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Abstract

The role of physicians has always been to synthesize the data available to them to identify 

diagnostic patterns that guide treatment and follow response. Today, increasingly sophisticated 

machine learning algorithms may grow to support clinical experts in some of these tasks. Machine 

learning has the potential to benefit patients and cardiologists, but only if clinicians take an active 

role in bringing these new algorithms into practice. The aim of this review is to introduce 

clinicians who are not data-science experts to key concepts in machine learning that will allow 

them to better understand the field and evaluate new literature and developments. We then 

summarize the current literature in machine learning for cardiovascular disease, using both a 

bibliometric survey, with code publicly available to enable similar analysis for any research topic 

of interest, and select case studies. Finally, we list several ways clinicians can and must be 

involved in this emerging field.

Condensed Abstract

The aim of this review is to introduce clinicians who are not data-science experts to key concepts 

in machine learning that will allow them to better understand the field and evaluate new literature 

and developments. We then summarize the current literature in machine learning for 

cardiovascular disease, using both a bibliometric survey, with code publicly available to enable 

Corresponding Author: Rima Arnaout MD, Department of Medicine, Division of Cardiology, Bakar Computational Health Sciences 
Institute, Center for Intelligent Imaging, Chan Zuckerberg Biohub Intercampus Research Award Investigator, University of California, 
San Francisco, 555 Mission Bay Blvd South, San Francisco, CA 94158, rima.arnaout@ucsf.edu, Phone: 415.407.6180, Twitter: 
@arnaoutlab@giorgioquer. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

Disclosures: The authors have no relevant disclosures.

HHS Public Access
Author manuscript
J Am Coll Cardiol. Author manuscript; available in PMC 2022 January 26.

Published in final edited form as:
J Am Coll Cardiol. 2021 January 26; 77(3): 300–313. doi:10.1016/j.jacc.2020.11.030.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



similar analysis for any research topic of interest, and select case studies. Finally, we list several 

ways clinicians can and must be involved in this emerging field.
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cardiology; machine learning; deep learning; artificial intelligence; literature search; bibliometric 
analysis

Introduction

Machine learning (ML)—the use of computer algorithms that can learn complex patterns 

from data—has significant potential to impact cardiology due to the number of diagnostic 

and management decisions that rely on digitized, patient-specific information such as ECGs, 

echocardiograms and more (1); and due to the growing amount and complexity of medical 

knowledge. The staggering volume of health care data—clinical notes, wearable and sensor 

data, medication lists, imaging, and much more—continues to increase astronomically, with 

two zettabytes (one zettabyte = one trillion gigabytes) estimated to be produced in 2020 (2). 

Simply put, “the complexity of medicine now exceeds the capacity of the human mind.” (3) 

As a result, our knowledge and interpretation of available data, our skills, and our practice 

may vary from clinician to clinician, sometimes failing to leverage all of medical knowledge. 

Designed, validated, and implemented appropriately, machine learning algorithms will help 

in acquiring, interpreting, and synthesizing healthcare data from disparate sources and 

putting it at our fingertips – as if we had an expert sub-specialist to call upon for every 

patient and every clinical situation.

As machine learning algorithms permeate into clinical cardiology, they may be deployed in 

multiple areas. Algorithms may help the front office schedule different patients with the 

appropriate amount of time based on their EHR data, or help primary care physicians better 

guide referrals to the cardiologist’s office. Machine learning will help in remote testing and 

monitoring of patients, guiding the data acquisition that will be sent to a clinic or hospital. 

Perhaps the computer-generated ECG reports will become more reliable, because machine 

learning algorithms are analyzing the signal. Ultrasound, nuclear, CT and MRI images will 

be better-protocolled and have less image noise or fewer artifacts. Automated cardiac 

measurements from echocardiograms, CT scans, and MRIs may become more accurate and 

reliable (4). Perhaps cardiac risk scores won’t be calculated from just a handful of variables, 

but from every piece of data in the patient’s chart. Perhaps ML algorithms will help us 

discover new and subtle patterns in data that may change how we care for our patients. 

Perhaps clinical guidelines may recommend ML-enabled testing for patient diagnosis and 

management. Taken together, these and other ML-based improvements may make for a 

revolution in cardiology. Despite this potential, and a growing body of literature (detailed 

below), machine learning’s real-world impact on clinical cardiologists and their patients has 

been quite limited to date(1,5).

To borrow from American poet and musician Gil Scott-Heron, this revolution will not be 

televised. By the time algorithms like those described above make it into the clinic, their 

presence will be largely invisible to the practitioner. Cardiologists’ active involvement in 
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machine learning before it reaches the clinic is critical in order to help it reach its full 

potential for patient care. Cardiologists will be the ones to follow new developments in 

medical machine learning, serve as peer reviewers, and evaluate whether new work is 

impactful or incremental to patients and providers. Cardiologists will lead clinical trials 

evaluating efficacy and safety of machine learning algorithms, just as they do for drugs or 

medical devices. In the clinic, cardiologists will help decide, for example, whether to buy 

new ML-powered software to improve clinical operations or diagnosis. When a machine 

learning algorithm suggests an unusual result, cardiologists will have to decide whether that 

result is spurious or a truly novel finding that a physician would not see on his or her own. 

And they will have to explain their reliance on or rejection of ML-based test results to their 

patients. For all of these reasons, even cardiologists who are not machine learning experts 

can benefit from some basic tools and concepts with which to understand, evaluate, and, 

when appropriate, champion the incorporation of evidence-based machine learning research 

into their practice.

The goal of this review is to present these concepts for machine learning, to provide a way to 

survey the ever-growing body of literature in machine learning for cardiology, and to provide 

suggestions for how cardiologists who are not data science experts can participate in the 

machine learning revolution.

Machine learning: key concepts for busy clinicians

In this section we will provide a brief overview of six machine learning concepts that 

clinicians need to be familiar with to read clinical papers using machine learning methods, 

and eventually to facilitate the use of novel machine learning algorithms inside the clinic. 

Our goal is not to provide a comprehensive technical primer on machine learning 

algorithms, already well covered in several excellent resources (4–11).

Artificial intelligence (AI), simply defined as a computer system that is able to perform tasks 

that normally require human intelligence, is something cardiologists have been taking 

advantage of for decades virtually every day as hundreds of millions of ECGs are interpreted 

by computers worldwide every year (12,13). Here, we will use ECG analysis as a canonical 

example to illustrate several concepts in machine learning, because it is clinically familiar 

and has been well-studied by humans, by non-ML computer algorithms, and by ML 

algorithms.

Concept 1. Traditional rules-based algorithms apply rules to data, while machine learning 
algorithms learn patterns from data.

Computers can mimic human intelligence through rules-based algorithms, used in traditional 

computerized ECG interpretation (12), or, through machine learning (ML) algorithms. 

Rules-based algorithms make use of a set of rules explicitly programmed by humans to 

mimic the knowledge a cardiologist might use in reading the ECG, for example: determining 

the rate, identifying P-waves before every QRS, recognizing pathognomonic waveform 

changes. In this case, the rules used that lead to a computer’s ECG diagnosis are well 

understood.
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In contrast to rules-based algorithms, machine learning algorithms that learn rules and 

patterns from the data fed to them, rather than having those rules explicitly programmed. 

This fundamental difference is responsible for both the excitement about machine learning 

algorithms’ potential to solve problems in cardiology beyond human capability—for 

example, detecting patients with ejection fraction ≤35% or detecting patients with 

hypoglycemia based on an ECG alone (14,15)—but it is also cause for the caution clinicians 

must have in evaluating and eventually implementing ML solutions.

