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Abstract

Ongoing social, political and ecological changes in the 21st century have placed more people at 

risk of life-threatening acute and chronic infections than ever before. The development of new 

diagnostic, prophylactic, therapeutic and curative strategies is critical to address this burden but is 

predicated on a detailed understanding of the immensely complex relationship between pathogens 

and their hosts. Traditional, reductionist approaches to investigate this dynamic often lack the scale 

and/or scope to faithfully model the dual and codependent nature of this relationship, limiting the 

success of translational efforts. With recent advances in large-scale, quantitative, omics 

methodologies as well as advances in integrative analytical strategies, systems biology approaches 

for the study of infectious disease are quickly forming a new paradigm for how we understand and 

model host–pathogen relationships for translational applications. Here, we delineate a framework 

for a systems biology approach to infectious disease in three parts: discovery — the design, 

collection and analysis of omics data; representation — iterative modelling, integration and 

visualization of complex data sets; and application — the interpretation and hypothesis-based 

inquiry towards translational outcomes.

ToC

This Review outlines a broad, universal framework for systems biology applied to infectious 

disease research. From study design, omics data collection, analysis, visualization and 
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interpretation to translational outcomes, the authors illustrate how systems biology can provide 

insights into host–pathogen relationships for the betterment of human health.

Introduction

Annually, 15% of all deaths worldwide are directly attributable to infectious diseases.1 

Multidrug-resistant pathogens, the rapid spread of emerging diseases exacerbated by 

increased globalization, and the extended reach of tropical and vector-borne diseases 

resulting from continued climate change have put an ever-increasing number of people at 

risk of life-threatening, acute or chronic infections. As such, the infectious disease field is 

set to face a series of challenges in the next decade that will require a revolution in our 

ability to rapidly understand, discover and develop novel diagnostic, prophylactic, 

therapeutic and curative therapies to a wide variety of human pathogens. To meet these 

challenges, infectious disease researchers are increasingly turning towards systems biology 

approaches, which enable high-throughput, quantitative descriptions of the molecular 

networks underlying infection.2,3

Systems biology is the holistic characterization and modelling of a living system as a 

biological network.4,5 While reductionist approaches seek to simplify or isolate the impact 

of a single component on a larger biological process, systems approaches endeavour to 

provide a comprehensive model of a process through quantification of all observable 

components and their relationships. The resultant models are therefore immensely powerful 

tools for understanding the role of previously undescribed components, elucidating new 

relationships between components, and deciphering multi-variable emergent properties that 

would otherwise be missed. The system being studied can be as large as an ecosystem, 

organism or tissue, or as small as a single cell, cellular compartment or set of molecules. 

Likewise, the components that make up the system are accordingly diverse, from single 

organisms or cells to proteins, genes or metabolites. How a system and its components are 

defined is critical to the ability of the constructed model to derive novel insight, make 

predictions and inform hypothesis-driven research.2–5

The application of systems approaches to infectious disease research is particularly complex 

as it involves the consideration of two principal components: the host and the pathogen.2,6,7 

The dual nature of these systems increases their complexity exponentially as researchers 

have to consider how variations in each component may alter the dynamics and outcome of 

the overall relationship as well as the interactions between each individual component (FIG. 

1). Pathogens not only adapt to and modify the molecular architecture of their hosts for 

optimal replication but also influence the host response to infection. Additional 

environmental and immunological variables acting on both host and pathogen contribute to a 

disease state that is unique to each species, each pathogenic strain and each infected 

individual.6,8 This complexity highlights both the promise and the challenge of systems 

biology for infectious disease research. On the one hand, a well-designed systems 

experiment can work effectively to model the intricacies of a complex system, capturing 

established knowns as well as revealing novel unknown mechanisms and emergent 

properties. On the other hand, a poorly designed experiment can lack direction, fail to 
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include the necessary controls to draw pertinent conclusions, or result in models that do not 

accurately reflect the process at hand.2,3

Recent technological advancements in high-throughput, quantitative measurements have 

enabled the application of systems approaches at the molecular level.9,10 Several omics 

approaches such as genomics, functional genomics, epigenomics, proteomics and 

metabolomics now allow for the identification and quantification of molecules in a system 

with increasing comprehensiveness, accuracy and sensitivity. The development, application 

and interpretation of these omics approaches, as well as the computational integration and 

modelling of the resulting data sets, each constitute its own specialized field that evolves and 

grows with the technology that enables it. Given the scope, size and continuing evolution of 

these approaches, team science is inherent in systems biology, requiring interdisciplinary 

collaboration, effective and ongoing communication and a clear plan for data collection, 

organization and dissemination.

Here, we review a systems biology approach to infectious disease in three phases: discovery, 

representation and application (FIG. 2). Rather than focus on a specific technique or 

pathogen, this Review outlines a broad, universal framework for systems biology through 

the lens of infectious disease research. In the first section (discovery), we discuss 

considerations for the appropriate design of a systems experiment, the collection and 

analysis of omics data, and validation of the primary data set. In the second section 

(representation), we discuss the integration and visualization of omics data in a network 

model with regards to the iterative nature of systems approaches. In the third section 

(application), we discuss how systems-generated models interface with hypothesis-driven 

research and can lead to new directions for clinical investigation. Systems biology is neither 

a magic bullet nor a fishing expedition, but a rapidly evolving science that presents many 

challenges and even more opportunities to revolutionize how we study and understand host–

pathogen relationships for the betterment of human health.

Our intent is to inform a broad community of researchers in the fields of infectious disease, 

systems biology and computational biology to promote a shared understanding of the 

strengths, potential impact and current limitations of systems approaches for studying 

infectious diseases. For information on the latest technological advances and breakthroughs 

within specific fields relating to systems biology11–22 or individual applications to infectious 

diseases23–30, we refer readers to other recent reviews.

Discovery

Experimental design

Unlike hypothesis-driven research, which infers novel relationships from known priors in the 

established literature, systems approaches seek to first capture a comprehensive, global 

picture of the system in question to generate a model that serves as a starting point for 

hypothesis generation.4,5 The most critical step in this process is the experimental design, 

which needs to account for not only the process of generating and validating a model of the 

system being studied but also the downstream application of the model to ensure it will 

derive testable hypotheses that answer pertinent questions in the field. Systems biology 
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studies can take many years to complete, but the models and data sets they generate can 

inspire hypotheses and follow up studies for decades to come, exemplified by the long-term 

impact of consortia2,31–33 and pioneering research efforts alike34–38. While it may be 

tempting to move forward with data collection as soon as possible, detailed preparation 

upfront goes a long way towards ensuring success downstream. In this section, we highlight 

some of the considerations that should be taken into account during experimental design, 

illustrating these points through a hypothetical case study presented in Box 1.

The first and most important step in designing a successful systems biology experiment is a 

clear definition of the question being asked and the overall goal of the experiment. Systems 

approaches and omics technologies are powerful tools that can generate a lot of data in 

relatively short order. For example, a single proteomics sample can yield thousands of 

peptides and a single deep sequencing reaction can yield millions of reads in a matter of 

hours. However, data are not inherently valuable if they cannot be applied to a relevant 

biological question. In fact, in the absence of the appropriate controls or context, large data 

sets can be hard if not impossible to effectively interpret and thus of limited value. 

