ administration. Because
the DRG of a single rat was not sufficient for western
blotting, we mixed samples from six rats for each group.
Although we did not perform statistical analysis on the
western blot results, the tendency toward a normalized pJNK
expression might be enough to suggest that the analgesic
effect of curcumin involves DRG pJNK protein expression in
STZ-induced diabetic neuropathic pain rats.

In STZ-induced diabetic neuropathic pain models, pJNK
is induced in the spinal cord neurons but not in the as-
trocytes [39]. However, they did not investigate which cell
type located in the DRG expresses JNK although the im-
munoblot showed an increase in JNK levels of DRG in STZ-
induced diabetic neuropathic rats. JNK is also activated in
the spinal astrocytes in other chronic pain conditions, in-
cluding nerve injury induced by sciatic nerve ligation [14],
inflammation induced by complete Freund’s adjuvant [40],
bone cancer [41], and skin cancer [42]. Additionally, JNK
phosphorylation increased in the neurons of the DRG in an
STZ-induced diabetic neuropathic pain animal model [43].
However, there has been no study on pJNK expression in the
astrocytes in an STZ-induced diabetic neuropathic pain
model. In the immunohistochemical analysis to determine
DRG cells that expressed pJNK, we found that pJNK was
activated not only in the neurons but also in the astrocytes of
the DRG in STZ-induced diabetic neuropathic pain rats. The
present study demonstrated that curcumin normalized
pPJNK expression in the astrocytes and neurons of the DRG
in STZ-induced diabetic neuropathic pain rats. This suggests
that curcumin administration decreases diabetic neuro-
pathic pain responses by normalizing functional JNK acti-
vation in DRG cells in STZ-induced diabetic neuropathic
pain rats. Additionally, the loss of Aé fibers leads to cold
hyperalgesia, while the loss of C fibers leads to decreased
thermal and mechanical pain thresholds [44]. Curcumin
may differentially affect the aforementioned fibers. This may
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FIGURE 3: Western blot analysis of pJNK protein expression in the dorsal root ganglion (DRG). Total protein extraction from DRG was used
for the western blot analysis. pJNK expression was increased in streptozotocin- (STZ-) induced diabetic neuropathic pain rats (STZ + Veh,
n=6), which was subsequently normalized by treatment with 50 mg/kg/day of curcumin (CMN) for 4 consecutive weeks (STZ + CMN50,
n==6). f-Actin is a loading control.
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FiGURE 4: Immunohistochemistry for pJNK (red, pJNK antibody) expression in the astrocytes of the dorsal root ganglion (DRG) (green,
GFAP antibody). Treatment of streptozotocin- (STZ-) induced diabetic neuropathic pain rats (STZ+ CMN50) with 50 mg/kg/day of
curcumin (CMN) for 4 consecutive weeks normalized pJNK expression in the astrocyte of the DRG. (a) Control group (Ctr + Veh, n=4); (b)
curcumin-treated control group (Ctr + CMN50, n=4); (c) STZ-induced diabetic neuropathic pain rats (STZ + Veh, n=4); (d) curcumin-
treated STZ-induced diabetic neuropathic pain rats (STZ + CMN50, n=4). *** p <0.001 compared to the Ctr+ Veh group; 'p <0.001
compared to the STZ + Veh group.
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FiGure 5: Immunohistochemistry for pJNK (red, pJNK antibody) expression in the neurons of the dorsal root ganglion (DRG) (green,
NF200 antibody). Treatment of streptozotocin- (STZ-) induced diabetic neuropathic pain rats (STZ+ CMN50) with 50 mg/kg/day of
curcumin (CMN) for 4 consecutive weeks normalized pJNK expression in the neurons of the DRG. (a) Control group (Ctr + Veh, n=4), (b)
curcumin-treated control group (Ctr+ CMN50, n=4), (c) STZ-induced diabetic neuropathic pain rats (STZ + Veh, n=4), and (d) cur-
cumin-treated STZ-induced diabetic neuropathic pain rats (STZ+CMN50, n=4). ***p<0.001 compared to the Ctr+ Veh group;

75 <0.001 compared to the STZ + Veh group.

explain why only mechanical allodynia was not fully im-
proved. However, our immunohistochemical analysis could
not differentiate between the effect of curcumin on Ad fibers
and that on C fibers.

5. Conclusions

We demonstrated the effect of curcumin in a rat model of
diabetic pain induced by STZ. Curcumin may be useful in
the management of diabetic neuropathic pain characterized
by hyperalgesia or allodynia. In addition, we found that
pPJNK expression in the astrocytes and neurons of the DRG
was increased by STZ-induced diabetic neuropathic rats.
This increased pJNK expression might be decreased by
curcumin treatment. We suggest that curcumin can be an
option for the treatment of diabetes-related neuropathic
pain and that one of the mechanisms of action of curcumin
may involve pJNK expression in the astrocytes and neurons
of the DRG.
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