There are several types of machine learning algorithms, from decision trees and support 

vector machines (SVMs), to highly complex, data-hungry algorithms called neural networks. 

Neural networks are used in deep machine learning (deep learning, or DL), and their ability 

to analyze large amounts of highly complex data—electronic health record (EHR) data, for 

example, or the collection of pixels that make up medical images—are especially exciting 

for cardiology applications. An ML algorithm is trained on data, yielding a trained ML 

model that can then be evaluated on never-before-seen test data. Several excellent reviews 

discuss different types of ML algorithms, including neural networks, in more detail (10,16–

18).

Concept 2. ML algorithms can learn patterns from labeled examples: supervised learning

Machine learning algorithms can learn patterns from data in two main ways. The first 

approach is to provide data (e.g., a set of ECGs from patients visiting a clinic) along with a 

corresponding label for what the algorithm is meant to learn (in this example, the label 

would be the diagnosis for each single ECG). This approach is called supervised learning 

(14,19–21). Based on the labeled examples alone, the algorithm learns for itself the most 

important features of the ECG that drive its decision, and devises rules to exploit those 

features for diagnosis of new ECGs never seen before.

Supervised learning algorithms have the advantage of having a clear goal: predicting the 

label of interest. But the disadvantage of supervised ML algorithms is that their ability to 

find interesting patterns in the data is also constrained by those labels. As any clinician who 

has written question-and-answers for board prep or put together a self-assessment program 

(SAP) knows, choosing the right data for training and deciding on the correct answer or 

label is critically important to training and takes a lot of work. Similarly, a major challenge 

in supervised machine learning is the availability of data sets of adequate size that have 

correctly annotated labels of interest. This is not always straightforward. For example, data 

scientists may trust that when a patient has a specific diagnostic code in their EHR, such as 

acute venous thromboembolism (VTE), that the diagnostic code can serve as an accurate 

clinical label for VTE. However, studies have founded that a VTE diagnosis in the EHR has 

a positive predictive value as low a 31% for an outpatient diagnosis and 65% for an inpatient 

diagnosis (22). Therefore, correct labelling of datasets requires active curation by 

physicians, and will often require consensus from more than one physician.
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Concept 3. ML algorithms can learn patterns without labeled examples: unsupervised and 
reinforcement learning

The second approach that can be used is unsupervised learning, designed to discover the 

hidden patterns by analyzing data without a label. An unsupervised learning approach is 

similar to a medical student that is given a huge number of ECGs without any diagnosis. The 

student may not have been told what atrial fibrillation is or what a left bundle branch block 

looks like, or that pericarditis can cause PR segment depression, but he can still classify the 

examples in similar groups, selecting the most important ECG characteristics that he thinks 

differentiate one example from another. He may learn on his own that the bumps and 

squiggles in an ECG seem to follow a certain sequence and that they have different durations 

and morphologies, or he may notice an entirely novel characteristic not typically taught in 

the textbooks. In the same way, an algorithm can cluster available data in several groups, and 

can learn the data features that are most relevant in differentiating the examples.

Unsupervised learning holds several advantages in machine learning: it allows the algorithm 

to develop an understanding of the data that is unconstrained by labor-intensive and often 

variable human labels, and it allows the algorithm to come up with novel groupings and 

clusters of the data that a human being may not be aware of. These learned features as 

groupings can also be exploited by a subsequent supervised learning step (23), just as the 

medical student, having pre-digested the ECGs on his own, then has an easier time learning 

that certain patterns correspond to sinus arrhythmia or hyperkalemia.

Unsupervised learning approaches are common in the analysis of EHR or genetic data to 

automatically extract the most useful information (24) to identify distinct disease subgroups

—of type 2 diabetes, for example (25)—or to find a new set of biomarkers that may be better 

predictors than standard biomarkers in defining distinct subsets of individuals with similar 

health status (26). Clustering—dividing any type of data in groups of similar data points 

based on the data’s characteristics—is indeed a successful application of unsupervised 

learning to clinical data (27,28). As above, the clusters generated may lead to novel groups 

of data points that may illuminate novel subgroups of disease, new biomarkers, or new 

predictors of a clinical outcome of interest. However, clustering often represents only the 

first step to group the data before a more insightful analysis. Importantly, clusters that may 

suggest new groupings of disease or other novel insights must be validated clinically, as it 

can be easy to set clustering parameters to create subgroups, or lump together groups that 

should be separate.

In addition to supervised and unsupervised learning, a third category of learning methods, 

reinforcement learning, is used when the ML algorithm is given iterative information about 

the outcome of its predictions in the environment as feedback that helps guide its future 

predictions. Imagine training an ML algorithm to dose intravenous heparin, for example. For 

this task, neither a supervised approach, such as labeling different doses of heparin as ‘good’ 

or ‘bad,’ nor an unsupervised approach (no label at all) would work well. Instead, in a 

reinforcement learning approach, the algorithm would have a goal—optimize partial 

thromboplastin time (PTT)—and would predict different heparin doses, receiving a positive 

or negative reward depending on how close to the goal PTT it got. That reward would then 

inform the algorithm’s next guess, and so forth. Reinforcement learning has been used with 
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success to learn complex strategy games like Go (23), where the goals and the effect of the 

algorithm’s decision on the environment is clear, and where the algorithm can play Go 

millions of times, often losing the game until it learns. It has also been studied for some 

clinical tasks, such as guiding dofetilide dosing or ventilator settings (29,30). However, 

reinforcement learning may be of limited use in clinical tasks where the goal and the 

environment’s possible response are much more complex, and where ‘losing the game’ in a 

clinical setting during the learning phase of the algorithm is not ethically acceptable.

Concept 4. When ML algorithms learn rules that perform well on training data but fail on 
test data, they have failed to learn rules that are generalizable

This problem, called overfitting, happens when there is mismatch between the complexity of 

the ML algorithm and the size of the training dataset provided to it. Take for example a very 

complex algorithm trained on a small dataset: the algorithm learns rules so tailored to the 

specific training examples at hand that it has in effect “memorized” them instead of learning 

the general rules behind them. This means the model performance will appear to be very 

good, but then fail when deployed on larger datasets. The problem is even more severe in the 

presence of class imbalance, i.e., when one subgroup of the training data has only very few 

samples.

Overfitting is one of the most common problems encountered when using supervised 

machine learning algorithms, and the main limitation to their application to real-life clinical 

situations (31). Overfitting can happen to human learners as well, for example, the fellow 

who has studied 10 ECGs very closely but then fails the board exam. To date, however, a 

human learner is typically much better at generalizing knowledge from a small dataset than 

an ML algorithm.

It is common to estimate the complexity of an ML model based on the number of parameters 

in the trained model, which can be in the order of hundreds of millions for modern DL 

architectures, even when trained on just a few thousand training examples (32). Methods to 

mitigate overfitting include 1) reducing the model complexity, 2) increasing the number of 

examples in the training set (although this is often not possible) 3) limiting the number of 

iterations of the algorithm (i.e., training cycles) on the training data, 4) balancing the 

parameters learned in the model (regularization) to obtain a simpler model that underfits on 

the training data but generalizes better, and 5) using not one model but an ensemble of 

separate models to come to the desired prediction so that various overfitting effects of each 

singular model balance out (33).

Given the common and dangerous issue of overfitting, the performance of the trained model 

must be tested on cases that are completely independent from the training examples, and 

ideally, from test data from multiple external medical centers. In order to evaluate 

performance of any ML algorithm on a clinical task, full information on the data and 

methods used in training and testing must be reported (11).