Definition of the goals upfront helps determine the model system to be employed, the 

approach to be taken, the breadth and depth of the measurements, and the controls to be 

included. While this does not necessarily preclude a data set from being useful for other 

purposes, it may not be actionable or effective for follow-up study without clear forethought 

as to its application.

The second step is to define the system to be modelled and the components to be measured. 

It is vital to find a model system that closely recapitulates the host and pathogen processes 

under consideration while simultaneously allowing reproducible and accurate quantification 

of its components. Primary model systems [G], animal models or patient samples may be 

ideal for recapitulating the host conditions during infection, but the inherent limitations of 

these systems may restrict the techniques that can be applied. For example, tissue-resident 

macrophages are critical regulators of the local immune response and important sites of 

infection for many viral pathogens, including human immunodeficiency virus (HIV), 

influenza A virus and Dengue virus, but the limited number of these cells that can be 

isolated from patient tissues and their sensitivity to environmental stimuli rule out their use 

in any omics protocols that relies on large cell numbers. Conversely, immortalized cell lines 

offer great technical flexibility but can often fail to accurately recapitulate the biological 

process of interest.39–41 It is equally important to consider the pathogen(s) being modelled 

in terms of strain, infection stage and infection levels to ensure the design is both feasible 

and fidelitous.

While a perfect model system may not always be available, it is important to consider the 

benefits and limitations of the model and to weigh the implications of these choices during 

model building and interpretation. For example, if a laboratory-adapted strain [G] of a 

pathogen or immortalized human cell line is required for omics data collection, it is 

important to note that not all aspects of the final model will reflect the behaviour of clinical 

isolates [G] or primary human cells.39–42 One common strategy is to build the initial model 

in a technically robust model system and then extend these data sets into more complex in 
vivo systems during the hypothesis-testing phase of the study (see Application).
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The third step is careful consideration of the type of data to be collected and the necessary 

controls to be run. The question being asked, the model system being employed and the 

approach to be used are all highly interdependent, and it is critical to carefully assess both 

the costs and benefits of each component to design a systems experiment that is both 

relevant and robust. Is the model system proposed appropriate to answer the questions at 

hand? What types of data are most valuable in answering these questions? And can these 

types of data be collected in the model system? Including experts from each omics discipline 

and biostatisticians familiar with such data sets before the design of every systems 

experiment is especially important to ensure that proper controls are included at each step, 

that the appropriate number of technical replicates [G] and biological replicates [G] are run, 

and that confounding factors in data collection are taken into account (Box 2)10,43,44. Each 

omics data type requires technique-specific controls and has an inherent amount of technical 

variance that needs to be measured and statistically accounted for, which might not be 

obvious to researchers approaching these technologies for the first time. It may even be 

necessary to perform a small-scale pilot experiment to determine the reproducibility and 

statistical power of the proposed pipeline from sample generation to data collection to 

determine these parameters and calculate assay power.

Besides required technique-specific controls, additional biological controls may be included 

to remove confounding effects [G] or infer causal relationships. Many thousands of 

interdependent molecular changes occur during the course of infection, representing 

pathogen-directed changes and host-directed responses to infection. While these changes 

may be accurately measured and modelled by comparing infected versus uninfected systems, 

the breadth of these changes and the lack of clear causal relationships may complicate 

downstream hypothesis generation and mechanistic interrogation. Targeted inclusion of 

other parameters or conditions can go a long way towards refining the model to specifically 

address the question at hand. This can include using specific host perturbations or pathogen 

mutants to narrow in on specific processes, monitoring the host response over several time 

points to provide temporal resolution, or treating the system with a chemical compound that 

will alter the dynamics of the infection in predictable ways.24,45–48 For example, researchers 

employed a systems approach to better understand how human cytomegalovirus (HCMV) 

alters host organelle structure, function and composition.49 Rather than rely on a single 

omics approach with or without infection, the team integrated a number of proteomic and 

imaging technologies over an infection time course to effectively capture changes with 

temporal and spatial resolution. These added data enabled the tracking of viral compartment 

assembly and egress and for the ready identification of specific host proteins that assist in 

these viral processes.49

The fourth, and often overlooked, step is to consider how the collected data sets will be 

validated and how the resultant hypotheses will be tested. All data requires validation using 

an orthogonal approach to ensure its accuracy. The validation of systems-level data is no 

different but is complicated by the size of the data set. How many observations will be 

validated, which ones and the validation method to be used should all be considered prior to 

data collection. Similarly, it is essential to consider how resulting hypotheses can be tested 

and if these experiments can be extended to relevant primary models of disease or 
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appropriate patient samples. If the data cannot be validated or if the resultant hypotheses 

cannot be tested in relevant models with the resources available, the experimental design 

should be altered accordingly. Again, establishing collaborations with domain experts that 

have access to these resources in these early stages of experimental design may also reveal 

additional controls or considerations for inclusion in the main study (Box 2)43,44,50.

Together, careful experimental design takes into account the study goals, model system, 

approach, controls, validation methods and hypothesis testing before embarking on data 

collection. While design details are not often reported transparently, elegant designs are 

often reflected in the final publication. For example, researchers recently reported the 

development of a new attenuated influenza A virus vaccine that retains full immunogenicity.
51 The authors hypothesized that systematic elimination of immune-modulating functions 

from influenza A virus stocks used for vaccination could improve the quality and quantity of 

the adaptive immune response. To identify immune-sensitive mutations, they opted for a 

functional genomics-based systems approach, using saturating mutagenesis [G] across each 

viral gene to generate a polyclonal virus library. To narrow in on specific residues of interest 

that affected influenza A virus immune sensitivity, but not viral fitness overall, they 

performed selection in the presence and absence of interferon. This allowed them to generate 

a model of the genetic landscape of viral fitness versus immune sensitivity.51 After 

validating a panel of interferon-sensitizing mutations in individually reconstituted clones, 

they assembled a hyper-immune-sensitive influenza A virus vaccine to test their hypothesis 

in a mouse and ferret model, characterizing the breadth and depth of the antibody response 

to primary and secondary challenges.51 The inclusion of proper biological controls during 

data collection, the targeted approach for systems data validation, and the attention to 

hypothesis-testing models downstream were all critical components to the success of the 

study and all required consideration during the experimental design.

