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patients.

Lung cancer is often diagnosed at an advanced stage and has a poor prognosis. Conventional treatments are not
effective for metastatic lung cancer therapy. Although some of molecular targets have been identified with
favorable response, those targets cannot be exploited due to the lack of suitable drug carriers. Lung cancer cell-
derived exosomes (LCCDEs) receive recent interest in its role in carcinogenesis, diagnosis, therapy, and prognosis of
lung cancer due to its biological functions and natural ability to carry donor cell biomolecules. LCCDEs can
promote cell proliferation and metastasis, affect angiogenesis, modulate antitumor immune responses during lung
cancer carcinogenesis, regulate drug resistance in lung cancer therapy, and be now considered an important
component in liquid biopsy assessments for detecting lung cancer. Therapeutic deliverable exosomes are emerging
as promising drug delivery agents specifically to tumor high precision medicine because of their natural
intercellular communication role, excellent biocompatibility, low immunogenicity, low toxicity, long blood
circulation ability, biodegradable characteristics, and their ability to cross various biological barriers. Several studies
are currently underway to develop novel diagnostic and prognostic modalities using LCCDEs, and to develop
methods of exploiting exosomes for use as efficient drug delivery vehicles. Current status of lung cancer and
extensive applicability of LCCDEs are illustrated in this review. The promising data and technologies indicate that
the approach on LCCDEs implies the potential application of LCCDEs to clinical management of lung cancer
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Background

Lung cancer is the most frequent cancer and leading
cause of cancer death worldwide [1]. Small-cell lung car-
cinoma (SCLC) and non-small cell lung carcinoma
(NSCLC), accounting for 15% and 85% of all lung can-
cers respectively, are two main subtypes [2]. SCLC is
highly related to smoking. NSCLC is further classified
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into three main types: squamous cell carcinoma (SCC),
adenocarcinoma (AD), and large cell carcinoma (LCC)
[2]. SCC and LCC, comprising 25-30% and 5-10% of all
lung cancer cases respectively, are strongly correlated
with cigarette smoking [3, 4]. AD is the most common
type both in smokers and nonsmokers and comprises
40-45% of all lung cancer cases [5]. Tumor stage is im-
portant for treatment and prognosis. The 5-year survival
of lung cancer is about 19% [6]. Low lung cancer sur-
vival rate is due to more than 50% NSCLC patients diag-
nosed with metastatic disease [7]. Patients with early-
stage lung cancer have better prognosis than those with
more advanced stage. 5-year relative survival rate
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reaches 90% for stage 1A1 but drops below 10% for stage
4 NSCLC. Among patients with SCLC, 5-year relative
survival rates are about 30% for limited disease and
below 10% for extensive disease [8]. Because of its extra-
ordinary disease burden and international variability in
trends of population growth, aging, and smoking behav-
iors, the global lung cancer epidemiology requires con-
tinual monitoring [9].

All cells release extracellular vesicles, which are
broadly divided into two categories of ectosomes and
exosomes, as part of their normal or abnormal physi-
ology [10]. Exosomes are endosomal origin and nano-
sized vesicles with a size range of ~40-160 nm (average
~100 nm) in diameter [10]. One speculated role of exo-
somes is to remove excess and/or unnecessary constitu-
ents from cells to maintain cellular homeostasis [10].
When exosomes are taken up by other cells, the cargoes
are transferred and influence the phenotype of recipient
cells, indicating exosomes as essential mediators of cell-
cell communication [11]. Current status of lung cancer
and extensive applicability of Lung cancer cell-derived
exosomes (LCCDEs) are illustrated in this review. LCCD
Es participate in lung cancer carcinogenesis and drug re-
sistance. Functional study of LCCDEs is useful to eluci-
date the pathogenesis of lung cancer. LCCDEs contain
potential diagnostic and prognostic biomarkers, which
can be developed for liquid biopsy of lung cancer. Deliv-
ery of therapeutic agents by engineering LCCDEs is a
novel approach for lung cancer precision and personal-
ized therapy.

Risk factors for lung cancer
Risk factors for developing lung cancer have been identi-
fied, with cigarette smoking being a major factor along
with other environmental, chronic disease, and genetic
risk factors. Since about 80% of lung cancers develop in
current or former tobacco smokers and up to 20% of all
cancer deaths worldwide could be prevented by tobacco
smoking elimination, cigarette smoking outweighs all
other factors [8]. At least 50 carcinogens has been
identified in tobacco smoke, of which, tobacco-specific
N-nitrosamines formed by nicotine nitrosation are
particularly concerned [12]. And tobacco-specific N-
nitrosamine 4-(methylnitrosamino)-1(3-pyridyl)-1-buta-
none (NNK) seems to be the most important lung can-
cer inducer [13]. Global statistics indicates that lung
cancer in never smokers (LCNS) accounts for about 20%
of lung cancer [14]. At least 17% of LCNS are attribut-
able to exposure to high levels of environmental tobacco
smoke (ETS) or secondhand smoke [15]. 24% excess risk
for lung cancer is found in nonsmokers who lives with a
smoker [16].