Concept 5. Accuracy, interpretability and explainability of a machine learning algorithm

Simply put, diagnostic accuracy is defined by the proportion of correct predictions (true 

positives and true negatives) in a given test dataset. Supervised machine learning models can 
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be more accurate on a given diagnostic task than the average clinician, as shown by deep 

learning algorithms matching the diagnostic accuracy of a team of 21 board-certified 

practicing cardiologists in the classification of 12 heart rhythm types from single-lead ECGs 

(19).

However accurate they may be, typically, the rules by which ML models have achieved their 

performance are not clear – this is especially true for highly complex neural networks. This 

lack of easy interpretability of the neural networks’ decision-making means that it can be 

difficult to verify the learned rules have truly generalized to real-life clinical situations (34).

It can also be difficult to learn from novel features or patterns the ML algorithms may have 

detected. Lack of interpretability raises some important questions for the clinician.

First, does it matter that we don’t know how a tool works, as long as we have validated that 

it works very well? Second, what is the level of testing an ML must go through to be 

considered safe for clinical situations, especially when we don’t know how it works?

While one would like an ML model to maximize both accuracy and interpretability, to date 

there is a tradeoff between the two, especially when using neural networks (deep learning), 

whose operations are often too complicated to analyze and interpret. As clinicians, we may 

need to choose whether to take advantage of a “black-box” algorithm with proven 99% 

accuracy, or an interpretable algorithm with recognizable features that lead to the model 

decision, but has only 80% accuracy (35). The debate on this topic is still open and it is one 

of the reasons for the slow adoption of current machine learning techniques in medicine. 

Possible solutions to this dilemma are the use of interpretable models substituting the black 

box algorithms (34), or the use of model-agnostic methods to explain the decision of the 

black box with local (case specific) and global (model specific) explanations (36). Clinicians 

will need to evaluate algorithms in clinical trials and incorporate their recommendations in 

guidelines documents (Table 3). A more futuristic approach involves the redesign of AI 

models towards a knowledge-driven reasoning-based approach, which may be extremely 

valuable in medicine, but these methods are currently under investigation in the computer 

science world, while their applicability in medicine is likely at least a decade away (37).

Concept 6. Machine learning algorithms can be re-trained to include more data or different 
data types

Like a medical student can learn to interpret many different types of data—ECGs, chest X-

rays, lab values—with proper training, and can improve the more data they see, machine 

learning algorithms are dynamic and can be re-trained with additional and/or different types 

of labeled data with minimal or no human supervision. For example, the same deep learning 

algorithms developed for classification of non-clinical images (dogs, cats, trees) have been 

adapted and re-used to detect congenital heart disease, diabetic retinopathy, cardiac views, 

skin lesions, and a host of other clinical tasks (20,38–40). This is quite important, as a 

machine learning algorithm does not need to be fundamentally redesigned when facing a 

new problem and dataset: the algorithms used to implement a classification task are 

fundamentally similar whether the data is ECG, ultrasound, or nuclear imaging, the 
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algorithms used to implement a segmentation task are similar whether it is on CT or MRI 

data, and so forth.

A given neural network can be trained ‘from scratch’ on different datasets for different tasks, 

or, it can be ‘pre-trained’ on a more general dataset and task to learn very basic data features 

before being ‘fine-tuned’ on e.g. a cardiology-specific dataset and task (38,40–45). This 

approach is called transfer learning, and it can be useful when the specialized medical data is 

rare. Similarly, a model that was trained on a certain cohort of medical data can also be 

further trained on additional medical data, for example from another hospital.

Finally, while ML algorithms can be used on different problems with very little tweaking 

needed, a model trained on a particular data type still has difficulty generalizing knowledge 

across different data types. For example, integrating the information about the left ventricle 

from multiple data types like an ECG, an echocardiogram, a nuclear study, and a cardiac 

catheterization is still a task that is much easier for a trained clinician than for a machine 

learning model. Such cross-modal synthesis of knowledge from different data types is a task 

where ML algorithms could have the potential to shine, and this is an active topic of research 

in computer science.

Machine learning in cardiology: a computational survey of the literature 

and case studies

With a conceptual framework for machine learning algorithms in place, we now present a 

survey of the literature on machine learning in cardiology, highlighting several applications. 

Because machine learning papers in cardiology are growing so quickly, we provide an open-

source semi-automated method to survey all machine learning papers in cardiology that can 

be updated over time, as well as specific case studies to detail several use cases to date: 

denoising and image enhancement, feature extraction and representation, improving 

traditional algorithms with data repurposing, novel insights, and improving healthcare 

systems.

Research landscape

To provide an informal survey of the research landscape, we retrieved bibliometric 

information on all publications fitting search terms corresponding to machine learning and 

cardiology. These publications were annotated according to whether they were original 

research or reviews, editorials, or other commentary; as well as according to the machine 

learning problem(s) addressed, the machine learning method(s) used, the cardiology 

disease(s) studied, and the type(s) of medical data studied. These data were retrieved, 

analyzed, and visualized using the Python programming language and application 

programming interfaces (APIs) from NCBI PubMed (https://www.ncbi.nlm.nih.gov/

pubmed/) and preprint servers arXiv (https://arxiv.org/), bioRxiv (https://biorxiv.org), and 

medRxiv (https://medrxiv.org). This approach allowed a method for surveying the literature 

which can be easily updated and applied toward other search topics. Code is available at 

https://github.com/ArnaoutLabUCSF/cardioML/JACC_2020 for use and adaptation by the 
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research community. (Figures in the published version of this manuscript use data through 

July 20, 2020.)

The past five years have seen over 3,000 papers on machine learning in cardiology published 

in PubMed (about 80% original research) or posted on the popular preprint servers arXiv 

and bioRxiv, where scientists are increasingly sharing their papers with each other and with 

the public before, during, and sometimes as an alternative to, the peer review process (46) 

(Figure 1). This represents tremendous growth, such that in 2020 nearly 1 in every 1,000 

new papers in PubMed will be on artificial intelligence and/or machine learning in 

cardiology. Despite this uptick in publications, there are still several areas that are open for 

study. For peer-reviewed papers in PubMed, approximately two thirds involve 

atherosclerosis (including dyslipidemia and cerebrovascular disease), heart failure, or 

hypertension and other cardiac risk factors (Figure 2). Publications fairly evenly cover the 

major data types: electronic health record (EHR) data, electrocardiography (ECG), 

ultrasound (US), magnetic resonance imaging (MRI) and computed tomography (CT). 

Omics is also a popular subject. The two least expensive data types, X-rays and laboratory 

studies, have received less attention.

The vast majority of publications involving CT looked at atherosclerosis; most heart failure 

studies used the EHR and US; and, predictably, most studies of arrhythmia used ECG data 

(Figure 2). Three-quarters of these papers are about diagnosis, prediction, or classification, 

with relatively less attention to object tracking and novel biomarker discovery. Consistent 

with trends across artificial intelligence and machine learning, most cardiac AI/ML studies 

use neural networks (or an ensemble of methods that usually include neural networks), with 

a minority exclusively using more traditional techniques like linear models, SVMs, and 

decision trees.

For papers published in PubMed, the leaders in research output in cardiac AI/ML are the 

United States (especially California, Massachusetts, and New York) and the United 

Kingdom, followed by China, Germany, and the Netherlands, with other developed countries 

contributing materially as well (Figure 3). This work is very broadly distributed, with high 

per-capita contributions from all the developed countries but also work across much of the 

developing world. Collaborations in cardiac AI/ML span the globe and are similarly multi-

institutional within the United States.