Data collection

Almost any type of data can be considered systems data as long as it offers a quantitative 

and comprehensive view of the components within a given system. A majority of these data 

are collected using specialized omics techniques designed for high-confidence, high-

throughput measurement of biological components (FIG. 3). Advances in next-generation 

sequencing (NGS) techniques21 have defined our understanding of the human genetics 

underlying disease, allowed us to address epidemiologic questions about global pathogen 

spread, opened new insights into host–pathogen co-evolution [G], and have driven new 

research into the role of the microbiome and virome in human health and disease 

(population genomics).45,46,52–57 Advances in flow cytometry, mass cytometry and high-

content imaging have provided unprecedented looks into the dynamics of infection and 

systemic response at the level of cells and tissues (cellomics). The recent adaptations of 

NGS pipelines to the study of chromatin structure and epigenetic modification of DNA and 

RNA are now revealing entirely new ways in which the cell adapts to infection and 

inflammation (epigenomics).58–61 The recent advent of CRISPR–Cas9 gene editing together 

with pre-existing genome engineering tools has helped us to understand the role of specific 

human host factors and even specific single nucleotide variants on pathogen replication and 

the host response (functional genomics).51,54,62–73 The same technological developments 

Eckhardt et al. Page 6

Nat Rev Genet. Author manuscript; available in PMC 2021 January 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that have enabled revolutions in genomics approaches have transformed our understanding 

of cellular transcriptional rewiring during infection, with recent advancements even allowing 

for single-cell resolution (transcriptomics).74–79 Continually evolving mass spectrometry 

approaches have underwritten a recent explosion in our understanding of how pathogens 

rewire host cell architecture through changing protein expression, protein–protein 

interactions, protein structures and post-translational modifications (proteomics).
47–49,63,71,77,80–90 Recent technological and computational advances in small-molecule mass 

spectrometry have improved both the characterization of known and the discovery of novel 

metabolites and lipids, spring-boarding research into the relatively unknown contribution of 

these molecules to infection and the host response (metabolomics and lipidomics).77,91–94 

Combinatorial applications of omics approaches on the side of both the host and the 

pathogen are being increasingly employed to make integrative discoveries of host–pathogen 

interactions.46,47,69,71,77,81,90 As just one example, a recent report combined two different 

functional genomics screens (transposon mutagenesis [G] on the pathogen side combined 

with a CRISPR-based screen on the host side) to identify ADP-heptose as a novel bacterial 

pathogen-associated molecular pattern (PAMP) recognized by α-kinase 1 as the 

corresponding cytosolic pattern-recognition receptor (PRR).69

New powerful technologies combined with innovative new applications are expanding the 

realm of omics approaches and strategies almost daily. At the same time, each of the 

technologies and their associated disciplines are evolving rapidly, with improvements in 

instrumentation driving changes in accepted standards for quality control, data analysis and 

data reporting (discussed in detail below). As each field matures, consensus regarding best 

practices is formed and subsequently enforced by peers, publishers and funding agencies. 

NGS approaches, for example, were among the first omics technologies to become widely 

available, and the associated fields tend to have rigorous standards for reporting quality 

control statistics, for deposition of raw data in publicly accessible databases, and for 

statistical analysis of the resultant data sets.95–98 The standards for collecting and reporting 

other omics data sets still vary widely by associated field, with a wide array of available 

analysis platforms and quality control parameters. A major ongoing challenge for these 

rapidly emerging technologies is to standardize data collection practices and establish 

benchmarks for quality control reporting and data analysis.99

Given the diversity in data collection and analysis practices, careful annotation of the 

associated metadata [G] is critical for the downstream interpretation of results from omics 

technologies (see below). While true across all systems biology studies, infectious disease 

research requires additional parameters be reported to ensure the data are accurately 

represented and reproducible, although how best to report these parameters is not always 

clear. For example, given the different kinetics of pathogenic infection in different model 

systems, should the percent infected cells be a required metadata statistic? When recording a 

time series, should the timing be based on time after initial inoculation, time until productive 

infection, time until peak infection, or should an alternate metric be used? What is the best 

way for recording pathogen titer: multiplicity of infection [G] (MOI), mass equivalents or 

optical density (OD), or should it be allowed to vary by pathogen? What should the 

standards be for reporting pathogen strain and authenticating each infection? Should 
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metadata include cell culture conditions or link to appropriate biosafety and animal care 

protocols? As with the collection of primary data sets, standards for metadata collection are 

likely to mature over time and may ultimately differ depending on the technology, host and 

pathogen.

Data analysis and validation

After experimental design and data collection, the next big challenge lies in extracting and 

analysing the data, or, in other words, distilling them into interpretable parameters with 

associated statistical measurements to assign significance. As discussed, each technology 

has its own evolving and established standards for analysing resultant data sets. In fact, for 

many omics data sets, there may be several correct data analysis strategies, each of which 

makes unique assumptions and reveals slightly different solutions and interpretations. As 

such, it is imperative to work with discipline-specific experts and experienced 

biostatisticians to help evaluate these options (Box 2).44 A hallmark of good systems biology 

data analysis is the regimented benchmarking of each analysis platform against known 

positive controls or expected ‘gold standards’ to establish statistics for the detection of true 

positives versus true negatives.49,71,82,84 For example, in a recent study analysing the 

proteomic landscape of cell envelope complexes in Escherichia coli, the authors applied 

three different scoring algorithms for the analysis of their affinity purification mass 

spectrometry (AP-MS) data.88 Literature-curated interactions were then used to benchmark 

the true-positive rate as a function of the false-positive rate for each scoring algorithm, 

allowing them to confidently select and accurately interpret the most relevant platform.88

Once the data have been collected and analysed, they need to be validated. The term 

validation is used in many different contexts to describe means by which to establish 

confidence in a data set. In this context, we define validation to refer to the use of an 

orthogonal approach to confirm select findings from the primary data set under the same 

conditions. For example, quantitative PCR can be used to confirm RNA sequencing (RNA-

seq) data; reciprocal immunoprecipitation, yeast two-hybrid, or fluorescence resonance 

energy transfer can be used to confirm AP-MS data; immunoblotting can be used to confirm 

phosphoproteomic data; and different readouts for infection can be used to confirm 

replication kinetics or pathogen fitness.51,84,88 Comparison with previously published data 

could serve as validation if the same parameters are being monitored under the same 

conditions. That being said, finding previous studies that match all experimental variables 

can be a substantial challenge. Related studies wherein one or more experimental variables 

are altered (for example, pathogen strain, cell type or measurement) may be valuable 

extensions to the original data set in demonstrating phenotypic breadth or functional 

conservation, and may prove useful to include in the overall model (see Representation), but 

they are not strict validation of the primary data set itself. For example, say an AP-MS 

experiment identifies 30 proteins that interact with a protein of interest. A separate study in a 

different cell type previously identified 25 proteins that interact with this same protein of 

interest, 5 of which are shared between studies. While these 5 shared interactors may indeed 

be of great interest, this overlap does not technically validate the breadth of data presented in 

either study. There is a tendency to conflate overlap between data sets as confidence or 
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importance, whereas the differences between the two data sets may be equally as important 

and/or informative.64,81

The number of additional experiments required to validate a data set depends on the 

confidence associated with the original analysis. At its most rigorous, validation of systems 

data would involve the random selection of a percentage of readings to be verified by an 

orthogonal approach, with selected targets representing the entire spectrum of data, 

including lower confidence hits.51,88 However, due to a variety of factors including 

feasibility, time and cost, the majority of systems studies choose to validate only the most 

statistically significant or biologically interesting findings. While important, these 

observations are not always representative of the entire data set, and this practice can leave a 

large number of weaker, but statistically significant observations without meaningful 

validation. As with all studies, systems or otherwise, it is important to be aware of the type 

and extent of validation performed when interpreting the results.

Representation

Tidy data

After data collection, statistical analysis and validation of the primary data set, the next 

major step in all systems biology experiments is construction of the model. For our 

purposes, we will define a model as a representation of one or more systems, designed to aid 

in the visualization or exploration of complex phenomena. These models can be a simple 

representation of a single data set or involve the complex integration of diverse data sets 

with multiple different data types. While there are many types of models that can be built 

from systems data, including mathematical, structural, and hierarchical models, we will 

focus our discussion on network models as these are commonly employed in the description 

and analysis of omics data100–103. A network model is a type of database model wherein 

components of a system are represented as a series of nodes [G] and their relationship is 

depicted by a series of edges [G]. Network models can be dynamic or static in regard to a 

variety of variables, and can include weights, directionality and spatial clustering to convey 

additional information. The flexibility and relatively intuitive representation of network 

models — when constructed appropriately — make them a powerful tool for understanding 

systems-level data.100–103

The first step in building a network model is parsing or ‘tidying’ up the data sets to be 

represented (Fig. 4a). In data management, tidy data refers to data in a specific, tabulated 

structure that allows for it to be easily accessed, interpreted and modelled, such that: 1) each 

measured variable occupies one column (for example, abundance, fold change, P-value), 2) 

each observation of that variable occupies one row (for example, one row for each gene or 

cell monitored), 3) independently monitored variables occupy unique tables (for example, 

one table per experiment or experimental readout), and 4) each table has a column that 

allows tables to be linked (for example, a gene or protein identifier).104 While this sounds 

fairly simple, achieving a tidy data set can be surprisingly difficult, especially when 

combining multiple kinds of data into a single model.
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The first challenge is to define the common identifier used to link all data sets in the model. 

Usually, this identifier describes each node in the model and may represent almost any 

physical component of the system. As a single gene may produce many transcripts and 

several protein isoforms, each of which may be modified by unique, site-specific post-

translational modifications, condensing these diverse data types to a single identifier that is 

both interpretable and maximally informative is not always straightforward. In many cases, 

assignment of a common identifier can result in the compression of one or more aspects of 

the data set. In these instances, multiple independent models may need to be constructed, 

each of which is designed to highlight a unique aspect of the system and reveal new 

biological insight. For example, in a network model representing both changes in protein 

phosphorylation and RNA transcript abundance, mapping data to a common gene identifier 

will compress data on multiple phosphorylation sites and multiple RNA isoforms into a 

single term. Two models may be constructed in this case, mapping data to specific protein 

residues or transcript isoforms, to highlight the intricacies of each data type.

Once a common identifier is selected, all identifiers must be converted to that nomenclature, 

be it gene symbol, UniProt ID, transcript ID or peptide. Several tools exist online to convert 

between commonly used identifiers.44,105 While these tools are constantly improving, there 

are challenges to even this simple process: old data sets may include legacy identifiers that 

are no longer biologically meaningful; incorporation of data sets from different species 

requires homology-based conversion; and many pathogens and pathogenic strains have no 

formal identifiers at all. Many international committees and repositories are working to 

standardize the nomenclature used for pathogen macromolecules (such as the Influenza 

Research Database106, HIV Sequence database107, International Code of Nomenclature of 

Prokaryotes108 and others), but this effort remains an ongoing process in systems-level 

infectious disease research.

Once a common identifier is assigned, the data themselves must be converted into standard 

units to allow for easy comparison and representation during the process of model building. 

The standard units used may vary by model and data type as well as by the reporting 

standards and guidelines of pertinent data repositories (see also Data Dissemination and 

Reporting). For qualitative variables, including metadata annotations, binary variables (for 

example, yes or no), and descriptive observations, the language used should be standardized 

across the entire data set. For quantitative variables, standard units may or may not be 

possible depending on the data being modelled. If the same data type is being modelled, 

those data can be analysed using the same criteria and parameters relative to internal control 

standards to allow for direct, quantitative comparison (for example, by transforming to fold-

change relative to the mean, calculating P-values or z-scores). However, due to differences in 

data collection and analysis pipelines, instrument sensitivity and assay reliability, different 

types of data may not be directly comparable in this manner. Additionally, null values can 

have very different meanings in different data sets, and a common nomenclature should be 

selected for depicting a true measurement of zero versus an unmeasured component. How to 

properly and effectively combine and analyse different omics data types is currently an area 

of intense study, and ultimately the answer depends on the type of data being analysed.
109,110
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Representation of the network model

Once the data are arrayed in defined tables with common identifiers and variables 

represented in standard units, the model can be built and visualized. When creating a 

network model specifically, each set of tabulated data forms its own layer of the network that 

can be visualized independently or as part of the larger whole. Each node will represent a 

common identifier and the edges between the nodes will represent their relationship (Fig. 

4b). The qualitative or quantitative characteristics of each node and edge may be spatially or 

stylistically represented with colour, weight or arrowheads (Fig. 4c–e). Many different tools 

exist for both model building and visualization, including Cytoscape111, Graphlet112 and 

NetworkX113, as well as a wide array of data-type-specific visualization programs.

The process of model building and visualization is necessarily iterative and collaborative, 

occurring before, after and concurrently with network analysis (see also Network Analysis 

below). It is important to remember that the model is designed for the expressed purpose of 

visualizing and exploring data. This representation should therefore be readily 

understandable, interpretable and intuitive. In many circumstances, multiple types of 

representation, including networks, but also tables, heatmaps and graphs, are required to 

effectively visualize different aspects of the model. Multiple independent models may also 

be needed, each of which serves to highlight the power and purpose of each collected data 

set. Regardless, a good model should make exploration of the data set(s) easier and help the 

viewer to draw biological meaning (exemplified in54,81,82, among others). Not all models 

will need to be displayed in a final publication but instead might serve a temporary role 

along the iterative process of data representation and interpretation. How these models are 

shared, published and accessed throughout the scientific process is an ongoing challenge in 

systems biology and a current priority area for data science research (see also Data 

Dissemination and Reporting).

Network analysis

Network models are designed to condense and represent complex data sets in simple ways, 

but a full understanding of the model often requires additional analysis of the network itself. 

These analyses often reveal new insights that suggest refinement of the model itself and so 

contribute to the iterative nature of model building and representation. Many different 

methods for network analysis have been developed, but they can generally be grouped into 

two major types: supervised and unsupervised. Supervised methods rely on prior 

information to define overarching groups within the data to determine if known biological 

pathways, functions or complexes are represented or enriched in the network. Unsupervised 

methods, by contrast, cluster data based on their inherent structure, irrespective of 

classification or potential biological meaning.114,115

Supervised methods, such as pathway or functional enrichment analysis [G], are frequently 

used to reveal biological insights in large data sets or to guide functional follow-up studies. 

These methods are based on comparison of the provided gene list to previously annotated, 

curated lists of genes. A range of online tools are available to aide with this type of analysis, 

such as Metascape,82,116 STRING,117 DAVID,118 Gene Set Enrichment Analysis (GSEA),
119,120 KEGG121 and the Gene Ontology (GO).122–124 The goal of these tools, generally, is 
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to determine if the genes or proteins identified in the network or subnetwork are enriched for 

any particular function, belong to any particular biological pathway, exist in any particular 

cellular complex, or share other commonalities. This type of analysis can thus be especially 

helpful to assign function to understudied pathogen proteins,70,83,86 or more generally to 

prioritize parts of the model as focal points during hypothesis-testing.68,88,91 While valuable, 

an important caveat to these methods is that they are only as reliable as the databases that 

they reference, many of which may be out of date or lack meaningful enrichment 

parameters. Additionally, as pathogens often work to rewire the molecular architecture of 

their hosts, the same annotations may not apply in a healthy versus diseased state, and so 

must be interpreted carefully.