Case studies of machine learning in action

In terms of disease topics and data modalities studied, the survey shows which have been 

more and less studied. Building from the machine learning Concepts referenced above, we 

developed a toolbox of questions and considerations when evaluating the impact and rigor of 

machine learning studies (Table 1). With this in mind, we have noted several interesting 

applications of machine learning to cardiology. Because of the largely “data-agnostic” nature 

of machine learning algorithms (Concept 6), we organize these case studies by machine 

learning use case, rather than by clinical data type or disease.

Denoising and image enhancement.—Across several modalities, machine learning 

has been applied to the clinical problem of image post-processing and de-noising. In 
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ultrasound (47,48), CT (49,50), MRI (51,52), and nuclear imaging (53,54) the complex 

patterns of noise encountered in clinical imaging have lent themselves to neural network-

based denoising. In terms of clinical utility, machine learning has the potential to decrease 

the time and labor involved in image post-processing, and to reduce inter-operator, inter-

vendor, and inter-institution differences in data processing. In the case of X-ray and CT 

imaging, neural network-based image analysis may allow high-quality imaging with reduced 

radiation dose compared to the current standard. Currently, most machine learning 

approaches to denoising have taken a supervised learning approach, where models are being 

trained to approximate proprietary denoising software as the ground-truth label (48), or are 

trained by adding noise to input data. Several studies in the literature have been trained on 

phantoms and relatively small amounts of clinical data. This means that current neural 

network denoisers may still be learning relatively simple noise patterns rather than the true 

extent of variability in clinical imaging. The performance of denoising networks has been 

primarily measured in terms of comparing input images to their ground-truth labels, which is 

a necessary and important performance metric; however, measuring changes in diagnostic 

performance based on machine-learning-based image denoising is an important next step to 

validating their utility in clinical practice. Some clinical trials are underway to test image 

denoising on a larger scale (55,56)

Feature extraction and representation.—Supervised and unsupervised machine 

learning is also being used to represent important features of clinical data into simpler, more 

compact, more uniform formats: this process is called feature extraction. For example, free-

text clinical notes can be analyzed and represented by the list of diseases and procedures 

mentioned; an ECG can be analyzed and represented by a small group of numbers that 

summarize the intervals, axis, and QRS morphology; an ultrasound image can be 

represented by the structures detected in that image. Machine learning algorithms can also 

represent data in ways that are not intuitive to a human, but that are nevertheless simpler and 

more useful to computers. The automatic extraction of these features via complex non-linear 

combination of the input data is indeed the key for the superior classification performance of 

modern deep learning algorithms (21,32). These extracted features can allow for comparing 

data across institutions (data harmonization), and combining features extracted from 

different data types can enable a multi-modal representation of a particular patient or 

disease. Therefore, models that effectively extract important clinical features from different 

data types in a scalable fashion are fundamentally important to powering larger and more 

complex machine learning studies in the near future.

To date, features learned from neural networks and other ML algorithms have been used in 

cardiology in myriad classification tasks, such as classifying cardiac views from different 

imaging modalities (20,57) or classifying the presence or absence of disease from image, 

ECG, text, ascultation, or lab data (58–61); segmentation of cardiac structures and/or 

abnormalities (41,62,63) (Table 2), and tissue characterization (64–66) of imaging, text, and 

ECG data. Several machine learning algorithms that have been cleared by the FDA, while 

proprietary in nature, are likely based on classification and/or segmentation algorithms 

(examples shown in Table 2). Training models to perform these foundational tasks has often 

required considerable data labeling; therefore, this work will continue to benefit from 

Quer et al. Page 10

J Am Coll Cardiol. Author manuscript; available in PMC 2022 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



parallel research on leveraging small datasets (20,67,68) as well as synthesizing larger 

datasets from smaller ones (69,70).

Improving traditional algorithms and data repurposing for advanced insights.
—Machine learning is being used to improve upon traditional risk prediction algorithms 

using available registry data (71–74). Machine learning can enable development of 

biomarkers that otherwise would be highly labor-intensive to calculate or were not 

consistently scores on retrospective imaging, such as the quantitation of epicardial adipose 

tissue on imaging studies to improve risk prediction for myocardial infarction (75); this work 

is now being studied in a clinical trial (76). Researchers are also using machine learning to 

test whether advanced insights are possible from data types not typically used for those 

insights: examples include using clinical data to predict genetic variants, predicting 

pulmonary-to-systolic blood flow ratios from chest X-rays, fall risk prediction from 

wearable home sensors, and calculating a calcium score from chest CTs or from perfusion 

imaging (77–81). These studies benefit when a robust ground-truth label and clinical 

performance benchmark are present from traditional sources (e.g. genetic sequencing, right 

heart catheterization, clinical falls data, and standard calcium scores for the examples 

mentioned here).

Novel insights.—In the above examples, the insights detected can be reasonably expected 

to be found in the data type studied. For example, even though we use blood chemistry to 

predict hyperkalemia precisely, we know that signs of electrolyte imbalance can be evident 

on ECG. Researchers are using similar approaches to detect novel insight in unexpected data 

types, finding patterns in data that are not evident to the trained clinician. For example, 

studies have reported detecting adverse drug reactions from social media, detecting gender 

from a fundoscopic retinal image, or detecting coronary microvascular resistance from 

ocular vessel exam (82–84). Especially when initial studies are published from small 

datasets, there is a possibility that the models are overfitting (Concept 4) rather than finding 

a true insight. Such findings must be validated rigorously in multi-center datasets and 

clinical trials, and computational experiments such as saliency and attention mapping must 

be performed to help understand what data features the machine learning models are 

detecting.

Healthcare systems.—Finally, researchers are putting machine learning to work on 

systems-level problems in healthcare, including deployment of AI algorithms for 

cardiovascular disease screening, and remote monitoring of patient medication adherence 

and optimization (85–89). The former trial, still underway, studies how AI-derived ECG 

results to screen for low ejection fraction are delivered to primary care physicians (89). A 

combination of clinical and administrative data can be used to predict optimal patient 

scheduling and procedure protocoling, as well as hospital readmission rates, transfer into 

and out of the intensive care unit (ICU), and to reduce false alarms in the ICU (90–93).

The use cases above demonstrate how widely machine learning approaches may change the 

practice of clinical cardiology. Publications to date still feature largely small and single-

center datasets and demonstrate often modest gains over standard-of-care clinical 

performance, however, the quality and impact of machine learning in cardiology continues 
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to gain ground, and as these proofs-of-concept mature, we may find them applied to clinical 

cardiology in the near future.

Challenges and a call to action for clinicians

From the above, we see that there is an opportunity for advanced pattern-finding from 

machine learning algorithms to help clinicians, especially as medical data is increasing in 

amount and complexity. We see that in cardiology, machine learning research is already well 

underway, with several interesting proofs-of-concept from the research community and some 

proprietary solutions introduced by industry. We have also seen that several important 

concepts in ML research design—including thoughtful selection of use cases and 

performance metrics, meticulous annotation and curation of datasets, and broad testing and 

validation to ensure generalizability of results—must be considered and implemented 

carefully in order to solve real-world problems in clinical cardiology.