Unsupervised approaches, such as k-means clustering [G] or principal component analysis 

[G], by contrast, do not rely on predefined groupings to assign enrichment scores but rather 

look to identify clusters based on their similarities in the primary data set itself.115 For 

example, if two genes have similar gene expression dynamics in an experiment, they might 

be placed into the same cluster. The number of clusters can then be determined empirically 

or fit statistically. Data clustering approaches have been particularly powerful with NGS data 

for the identification of transcriptional programmes, unique host responses and pathogen 

clades.78,79 While these types of analyses have helped to define characteristics of complex 

data sets and phenomena,47,49,59,70,88 it can often be difficult to interpret such clusters in 

biologically meaningful ways, since correlation does not always imply similar function. 

Complementing these approaches with supervised analyses or other analysis methods better 

able to accommodate multi-dimensional data, such as machine learning technologies 

including support vector machines [G] (SVM), neural networks [G] or random forests [G] , 
can offer additional ways to extract insight from the overall structure of the data set.49,68 For 

example, researchers looking to mine existing genomics and drug response data of 

Mycobacterium tuberculosis infection combined a series of network analysis strategies to 

uncover novel pathways involved in antimicrobial resistance (AMR).125 While simple 

clustering algorithms lacked the resolution to uncover genetic signatures, adding mutual 

information [G] (MI) calculations to enable pairwise comparisons enabled the identification 

of genetic signatures. The team was then able to improve their model by using a tailored 

SVM approach to account for multi-dimensional correlations, which ultimately allowed for 

the implication of 24 new pathways in AMR.125

Additional analysis methods are currently being developed to further bridge clustering and 

enrichment approaches. Network-based stratification approaches seek to use information on 

the structure of the network model to infer clusters of system components that show similar 

characteristics. These methods highlight similarities within parts of the network and allow 

stratification of samples based on their location in specific subnetworks. The potential of 

network-based stratification approaches has been demonstrated in cancer research, where 

this method has been employed to define novel tumour subtypes of specific cancers that are 

predictive of clinical outcomes.126 Similar approaches are now being explored in infectious 

disease research and will hopefully aid in the development of more targeted treatment 

approaches for chronic infections in the future.77 Another method is network propagation, 

which seeks to aggregate the signal of individual nodes across neighbouring nodes as 
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defined by a pre-existing base network.127 This results in the identification of additional, 

biologically significant components that could not be deduced by gene-level analysis alone 

in the system under study.90 Integrative approaches similarly seek to expand the network, 

and do so by inclusion of additional data from orthogonal approaches. These can include 

many different data types and may span the spatial, temporal or pathogen axis.24,26 Studies 

integrating a variety of omics data can be especially powerful and have led to important 

discoveries in recent years.47,58,59,69,71,77,81,82,90 However, as mentioned above, data 

integration remains a major challenge, and integrative network models should be interpreted 

with full consideration of the strengths and weakness of the underlying methods and models.

Although essential for identifying key drivers and critical nodes for experimental 

perturbation, these approaches are not always easy to employ and interpret, and often require 

biostatistical or computational expertise to complete. Due to the iterative nature of the work, 

it is highly recommended to closely work with an experienced computational biologist or 

statistician to create and analyse networks. The model(s) will ultimately reflect the joint 

effort of both parties, making it essential to build strong collaborations during which both 

the experimentalist and computational expert are invested in communicating the goals of the 

work, the analyses performed and the biological meaning of the resultant networks (Box 2).
10,43,44,50

Application

Hypothesis-testing

After iterative rounds of representation and analysis, the resulting model should provide an 

unbiased, global picture of the biological system being studied in the context of the specific 

biological question. The model can now be applied to generate and test hypotheses using the 

scientific method. Given the scope of the model being built, the number of components 

being surveyed, and the number of relationships being defined, determining which 

hypotheses to test is among the most difficult choices a systems biologist has to make. 

Careful experimental design, the inclusion of informative controls and the incorporation of 

complementary data sets into the final model can aid in filtering and prioritizing hypotheses, 

but even these steps will often lead to more hypotheses than can reasonably be tested. Above 

all, it is critical to understand the power and limitations of each method and each analysis 

performed to effectively design testable hypotheses and correctly interpret the results.

Keeping this in mind, a number of strategies can be applied to direct future scientific efforts. 

The first is to focus on areas of the model that are novel, important and well-supported by 

the acquired data. These could be central nodes in the network, new nodes that have never 

been investigated in this system or newly observed relationships between nodes. The raw 

data supporting these critical nodes should always be reviewed to ensure the hypothesis is 

based on high-confidence data. The confidence associated with each node may itself help 

inform which hypotheses to test depending on the nature of the experiment.64,83,89 Secondly, 

one should aim to prioritize experiments that are feasible, fundable and impactful. Do the 

critical priors that support the hypothesis hold up in relevant primary models of disease, and 

can the hypothesis be tested in those models? Does the hypothesis align with high-priority 

research areas of the major funding agencies in that field of study? Would testing the 
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hypothesis advance the field significantly even if it is rejected? Does the research have any 

immediate clinical or translational applicability, or does the research reveal any novel drug 

targets (see also Towards Translation below)?

If these filters — or a combination of several of them — fail to significantly narrow down or 

prioritize hypotheses for testing, additional data may need to be included in the model or, if 

unavailable, additional experiments may need to be performed. A common approach used by 

many systems biologists at this stage is to apply a medium-throughput approach to add 

targeted data to a specific subset of nodes or edges. This often involves collecting data using 

one or more orthogonal approaches, model systems or pathogens to extend the model and 

build confidence in specific predictions. For example, genetic perturbation of nodes can 

supplement information regarding influence on pathogen replication,71,81 examination of 

related pathogens can determine conservation or divergence,64,67,81,87 and extending 

experiments to alternate host model systems, such as primary cells or more disease-relevant 

systems, can inform which parts of the model are most likely to be translationally relevant.
65,92 These data can then be incorporated back into the model to prioritize hypotheses for 

immediate pursuit.

As one example, a number of these approaches were used to generate and test hypotheses 

resulting from functional genomics analyses of Flavivirus host factors.64 Using a pooled 

CRISPR–Cas9 gene knockout approach and a gene trap approach in tandem, the authors 

performed phenotypic selection [G] by virus infection to identify host factors that inhibit 

Dengue virus and Hepatitis C virus replication. Genes for functional follow-up were selected 

based on their phenotypic strength, reproducibility, conserved importance between cell line 

models, divergent impact on the two distinct viruses, and functional enrichment by 

supervised clustering. Based on these criteria, the investigators focused on mechanistic 

understanding of the role the oligosaccharyltransferase (OST) protein complex for Dengue 

virus replication and the flavin adenine dinucleotide (FAD) biogenesis pathway for Hepatitis 

C virus replication, identifying critical roles for these processes in the replication of these 

distinct Flaviviruses.64

While current publications are biased towards the reporting of ‘positive data’, reporting 

negative findings is just as important in establishing an accurate picture of the system under 

study and avoiding the investment of additional resources in redundant hypotheses. If a 

hypothesis generated from the model is not supported, it does not imply that the entirety of 

the model is wrong. By definition, every model will contain some discrepancies, and all 

models require iterative rounds of analysis and interpretation to be optimal. In such cases, it 

is important to evaluate the assumptions underlying the model and the hypothesis, re-

examine the design of the experiment testing the hypothesis and understand the limitations 

involved. As discussed, these studies often require close, interdisciplinary collaboration 

(Box 2), and it is critical for experimental and computational biologists to understand the 

power and limitations of each other’s work in order to effectively design testable hypotheses 

and correctly interpret the results43,44,50.
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Towards translation

The ultimate goal of many infectious disease studies is to provide knowledge that has 

translational potential, in other words, to not only better understand the fundamental biology 

of the process at hand but to find ways to prevent, diagnose, treat or even cure patients with a 

disease. As we discuss, systems biology approaches can be powerful in both the 

identification of potential therapeutic targets as well as in the characterization of lead 

compounds. Towards this end, it is particularly critical to revisit any assumptions made or 

reductionist approaches taken during experimental design to ensure the results are robust and 

hold true in the most physiologically relevant systems available. For example, if an 

immortalized human cell line or a particular lab strain of a pathogen was used for data 

collection, it is essential to verify that the principal components of the model hold true in 

more relevant systems, such as in primary human cell types or with clinical isolates of 

pathogen strains.39–42,54 Oftentimes, extension of these data to relevant whole animal 

models that can be used for translational studies is a critical next step.

While small-peptide mimetics, gene delivery mechanisms and cell-based therapies are all 

becoming more commonplace disease treatment strategies, a majority of therapeutic 

strategies are small-molecule interventions. Extensive databases of ‘druggable targets’ 

compiled from previously published studies can be cross-referenced or integrated during 

network analysis to identify attractive nodes or pathways for further investigation.81,92 These 

lists typically include proteins that are already known targets of small molecules, proteins 

with enzymatic activity or cell surface proteins that can be easily accessed.128–132 If no 

druggable target is directly contained within the primary model, pathway analyses and/or 

network extension can be valuable tools for identifying critical nodes for potential 

intervention.

In addition to extending key findings to more clinically relevant systems and linking them to 

druggable targets, a complementary route of translational investigation involves the 

development of high-throughput minimalist systems for screening against small-molecule 

libraries. Several drug and small-molecule libraries compatible with high-throughput in vitro 
and cell-based assays are available for use to identify lead compounds for chemical 

interventions (for example, ReFRAME133 and LOPAC134). If enough well-validated drugs 

are included in the library, these data can even be integrated into the final model as a 

complementary systems-based approach. Development of in vitro systems can be 

additionally beneficial in facilitating structural studies of key complexes, which can aid in 

rational drug design approaches down the line.69,89

Systems approaches are useful for the identification of not only promising drugs but also 

novel drug targets after small-molecule screening. For example, a recent study applied a 

systems biology-based chemical screen to repurpose drugs for the treatment of multidrug-

resistant M. tuberculosis (MDR-Mtb).68 To identify the host protein targets of the most 

potent compounds, the authors mined drug–gene databases and performed functional 

enrichment analyses of identified targets to determine the class of targeted proteins, namely 

receptor tyrosine kinases (RTKs). A complementary small-scale directed small interfering 

RNA (siRNA) screen against the human kinome confirmed RTKs as a targeted group of 
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proteins, raising the possibility of inhibiting this host pathway to treat MDR-Mtb in future 

investigations.68

Data dissemination and reporting

As with all science, the goal of systems biology research is to make discoveries and share 

knowledge. By providing an unbiased, comprehensive resource that is shared and formatted 

to be understood by scientists in a broad array of disciplines, the resulting model should 

provide an exponential return on investment and act as a basis for interdisciplinary research 

to improve clinical outcomes and better understand human health. Such models serve as 

hypothesis-generating engines with the potential to unveil new connections and emergent 

properties that were inaccessible by reductionist approaches. Critical to this vision, however, 

is the effective dissemination and reporting of systems data, particularly: 1) the transparent 

and inclusive dissemination of all raw and processed data; 2) the inclusion of detailed 

metadata describing how the data were acquired and analysed; and 3) the public accessibility 

of a clear and comprehensible model.

Despite the growing number of publishers and funding agencies that require the deposition 

of raw omics data sets for publication, lack of incentive, oversight and enforcement have led 

to consistently poor levels of compliance across many fields of biomedical research135–138. 

Thus, it is important for individual disciplines and systems biology researchers to set clear 

standards for data dissemination, enforce such policies in peer review, and foster a cultural 

environment in which data sharing is prioritized. To this end, a community of scientists has 

recently come together with a subset of publishers and funding agencies to agree on 

guidelines for dissemination and reporting, collectively referred to as the FAIR data 

principles (where FAIR stands for findable, accessible, interpretable and reusable).139 While 

an important first step, much more needs to be done to standardize and collate practices 

across disciplines. There are currently a wide variety of freely accessible online public data 

repositories that specialize in the dissemination of specific omics data sets, but each one has 

different reporting requirements for raw file formats, analyses and metadata.140 Equally 

critical, but often overlooked, is the dissemination of the actual outcome of the research in 

the form of publicly available, interactive and/or downloadable biological models for 

independent investigation, modification and continued research. Resources for this purpose 

are just becoming available, but, as with other online repositories, the format and standards 

for deposition remain highly variable.141–145 Box 3 addresses the current state of 

repositories for data, metadata and model sharing and discusses some of the challenges of 

systems-level data dissemination.

Even when biological models are publicly shared and the raw and analysed data are clearly 

linked and accessible, it is unclear what fraction of biological researchers have the expertise 

or resources available to access and use them. Vast improvements are required in the 

teaching of computational methods in biological sciences at every level from trainee to 

principal investigator for systems approaches to reach their full potential in understanding 

infectious diseases. While not every researcher will have the expertise to personally build 

and work with models of high-throughput data sets, it is important that they understand the 

strengths and weaknesses of such approaches, and that they are made aware of the 
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availability of these data sets to inform their own studies. As science moves towards 

interdisciplinary collaboration, and systems biology becomes more prevalent, it is 

furthermore imperative that research institutions invest in the recruitment of faculty and staff 

that can facilitate these approaches and help their communities access these powerful tools.

Conclusions

Systems biology approaches enable the comprehensive, unbiased modelling of systems to 

aid in the understanding and hypothesis-based interrogation of complex biological 

phenomena. Infectious disease research stands to benefit immensely from the application of 

these approaches to understand the relationship between pathogen and host, as well as 

between disease and treatment outcome. In this Review, we have outlined a general 

framework for a systems biology approach to infectious disease, highlighting good practices 

and major challenges yet to be overcome. Still a fairly new discipline, systems biology has 

substantial room for improvement and growth, but also immense potential to uncover 

unforeseen intricacies in biological systems that will lead the way in the design of next-

generation therapeutics and personalized medicine.

Our ability to understand biology as systems rather than as collections of isolated players 

has been driven by continual advancements in technology, computation and modelling. 