We believe that machine learning will become part of the clinician’s toolbox, at the point of 

care (in electronic health records and risk calculator algorithms), ‘under the hood’ in 

diagnostic and therapeutic devices (such as ECG, CT, pacemakers, insulin pumps), and in 

scheduling and protocolling medical tests and appointments. While some cardiologists will 

choose to specialize in machine learning and data science, cardiologists who are not 
necessarily ML experts also have several important roles to play in the responsible 

incorporation of machine learning into cardiology (Table 3) including participating in 

annotation and curation of data as a clinical expert, advocating for ML solutions that solve 

important clinical problems for our patients without racial, gender, or other forms of bias, 

and running rigorous clinical trials of machine learning algorithms on large patient cohorts. 

We hope that cardiologists as active participants and informed users will help ensure that 

machine learning will live up to its potential to improve the field.
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API application programming interface

CT computed tomography
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ML machine learning

MRI magnetic resonance imaging

NCBI National Center for Biotechnology Information

PTT partial thromboplastin time

SAP self-assessment program

SVM support vector machine

US ultrasound

VTE venous thromboembolism

References

1. Shameer K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP. Machine learning in 
cardiovascular medicine: are we there yet? Heart 2018;104:1156–1164. [PubMed: 29352006] 

2. Harnessing the Power of Data in Health: Stanford Medicine 2017 Health Trends Report. 6 2017 
https://med.stanford.edu/content/dam/sm/sm-news/documents/
StanfordMedicineHealthTrendsWhitePaper2017.pdf Accessed March 20 2020.

3. Obermeyer Z, Lee TH. Lost in Thought - The Limits of the Human Mind and the Future of 
Medicine. N Engl J Med 2017;377:1209–1211. [PubMed: 28953443] 

4. Litjens G, Ciompi F, Wolterink JM et al. State-of-the-Art Deep Learning in Cardiovascular Image 
Analysis. JACC Cardiovasc Imaging 2019;12:1549–1565. [PubMed: 31395244] 

5. Sardar P, Abbott JD, Kundu A, Aronow HD, Granada JF, Giri J. Impact of Artificial Intelligence on 
Interventional Cardiology: From Decision-Making Aid to Advanced Interventional Procedure 
Assistance. JACC Cardiovasc Interv 2019;12:1293–1303. [PubMed: 31320024] 

6. Sengupta PP. Intelligent platforms for disease assessment: novel approaches in functional 
echocardiography. JACC Cardiovasc Imaging 2013;6:1206–11. [PubMed: 24229773] 

7. Dey D, Slomka PJ, Leeson P et al. Artificial Intelligence in Cardiovascular Imaging: JACC State-of-
the-Art Review. J Am Coll Cardiol 2019;73:1317–1335. [PubMed: 30898208] 

8. Rajkomar A, Dean J, Kohane I. Machine Learning in Medicine. N Engl J Med 2019;380:1347–
1358. [PubMed: 30943338] 

9. Nicol ED, Norgaard BL, Blanke P et al. The Future of Cardiovascular Computed Tomography: 
Advanced Analytics and Clinical Insights. JACC Cardiovasc Imaging 2019;12:1058–1072. 
[PubMed: 31171259] 

10. Chang A Intelligence-Based Medicine: Artificial Intelligence and Human Cognition in Clinical 
Medicine and Healthcare. 1st Edition ed: Academic Press, 2020.

11. Norgeot B, Quer G, Beaulieu-Jones BK et al. Minimum information about clinical artificial 
intelligence modeling: the MI-CLAIM checklist. Nat Med 2020;26:1320–1324. [PubMed: 
32908275] 

12. Kossmann CE. Electrocardiographic Analysis by Computer. JAMA 1965;191:922–4. [PubMed: 
14260227] 

13. Smulyan H The Computerized ECG: Friend and Foe. Am J Med 2019;132:153–160. [PubMed: 
30205084] 

14. Attia ZI, Kapa S, Lopez-Jimenez F et al. Screening for cardiac contractile dysfunction using an 
artificial intelligence-enabled electrocardiogram. Nat Med 2019;25:70–74. [PubMed: 30617318] 

15. Porumb M, Stranges S, Pescapè A, Pecchia L. Precision Medicine and Artificial Intelligence: A 
Pilot Study on Deep Learning for Hypoglycemic Events Detection based on ECG. Sci Rep 
2020;10:170. [PubMed: 31932608] 

Quer et al. Page 13

J Am Coll Cardiol. Author manuscript; available in PMC 2022 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://med.stanford.edu/content/dam/sm/sm-news/documents/StanfordMedicineHealthTrendsWhitePaper2017.pdf
https://med.stanford.edu/content/dam/sm/sm-news/documents/StanfordMedicineHealthTrendsWhitePaper2017.pdf


16. Henglin M, Stein G, Hushcha PV, Snoek J, Wiltschko AB, Cheng S. Machine Learning 
Approaches in Cardiovascular Imaging. Circ Cardiovasc Imaging 2017;10.

17. Deo RC. Machine Learning in Medicine. Circulation 2015;132:1920–30. [PubMed: 26572668] 

18. Sengupta PP, Shrestha S, Berthon B et al. Proposed Requirements for Cardiovascular Imaging-
Related Machine Learning Evaluation (PRIME): A Checklist: Reviewed by the American College 
of Cardiology Healthcare Innovation Council. JACC Cardiovasc Imaging 2020;13:2017–2035. 
[PubMed: 32912474] 

19. Hannun AY, Rajpurkar P, Haghpanahi M et al. Cardiologist-level arrhythmia detection and 
classification in ambulatory electrocardiograms using a deep neural network. Nat Med 
2019;25:65–69. [PubMed: 30617320] 

20. Madani A, Arnaout R, Mofrad M. Fast and accurate view classification of echocardiograms using 
deep learning. NPJ Digit Med 2018;1.

21. Attia ZI, Noseworthy PA, Lopez-Jimenez F et al. An artificial intelligence-enabled ECG algorithm 
for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis 
of outcome prediction. Lancet 2019;394:861–867. [PubMed: 31378392] 

22. Fang MC, Fan D, Sung SH et al. Validity of Using Inpatient and Outpatient Administrative Codes 
to Identify Acute Venous Thromboembolism: The CVRN VTE Study. Med Care 2017;55:e137–
e143. [PubMed: 29135777] 

23. Johnson KW, Torres Soto J, Glicksberg BS et al. Artificial Intelligence in Cardiology. J Am Coll 
Cardiol 2018;71:2668–2679. [PubMed: 29880128] 

24. Miotto R, Li L, Kidd BA, Dudley JT. Deep Patient: An Unsupervised Representation to Predict the 
Future of Patients from the Electronic Health Records. Sci Rep 2016;6:26094. [PubMed: 
27185194] 

25. Li L, Cheng WY, Glicksberg BS et al. Identification of type 2 diabetes subgroups through 
topological analysis of patient similarity. Sci Transl Med 2015;7:311ra174.

26. Shomorony I, Cirulli ET, Huang L et al. An unsupervised learning approach to identify novel 
signatures of health and disease from multimodal data. Genome Med 2020;12:7. [PubMed: 
31924279] 

27. Luo Y, Ahmad FS, Shah SJ. Tensor Factorization for Precision Medicine in Heart Failure with 
Preserved Ejection Fraction. J Cardiovasc Transl Res 2017;10:305–312. [PubMed: 28116551] 

28. Katz DH, Deo RC, Aguilar FG et al. Phenomapping for the Identification of Hypertensive Patients 
with the Myocardial Substrate for Heart Failure with Preserved Ejection Fraction. J Cardiovasc 
Transl Res 2017;10:275–284. [PubMed: 28258421] 

29. Yu C, Liu J, Zhao H. Inverse reinforcement learning for intelligent mechanical ventilation and 
sedative dosing in intensive care units. BMC Med Inform Decis Mak 2019;19:57. [PubMed: 
30961594] 

30. Levy AE, Biswas M, Weber R et al. Applications of machine learning in decision analysis for dose 
management for dofetilide. PLoS One 2019;14:e0227324. [PubMed: 31891645] 

31. Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Variable generalization 
performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional 
study. PLoS Med 2018;15:e1002683. [PubMed: 30399157] 

32. Gadaleta M, Rossi M, Topol EJ, Steinhubl SR, Quer G. On the Effectiveness of Deep 
Representation Learning: the Atrial Fibrillation Case. Computer (Long Beach Calif) 2019;52:18–
29. [PubMed: 31745372] 

33. Overfitting in Machine Learning: What It Is and How to Prevent It. http://elitedatascience.com/
overfitting-in-machine-learning Accessed March 30 2020.