While these advances have yielded unprecedented opportunities to understanding human 

health and disease, their specialized nature mandates close interdisciplinary collaboration 

from the earliest stages of experimental design through data analysis, model building, and 

application. This need for collaboration and integration of experimental and computational 

expertise has challenged and continues to challenge traditional paradigms of our scientific 

institutions, which are often structured for the promotion of individual competition rather 

than team science. Such incentives can lead to the formation of intellectual silos, reflected in 

the current gaps that exist between technology development and application as well as 

between scientific discovery and translation. To bridge these gaps and to allow systems 

biology to reach its full potential, it is essential that we revisit long-standing practices and 

incentives in authorship, peer review and grantsmanship to facilitate team science. We must 

furthermore continue to make funding opportunities available for interdisciplinary 

collaboration, especially between experimental and computational specialties. Finally, we 

must diversify training in experimental and computational methods to empower the next 

generation of biological researchers to best utilize these tools to tackle our most pressing 

unanswered questions. These challenges are not unlike those faced by the physical sciences 

in the past century, whose lessons and models might provide guidance to biomedical 

research in the post-genomic era.

Health is a fundamental human right. As the human population continues to expand and our 

relationship with the environment and with each other continues to evolve, the challenge of 

meeting this ethical responsibility will continue to grow. Continued innovation in biomedical 

research and in how we perform biomedical research is essential to meet this challenge, 

requiring not only a willingness to change, but a drive to continually assess, challenge and 

revise the status quo. Systems biology reflects a new paradigm to understanding health and 

disease, one with as much potential for success as room for failure. As these approaches 
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become more commonplace, it is essential we recognize their limitations, revise best 

practices, and embrace big ideas for the betterment of human health.
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GLOSSARY TERMS

Saturating mutagenesis
A genetic screening technique wherein a codon or set of codons is randomized to produce all 

possible amino acids at a position or positions.

Metadata
Information that describes a set of data.

Multiplicity of infection
The ratio of infectious agents (such as virions or bacteria) to infection targets (such as cells).

Nodes
A point of a connection in a network representing a component of the system.

Edges
A connection between nodes in a network representing a relationship between two 

components.

k-means clustering
A method of data clustering that aims to partition a set of components into a total of ‘k’ 

clusters wherein each component belongs to the cluster with the nearest mean value.

Principal component analysis
A statistical procedure often used in the development of predictive models, which describes 

a dataset as a series of uncorrelated variables called principal components that account for 

sources of variability.

Support vector machines
A machine learning method related to regression analysis that seeks to identify the 

separation boundary between clusters of data given predefined clusters in a prelabeled set of 

input data.

Neural networks
A machine learning method that seeks to cluster and classify data based on similarities and 

differences extracted from a prelabeled set of input data.

Random forests
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A machine learning algorithm that seeks to cluster and classify data based on the ensemble 

output of a series of decisions trees formulated from a prelabeled set of input data.

Primary model systems
Types of host models that rely on cells taken directly from living tissue (such as from biopsy 

material or blood) for growth and maintenance ex vivo.

Laboratory-adapted strain
A genetically distinct strain of a pathogen that has been selected for enhanced fitness ex vivo 
and for use in laboratory experiments even though it is not found as a major strain in the 

natural world.

Technical replicates
Repeat experiments analysing the same sample with the same instrumentation to measure 

the variability inherent in the testing protocol.

Biological replicates
Repeat experiments analysing different samples that represent the same thing (such as 

samples collected from different patients with the same disease outcome) to determine the 

variability in the sample pools.

Confounding effects
The influence of one or more unmonitored variables on a system’s components or the 

relationships between those components that can alter experimental interpretation.

Clinical isolates
Genetic strains of pathogens isolated directly from patients or clinical samples.

Host–pathogen co-evolution
Iterative rounds of adaptation and counter-adaptation between a pathogen and its host over 

evolutionary history as a result of the ability of pathogens to elicit selective pressure on their 

host populations and vice versa.

Enrichment analysis
An approach for identifying overrepresented classifications of components by comparing the 

frequency of a given annotation in a dataset to a pre-defined reference list.

Mutual information
A measurement of dependency between two variables that is used in machine learning to 

determine how much can be assumed about one component based on the observed behavior 

of another.

Phenotypic selection
Isolation of a given cell population based on an observed trait or characteristic (such as 

fluorescence or resistance to a toxic compound).

Transposon mutagenesis
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A method for the random disruption of gene function by the untargeted insertion of 

transposable retroelements into a genome.
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Experimental design: a case study.

Experimental design is the most important step of any systems biology experiment, but is 

hard to find transparently represented in the literature. To supplement our discussion, we 

provide this case study of critical questions to consider in the design of a hypothetical 

systems biology experiment involving the Dengue virus (DENV) protein NS2B/3.

A researcher is interested in learning more about the role of the DENV protein NS2B/3 in 

regulating the innate immune response. At minimum, this list of questions should be 

addressed during experimental design.

1) Question: What are the goals of the experiment?

• What is known/unknown about NS2B/3 and the innate immune response?

• Can significant unknowns be uncovered using a systems approach or is a 

hypothesis-driven approach sufficient?

• Is the goal to understand the role of NS2B/3 in regulating early events in 

infection or the systemic response? In what compartment? Is patient outcome 

important, i.e. mild or severe disease?

2) Experimental System: What model system is being used and what 
components are being measured?

• What cell types does DENV infect? Are there primary or immortalized cell 

lines available? Animal models? Do these models support DENV infection 

and recapitulate in vivo characteristics?

• Is an in vivo or ex vivo system better to capture the response of interest?

• What strain of DENV will be used? At what time point? Is the level of 

infection important technically or biologically?

• What cellular or viral components are the most relevant to answer the 

question (i.e. phosphorylation sites or RNA transcript abundance)?

• Can the technique proposed be robustly applied in this system?

3) Controls: Which technical and biological controls need to be included?

• What technical controls are required for the technique to be successful?

• Are there previously established negative and positive controls to establish 

assay sensitivity?

• Can additional biological controls focus the dataset further (i.e. the use of an 

NS2B/3 mutant virus or interferon treatment)?

• Is a pilot experiment required to test the experimental pipeline to ensure the 

system and technique work as expected?

Validation: How will the primary data set be validated?
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• Which orthogonal techniques are available to validate the primary data set? 

How high is their throughput?

• How will data points be selected for validation and how many are required to 

establish confidence?

• What known priors or gold standards are these data expected to recapitulate?

• Do outside collaborations need to be established to facilitate validation?

5) Analysis: What computational steps are needed for analysis and 
interpretation of the data?

• How many biological or technical replicates are required to provide sufficient 

power to the data set to make relevant comparisons and draw meaningful 

conclusions?

• Does a computational expert need to be consulted for data analysis? Have 

they been consulted for experimental design?

• Is a pilot experiment required to test the experimental pipeline to ensure the 

system and technique work as expected?

6) Hypothesis-testing: Which hypotheses will be tested and how?

• What kinds of hypotheses can these data generate? Can these be tested in 

primary cell models of DENV infection? Are patient samples required and/or 

available?

• How will hypotheses be prioritized for testing?

• Do outside collaborations need to be established to facilitate hypothesis 

testing?

Eckhardt et al. Page 29

Nat Rev Genet. Author manuscript; available in PMC 2021 January 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Box 2 |

Effective interdisciplinary collaborations.