34. Rudin C Stop explaining black box machine learning models for high stakes decisions and use 
interpretable models instead. Nature Machine Intelligence 2019;1:206–215.

35. Topol EJ. Deep medicine : how artificial intelligence can make healthcare human again. First 
edition ed. New York: Basic Books, 2019.

36. Molnar C Interpretable machine learning. A Guide for Making Black Box Models Explainable. 
2019 https://christophm.github.io/interpretable-ml-book/ Accessed March 29 2020

37. Marcus G The Next Decade in AI: Four Steps Towards Robust Artificial Intelligence. arXiv e-
prints, 2020:arXiv:2002.06177.

Quer et al. Page 14

J Am Coll Cardiol. Author manuscript; available in PMC 2022 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://elitedatascience.com/overfitting-in-machine-learning
http://elitedatascience.com/overfitting-in-machine-learning
https://christophm.github.io/interpretable-ml-book/


38. Esteva A, Kuprel B, Novoa RA et al. Dermatologist-level classification of skin cancer with deep 
neural networks. Nature 2017;542:115–118. [PubMed: 28117445] 

39. Gulshan V, Peng L, Coram M et al. Development and Validation of a Deep Learning Algorithm for 
Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 2016;316:2402–2410. 
[PubMed: 27898976] 

40. Arnaout R, Curran L, Zhao Y, Levine J, Chinn E, Moon-Grady A. Expert-level prenatal detection 
of complex congenital heart disease from screening ultrasound using deep learning. medRxiv 
2020:2020.06.22.20137786.

41. Chen HH, Liu CM, Chang SL et al. Automated extraction of left atrial volumes from two-
dimensional computer tomography images using a deep learning technique. Int J Cardiol 
2020;316:272–278. [PubMed: 32507394] 

42. Gessert N, Lutz M, Heyder M et al. Automatic Plaque Detection in IVOCT Pullbacks Using 
Convolutional Neural Networks. IEEE Trans Med Imaging 2019;38:426–434. [PubMed: 
30130180] 

43. Matsumoto T, Kodera S, Shinohara H et al. Diagnosing Heart Failure from Chest X-Ray Images 
Using Deep Learning. Int Heart J 2020;61:781–786. [PubMed: 32684597] 

44. Tadesse GA, Zhu T, Liu Y et al. Cardiovascular disease diagnosis using cross-domain transfer 
learning. Conf Proc IEEE Eng Med Biol Soc 2019;2019:4262–4265.

45. Toba S, Mitani Y, Yodoya N et al. Prediction of Pulmonary to Systemic Flow Ratio in Patients 
With Congenital Heart Disease Using Deep Learning-Based Analysis of Chest Radiographs. 
JAMA Cardiol 2020;5:449–457. [PubMed: 31968049] 

46. Abdill RJ, Blekhman R. Tracking the popularity and outcomes of all bioRxiv preprints. bioRxiv 
2019.

47. Diller GP, Lammers AE, Babu-Narayan S et al. Denoising and artefact removal for transthoracic 
echocardiographic imaging in congenital heart disease: utility of diagnosis specific deep learning 
algorithms. Int J Cardiovasc Imaging 2019;35:2189–2196. [PubMed: 31325067] 

48. Huang O, Long W, Bottenus N et al. MimickNet, Mimicking Clinical Image Post-Processing 
Under Black-Box Constraints. IEEE Trans Med Imaging 2020.

49. Blendowski M, Bouteldja N, Heinrich MP. Multimodal 3D medical image registration guided by 
shape encoder-decoder networks. Int J Comput Assist Radiol Surg 2020;15:269–276. [PubMed: 
31741286] 

50. Benz DC, Benetos G, Rampidis G et al. Validation of deep-learning image reconstruction for 
coronary computed tomography angiography: Impact on noise, image quality and diagnostic 
accuracy. J Cardiovasc Comput Tomogr 2020.

51. Qin C, Schlemper J, Caballero J, Price AN, Hajnal JV, Rueckert D. Convolutional Recurrent 
Neural Networks for Dynamic MR Image Reconstruction. IEEE Trans Med Imaging 
2019;38:280–290. [PubMed: 30080145] 

52. Küstner T, Armanious K, Yang J, Yang B, Schick F, Gatidis S. Retrospective correction of motion-
affected MR images using deep learning frameworks. Magn Reson Med 2019;82:1527–1540. 
[PubMed: 31081955] 

53. Doris MK, Otaki Y, Krishnan SK et al. Optimization of reconstruction and quantification of 
motion-corrected coronary PET-CT. J Nucl Cardiol 2018.

54. Lassen ML, Beyer T, Berger A et al. Data-driven, projection-based respiratory motion 
compensation of PET data for cardiac PET/CT and PET/MR imaging. J Nucl Cardiol 2019.

55. Johns Hopkins U, Canon Medical S. Comparison of Magnetic Resonance Coronary Angiography 
(MRCA) With Coronary Computed Tomography Angiography (CTA). 2021.

56. University of Z. Deep-Learning Image Reconstruction in CCTA. 2019.

57. Ostvik A, Smistad E, Aase SA, Haugen BO, Lovstakken L. Real-Time Standard View 
Classification in Transthoracic Echocardiography Using Convolutional Neural Networks. 
Ultrasound Med Biol 2019;45:374–384. [PubMed: 30470606] 

58. Fries JA, Varma P, Chen VS et al. Weakly supervised classification of aortic valve malformations 
using unlabeled cardiac MRI sequences. Nat Commun 2019;10:3111. [PubMed: 31308376] 

59. Papworth Hospital NHSFT. Cardiovascular Acoustics and an Intelligent Stethoscope. 2021.

Quer et al. Page 15

J Am Coll Cardiol. Author manuscript; available in PMC 2022 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



60. Eko Devices I Heart Failure Monitoring With Eko Electronic Stethoscopes. 2021.

61. Akron Children’s H, Thomas C. Dispenza MD, Bockoven John R.. The Accuracy of an 
Artificially-intelligent Stethoscope.

62. Leclerc S, Smistad E, Pedrosa J et al. Deep Learning for Segmentation Using an Open Large-Scale 
Dataset in 2D Echocardiography. IEEE Trans Med Imaging 2019;38:2198–2210. [PubMed: 
30802851] 

63. Du X, Yin S, Tang R, Zhang Y, Li S. Cardiac-DeepIED: Automatic Pixel-Level Deep 
Segmentation for Cardiac Bi-Ventricle Using Improved End-to-End Encoder-Decoder Network. 
IEEE J Transl Eng Health Med 2019;7:1900110. [PubMed: 30949419] 

64. Cilla M, Pérez-Rey I, Martínez MA, Peña E, Martínez J. On the use of machine learning 
techniques for the mechanical characterization of soft biological tissues. Int J Numer Method 
Biomed Eng 2018;34:e3121. [PubMed: 29935057] 

65. Lee J, Prabhu D, Kolluru C et al. Fully automated plaque characterization in intravascular OCT 
images using hybrid convolutional and lumen morphology features. Sci Rep 2020;10:2596. 
[PubMed: 32054895] 

66. Pazinato DV, Stein BV, de Almeida WR et al. Pixel-Level Tissue Classification for Ultrasound 
Images. IEEE J Biomed Health Inform 2016;20:256–67. [PubMed: 25561598] 

67. Wong KCL, Syeda-Mahmood T, Moradi M. Building medical image classifiers with very limited 
data using segmentation networks. Med Image Anal 2018;49:105–116. [PubMed: 30119038] 

68. Guo F, Ng M, Goubran M et al. Improving cardiac MRI convolutional neural network 
segmentation on small training datasets and dataset shift: A continuous kernel cut approach. Med 
Image Anal 2020;61:101636. [PubMed: 31972427] 

69. Duchateau N, Sermesant M, Delingette H, Ayache N. Model-Based Generation of Large Databases 
of Cardiac Images: Synthesis of Pathological Cine MR Sequences From Real Healthy Cases. IEEE 
Trans Med Imaging 2018;37:755–766. [PubMed: 28613164] 

70. Beaulieu-Jones BK, Wu ZS, Williams C et al. Privacy-Preserving Generative Deep Neural 
Networks Support Clinical Data Sharing. Circ Cardiovasc Qual Outcomes 2019;12:e005122. 
[PubMed: 31284738] 

71. Kakadiaris IA, Vrigkas M, Yen AA, Kuznetsova T, Budoff M, Naghavi M. Machine Learning 
Outperforms ACC / AHA CVD Risk Calculator in MESA. J Am Heart Assoc 2018;7:e009476. 
[PubMed: 30571498] 

72. Al’Aref SJ, Maliakal G, Singh G et al. Machine learning of clinical variables and coronary artery 
calcium scoring for the prediction of obstructive coronary artery disease on coronary computed 
tomography angiography: analysis from the CONFIRM registry. Eur Heart J 2020;41:359–367. 
[PubMed: 31513271] 

73. Myers PD, Huang W, Anderson F, Stultz CM. Choosing Clinical Variables for Risk Stratification 
Post-Acute Coronary Syndrome. Sci Rep 2019;9:14631. [PubMed: 31601916] 

74. Tokodi M, Schwertner WR, Kovács A et al. Machine learning-based mortality prediction of 
patients undergoing cardiac resynchronization therapy: the SEMMELWEIS-CRT score. Eur Heart 
J 2020.

75. Eisenberg E, McElhinney PA, Commandeur F et al. Deep Learning-Based Quantification of 
Epicardial Adipose Tissue Volume and Attenuation Predicts Major Adverse Cardiovascular Events 
in Asymptomatic Subjects. Circ Cardiovasc Imaging 2020;13:e009829. [PubMed: 32063057] 

76. Commandeur F, Slomka PJ, Goeller M et al. Machine learning to predict the long-term risk of 
myocardial infarction and cardiac death based on clinical risk, coronary calcium, and epicardial 
adipose tissue: a prospective study. Cardiovasc Res 2019.

77. Yang Y, Hirdes JP, Dubin JA, Lee J. Fall Risk Classification in Community-Dwelling Older Adults 
Using a Smart Wrist-Worn Device and the Resident Assessment Instrument-Home Care: 
Prospective Observational Study. JMIR Aging 2019;2:e12153. [PubMed: 31518278] 

78. Toba S, Mitani Y, Yodoya N et al. Prediction of Pulmonary to Systemic Flow Ratio in Patients 
With Congenital Heart Disease Using Deep Learning-Based Analysis of Chest Radiographs. 
JAMA Cardiol 2020.

79. Pina A, Helgadottir S, Mancina RM et al. Virtual genetic diagnosis for familial 
hypercholesterolemia powered by machine learning. Eur J Prev Cardiol 2020:2047487319898951.

Quer et al. Page 16

J Am Coll Cardiol. Author manuscript; available in PMC 2022 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



80. van Velzen SGM, Lessmann N, Velthuis BK et al. Deep Learning for Automatic Calcium Scoring 
in CT: Validation Using Multiple Cardiac CT and Chest CT Protocols. Radiology 2020;295:66–79. 
[PubMed: 32043947] 

81. Dekker M, Waissi F, Bank IEM et al. Automated calcium scores collected during myocardial 
perfusion imaging improve identification of obstructive coronary artery disease. Int J Cardiol Heart 
Vasc 2020;26:100434. [PubMed: 31768415] 

82. Poplin R, Varadarajan AV, Blumer K et al. Prediction of cardiovascular risk factors from retinal 
fundus photographs via deep learning. Nat Biomed Eng 2018;2:158–164. [PubMed: 31015713] 

83. Rezaei Z, Ebrahimpour-Komleh H, Eslami B, Chavoshinejad R, Totonchi M. Adverse Drug 
Reaction Detection in Social Media by Deepm Learning Methods. Cell J 2020;22:319–324. 
[PubMed: 31863657] 

84. Hospices Civils de L Can we Predict COronary Resistance By EYE Examination ? (COREYE). 
2020.

85. Optima Integrated H, University of California SF. Tailored Drug Titration Using Artificial 
Intelligence. 2021.

86. AiCure, Montefiore Medical C. Using Artificial Intelligence to Measure and Optimize Adherence 
in Patients on Anticoagulation Therapy. 2016.

87. University of M, Agency for Healthcare R, Quality. Improving Adherence and Outcomes by 
Artificial Intelligence-Adapted Text Messages. 2016.

88. Optima Integrated H, University of California SF. Piloting Healthcare Coordination in 
Hypertension. 2017.

89. Yao X, McCoy RG, Friedman PA et al. ECG AI-Guided Screening for Low Ejection Fraction 
(EAGLE): Rationale and design of a pragmatic cluster randomized trial. Am Heart J 2020;219:31–
36. [PubMed: 31710842] 

90. Carlin CS, Ho LV, Ledbetter DR, Aczon MD, Wetzel RC. Predicting individual physiologically 
acceptable states at discharge from a pediatric intensive care unit. J Am Med Inform Assoc 
2018;25:1600–1607. [PubMed: 30295770] 

91. Chu J, Dong W, He K, Duan H, Huang Z. Using neural attention networks to detect adverse 
medical events from electronic health records. J Biomed Inform 2018;87:118–130. [PubMed: 
30336262] 

92. Hever G, Cohen L, O’Connor MF, Matot I, Lerner B, Bitan Y. Machine learning applied to multi-
sensor information to reduce false alarm rate in the ICU. J Clin Monit Comput 2020;34:339–352. 
[PubMed: 30955160] 

93. Au-Yeung WM, Sahani AK, Isselbacher EM, Armoundas AA. Reduction of false alarms in the 
intensive care unit using an optimized machine learning based approach. NPJ Digit Med 
2019;2:86. [PubMed: 31508497] 

Quer et al. Page 17

J Am Coll Cardiol. Author manuscript; available in PMC 2022 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Machine learning algorithms can find sophisticated patterns in medical data 

and have the potential to improve cardiovascular care.

• Cardiologists must take an active role in shaping how machine learning is 

used in cardiovascular practice and research.

• To empower cardiologists in this role, we provide a framework to help 

critically evaluate developments in machine learning.