Systems biology is inherently team science, requiring input and expertise from diverse 

backgrounds to build reliable and informative models. Recognition that a project requires 

collaboration across disciplines is only the first step. Finding domain experts who share 

excitement for the project, bringing together a team and just getting started can be 

incredibly challenging. To help navigate this complex landscape of potential pitfalls, we 

summarize a few of the many important principles of interdisciplinary collaboration. 

These guidelines should be considered a starting point in establishing fruitful 

collaborations when performing interdisciplinary science.

Partnership

It is important to remember that a collaboration should be a mutually beneficial 

relationship between partners. Collaborations should be built on trust, respect and, most 

importantly, a shared ownership and responsibility for the success of the project. Many 

systems projects require collaborations between technological, computational and 

experimental experts, and it is important that each partner contributes at each phase of the 

project (i.e., experimental design through data collection, analysis, modelling and 

publication), rather than viewing the collaboration as an assembly line. While the vision 

may be shared, each partner brings distinct benefits and skill sets to the team, and it 

should be clear to each person involved what the responsibilities and benefits of every 

member of the team are.

Organization

How a collaboration is organized can play a crucial role in determining the ultimate 

success of a project. The roles and responsibilities of each partner should be discussed 

and communicated upfront to establish expectations and accountability. Outlining plans 

for data sharing, resource management, grant applications and authorship at the 

beginning of a collaboration can avert several potential misunderstandings down the road. 

It is often helpful to designate a single partner as the leader of the team, responsible for 

upholding these agreements, ensuring effective communication between partners, and 

seeing that the project proceeds in a timely manner. Many collaborative platforms for 

scientific communication, project management and data sharing are now available online 

including Slack, Trello, Box, Dropbox, Confluence and Asana, and these tools should be 

explored as effective ways to organize and communicate.

Communication

Open and regular communication is critical to successful collaboration. The early 

establishment of recurring project meetings can go a long way towards building 

relationships, ensuring the timely dissemination of findings, and handling other situations 

as they arise. It is essential to foster an open and supportive culture in which every 

member of the team feels free to participate and ask questions. Each discipline has 

unique expertise, standards, publication expectations and vernacular that may be only 

poorly understood by people outside the field. Taking the time to translate hypotheses, 
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prior knowledge, experiments, computer code and statistical calculations into a shared 

understanding between all members of the collaboration will go a long way to 

overcoming discipline-specific ‘language’ barriers.

Additional resources for establishing and maintaining successful collaborations are 

available in the literature and through local coursework.43,44,50
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Box 3 |

The current state of public repositories for omics data and biological 
models.

While continually evolving, this discussion summarizes the current state of available 

public repositories for sharing data, metadata and models resulting from systems biology 

research, as well as the challenges associated with their dissemination.

Finding discipline-specific, community-recognized repositories for systems data sets can 

be challenging, especially for non-domain experts and researchers breaking into the field. 

For an organized, short list of relevant omics-related repositories, we recommend the 

standards and repositories listed through the Nature Research Group journal, Scientific 
Data. Another good starting point is the online portal FAIRsharing (https://

fairsharing.org/).99,139 This public resource provides easily navigable, expert-curated 

information about the data and metadata standards and policies of journals, societies, 

funders, and organizations. Importantly, this resource provides a searchable list of 

databases and data repositories that are categorized by type and domain, offering direct 

links to each site. This resource also includes information about available repositories for 

metadata, such as the National Center for Biotechnology Information (NCBI) BioSample 

repository144 and the European Molecular Biology Laboratory’s European 

Bioinformatics Institute (EMBL-EBI) BioSamples repository.145 That being said, a 

recent review of these two major metadata repositories showed significant variability in 

the metadata deposited and called for an improvement in enforcement of standardization 

for these repositories to reach their full potential in sharing FAIR data.140

While the establishment of stable, long-term public repositories has made data sharing 

easier and may allow domain experts to reproduce the data analysis, the information 

available is still often insufficient to replicate the biological model as published. This is 

due in part to the data’s complexity and the iterative nature of generating the resultant 

models. However, the problem is also in part due to a lack of standards and policies for 

reporting models. Often, static images are the only representations provided or reported 

while interactive models may be more informative. Model dissemination is additionally 

complicated by the fact that raw data files and their resultant models must often be 

uploaded to unique repositories that lack cross-talk. While some efforts to resolve these 

problems are being explored (for example, the NCBI BioProject database144), 

standardizing the reporting of large-scale data sets and their models remains a major 

challenge.

As models become more important to the field of systems biology, additional reporting 

standards will need to be implemented. As with the dissemination of primary data, 

including the exact parameters used to construct and analyse the model is critical for 

other researchers to independently reproduce the final representation. Some repositories, 

such as the EMBL-EBI’s BioModels Database141,142, have aimed to include and develop 

universal standards for all types of computational models. For now, these tend to be non-

interactive and solely act as downloadable databases for storing and sharing models. 

While useful, this requires a fair amount of expertise from researchers hoping to interact 
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with and utilize the model. Other public repositories are more focused, follow a stricter 

format, and/or allow users to interact with a more visual, user-friendly model. The 

Network Data Exchange (NDEx)143, for example, serves as a specialized repository for 

biological network models and includes specific tools to aid researchers in accessing, 

storing, sharing, and manipulating network models.

As repositories for data, metadata and models continue to develop, improved formats in 

storage, access, and exploration of systems data should facilitate a more comprehensive 

understanding of the biological processes underlying health and disease.
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Figure 1 |. Interdependence of host and pathogen.
A representation of the intricate relationship between host and pathogen that ultimately 

dictates the outcome of infection on the spectrum between health and disease. Pathogens 

effect direct changes on the host, which in turn elicits a response to infection, both of which 

are influenced by the underlying environment. These influences dictate susceptibility versus 

resistance, tolerance versus pathogenicity, immune response versus immunodeficiency, 

virulence versus nonvirulence, and ultimately health versus disease. Systems biology 

approaches are especially valuable in infectious disease research as a way to capture a 

comprehensive picture of this intricate relationship.
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Figure 2 |. A systems biology framework.
A visual representation of the steps we outline in this review as part of a systems biology 

approach to infectious disease from discovery to representation to application. Arrows 

highlight the iterative and interconnected nature of systems biology as a process. CRISPRa, 

CRISPR activation; CRISPRi, CRISPR inhibition; E-MAP; epistatic mini-array profile; 

GWAS, genome-wide association studies; RNAi, RNA interference; seq, sequencing.
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Figure 3 |. Systems biology technologies for infectious disease research.
A summary of relevant omics technologies used in infectious disease research alongside the 

molecular signatures they are designed to capture.
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Figure 4 |. Assembly and representation of a network model.
After the organization of the collected data into a tidy format (a), a simple network of nodes 

and edges can be assembled (b) with each node representing a component of the system and 

each edge representing their relationships. Varying the size, color, and organization of the 

nodes can be used to add dimension to the dataset by visualizing magnitude, p-value, or a 

common descriptor (c). Additional information can be depicted by varying edge characters 

such as width to indicate associative strength, gaps to indicate transience, or arrows to 

indicate directionality (d). Different types of data may benefit from different methods of 

depiction to complement the base network, including heatmaps to illustrate timecourse data 

or shading to illustrate pathway or complex membership (E).
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