• We also provide an open-source bibliometric survey of the machine learning 

in cardiology.
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Figure 1. Marked growth in cardiac AI/ML studies.
The plots in the first row show numbers of publications per year; red denotes original 

research, while pink denotes non-original articles such as reviews and commentary. The 

second row shows the total number of papers (any topic) added to each of the three 

collections, while the third row presents the percentage of papers on cardiac AI/ML. The 

insets for Pubmed in the first two rows show the cumulative number of papers across all 

previous years, while in the third row it shows the cumulative percentages considering all 

papers till that year. *2020 numbers are partial.
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Figure 2. Content in cardiac AI/ML publications on PubMed.
(a) Distribution of publications by disease category. (b) Distribution of publications by data 

modality. (c) Number of papers studying various cardiac disease categories by data type 

(waveform data includes catheterization, arterial pulse waveforms, plethysmography, and 

other waveform data but does not include ECG; atherosclerosis includes dyslipidemia, 

peripheral vascular disease and cerebrovascular disease). (d) Distribution of publications by 

goal. (e) Distribution of publications by machine learning method.
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Figure 3. An international and collaborative effort.
(a) Total publications on cardiac AI/ML in PubMed, worldwide and in the United States 

(note log scale). (b) Publications per capita worldwide and in the United States (note log 

scale). (c) Collaborations measured by author locations on each publication, presented 

worldwide and statewide (for clarity, only top ten countries and/or states are labeled).
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Central Illustration. Marked growth in cardiac AI/ML studies span several disease focus areas 
and several data types.
Publications on machine learning in cardiology continue to grow (inset shows cumulative 

number of cardiac AI/ML papers). Several disease categories and data modalities have been 

studied in these publications, but several areas remain open for further exploration. Asterisk 

indicates partial information for the year 2020.
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Table 1.

Considerations When Evaluating Machine Learning Manuscripts or Projects.

Questions to ask Examples

What is the problem being 
addressed? Is solving the problem 
impactful for medicine?

High value: An unrecognized or unsolved problem; a problem where clinical practice has been shown to 
fall short. Intermediate value: A solution exists, but the new solution provides much better accuracy, 
reproducibility or time-efficiency, or can work in a different environment or patient group from the 
current standard. Low value: A solution for something that is not a significant clinical problem, or, a 
robust, well-benchmarked solution already exists.

What is the current state of the art 
and how does it perform?

Does a highly accurate, scalable, and efficient solution already exist? Is there no good current solution in 
clinical practice?

Does the problem need a machine 
learning solution?

Is it a problem of complex pattern finding in complex/nonlinear data? Will the use of machine learning 
significantly improve the performance with respect to a standard rule-based algorithm?

What benchmark is the machine 
learning solution trying to beat?

High clinical impact: beating current standard of care (human expertise, prevailing risk prediction model), 
or, no benchmark may exist for an entirely novel model. Intermediate impact: a benchmark established by 
a prior ML model. Low impact: benchmark exists but is not referenced.

If supervised learning is used, 
what is the ground truth, or gold-
standard, label?

Strong ground-truth label: a gold-standard diagnosis, such as pathologic diagnosis, as the basis for a 
disease label. Intermediate label: Blinded and/or independent votes from expert clinicians; electronic 
health record data (depends on the quality of the EHR data). Weak label: ICD codes alone, or other 
surrogates that are known to have poor sensitivity and specificity for the condition under study.

If unsupervised learning is used, 
what methods will be used to 
validate the patterns learned by the 
model?

A common example of unsupervised learning is in clustering data into subgroups without a priori 
knowledge of whether those subgroups are meaningful. In this case, clinically relevant methods of 
sampling and measuring differences among the learned subgroups are important.

Is the training dataset appropriate 
for the task at hand?

Classification problems typically need a large amount of training data to avoid overfitting; the only 
method to verify that the model does not overfit the training data is to verify that the testing set is 
completely independent than the training set, and that the model performs well in the testing set.

Are the validation and test datasets 
independent from the training 
dataset?

Examples of dependent features would include two QRS morphologies from two ECGs from the same 
patient, two image slices from the same CT scan, or two blood glucose measurements from the same 
patient. Putting one in the training dataset, and the other in the test set will make test set performance 
falsely high. Instead, training and test datasets should be split in a manner that retains sample 
independence.

Are all datapoints being processed 
or manipulated in the same 
manner?

Often, training data needs to be pre-processed in order to be ready for machine learning. However, it must 
all be processed in the same way, or else the model runs the risk of learning the manipulations made to 
one subgroup of data compared to another, rather than learning the meaningful patterns in the data.

How is the clinical use case being 
formulated?

Whether as a classification problem, a segmentation problem, a time series problem, or something else, 
the machine learning formulation of the problem should be relevant to the clinical task.

Are methods clear and 
reproducible?

All information on data preprocessing steps, machine learning algorithms used, and the parameters of 
those algorithms, should be presented. Code can be included, but it must then be tested to run as 
described.

Are results reported both for the 
algorithm output and for the 
clinical problem of interest?

Performance metrics from machine learning algorithms (precision, recall, Dice score, and others) are 
important. However, results should also be reported in terms clinically relevant to the task (e.g. sensitivity, 
specificity, number needed to treat, time to diagnosis, etc.). Often, the costs for a false positive or a false 
negative error are quite different, so it is important to choose a working point that keeps into account 
these different costs. Metrics should include confidence intervals and p values to demonstrate whether 
they are statistically significantly different from the chosen benchmarks.
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Table 2.

Select FDA-cleared machine learning products for cardiology

Company Product Indication

AliveCor AliveCor Heart Monitor atrial fibrillation detection

Apple Apple Watch atrial fibrillation detection

Arterys CardioDL cardiac MRI measurement

Caption Health EchoMD AutoEF, Guidance echocardiogram LVEF measurement, guidance

Canon Advanced Intelligent Clear-IQ Engine (AiCE)* general biomedical image denoising

Eko Devices Eko Analysis Software audiogram interpretation

FitBit ECG App atrial fibrillation detection

PhysIQ Heart Rhythm and Respiration Module (HRRM) ECG, vital signs, cardiac function

Qompium FibriCheck atrial fibrillation detection

Shenzhen Carewell Electronics AI-ECG Platform & Tracker ECG interpretation

Subtle Medical SubtlePET*, SubtleMR* general biomedical image denoising

Ultromics EchoGo Core echocardiogram measurements

Zebra Medical Vision HealthCCS coronary calcium score

*
these products are not specifically cardiovascular, but provide general tools for image denoising

J Am Coll Cardiol. Author manuscript; available in PMC 2022 January 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Quer et al. Page 25

Table 3.

Roles for the non-ML expert in machine learning for cardiology

Being an informed consumer of the literature and of cardiac ML research project

Collaborating with machine learning and data science experts to innovate clinical practice

Beta-testing AI-enabled products in the clinical setting

Advising one’s medical center, clinic, or institution on investments in data science and ML tools

Advocating for responsible data sharing at one’s institution and via professional societies

Advocating for harmonization and standardization of data formats and data processing across institutions

Ensuring that algorithms have been trained from data that adequately represents patients, acquisition methods and equipment, and other factors.

Participating in annotation of datasets as the clinical expert

Participating in validating model predictions as the clinical expert

Testing AI-enabled clinical products and/or novel insights in randomized controlled trials

Evaluating and incorporating AI-based decision making in updated clinical guidelines documents

Creating and promoting training opportunities (courses, fellowships) in data science for cardiology trainees and in clinical science for data 
scientists

Evaluating and updating cardiology training — what core competencies will remain a requirement, and what will be replaced by ML?
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