The incidence of lung cancer without tobacco smoking
history is increasing [17]. The polluted air, especially
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particulate matter 2.5 (PM,5) has been indicated as the
major factor for LCNS incidence [18]. Air pollution has
been a major environmental problem for more than two
decades and is worsening in many large populated cities
[19]. Air pollution, especially PM, 5 exposure, is associ-
ated with the increased lung cancer risk and mortality
independent of cigarette smoking [20]. It is difficult to
pinpoint the carcinogenic role played by single constitu-
ent of air pollution. Significant associations are found
with specific PM components such as PM, 5 and lung
cancer [21]. PM, 5 concentration plays a dominant role
in inducing lung cancer, which is consistent with the evi-
dence that lung cancer incidence without tobacco smok-
ing history is increasing in some large cities with air
pollution problem [22, 23]. The increased risk estimates
of lung cancer are observed for each 10pug/m® increment
in PM, 5 concentration [24]. There is an excess risk of
approximately 19% for lung cancer per 10 mg/m?® incre-
ment in the long-term average exposure to fine particu-
lates [25]. A meta-analysis finds significant association
between risk for lung cancer and PM,5 (HR 1.18 per 5
mg/m?) [26].

Chronic Diseases and metabolic disorders affect lung
cancer mortality. Chronic lung Diseases, such as COPD,
Alphal-antitrypsin deficiency carriers, patients with
interstitial fibrosis or idiopathic pulmonary fibrosis, have
shown strong association with lung cancer [27-30].
Cancer-related lung cancer death is higher among
people with diabetes [31]. Compared with normal
weight, the relative risk for lung cancer is 0.77 for excess
body weight with a BMI of 25 kg/m” or greater [32],
while underweight is associated with lower lung cancer
risk in a nonlinear, inverted U-shaped relationship [33].
Waist circumference has been found to be positively as-
sociated with lung cancer risk in smokers [34].

Genetic components, relating to host susceptibility to
cigarette smoke exposure and to certain types of lung
cancer development or to an individual responsiveness
to therapies, are risk factors of lung cancer pathogenesis.
The importance of lung cancer family history with early
onset of lung cancer family members, has been
highlighted by the incorporation into several lung cancer
risk prediction algorithms [35, 36]. The findings on fa-
milial aggregation of lung cancer are consistent with a
two-fold increase risk for lung cancer in smokers with a
family history of lung cancer and also with an increased
risk present in non-smokers [37]. Large-effect genome-
wide associations for SCC with the rare variants BRCA2
and CHEK?2 has been described [38]. The direct evidence
is also provided by the increased risk of lung cancer as-
sociated with rare Mendelian cancer syndromes in car-
riers of constitutional TP53, retinoblastoma gene
mutations, xeroderma pigmentosum, Bloom’s and Wer-
ner’s syndromes [39-43].
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Currently, most patients with lung cancer are diag-
nosed in the advanced stage, which makes the cancer
difficult to surgically resect and increases the postopera-
tive recurrence rate. On the other hand, lung cancer
treatment is evolving to precision therapy based on
changes in molecular and gene levels [44]. The relative
information of lung cancer is summarized in Fig. 1. Fur-
ther investigation on lung cancer carcinogenesis, diagno-
sis, therapy, and prognosis will significantly improve the
overall survival of patients with lung cancer.

Exosome and its biological properties and functions

Exosomes are endosomal origin and nano-sized vesicles
with a size range of ~40-160 nm (average ~100 nm) in
diameter [10]. All cells release extracellular vesicles
(EVs), which are broadly divided into ectosomes and
exosomes. Ectosomes (size range of ~50nm-lmm in
diameter) pinch off the surface of the plasma membrane
via outward budding. Exosomes are endosomal origin
and nano-sized vesicles with a size range of ~40-160 nm
(average ~100 nm) in diameter. Hence, two defining dis-
tinctions between ectosomes and exosomes include the
site of biogenesis and particle size. More and more stud-
ies have focused on exosomes because of their crucial
roles in cellular homeostasis maintenance and cell com-
munication under pathological or physiological condi-
tions, in exosome-based non-invasive liquid biopsy
diagnosis, and in their application of drug delivery [10].
Exosomes are enclosed by a lipid bilayer and contain
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many cell constituents, including cytosolic and cell sur-
face proteins, glycans, lipids, metabolites, amino acids,
RNA, and DNA [11]. The structure and contents of exo-
somes are demonstrated in Fig. 2. So far, 9769 proteins,
3408 mRNA, 2838 miRNAs and 1116 lipids in various
exosomes from different types of cells have been dis-
cerned [45].

Surrounding by a host-cell-origin lipid membrane,
exosome exhibits intrinsic organotropic and displays tis-
sue tropism mediated by surface molecules, such as
integrins and glycans [46]. Exosomal tetraspanin com-
plexes as constitutive components are also involved in
the target cell selection [47]. Exosomes possess proper-
ties of excellent stability, biocompatibility, biological bar-
rier permeability, long body circulations, low toxicity,
low immunogenicity, and unique surface protein expres-
sion originated from their parental cells, all of which are
good for their target delivery [48]. Because of these
properties, exosomes play significant roles in various
biological functions and regulate numerous physiological
and pathological processes in various diseases. Also, exo-
somes are promising biomarkers for diagnosis/prognosis
of various diseases, which may contribute to the devel-
opment of minimally invasive diagnosis and next gener-
ation therapies. Exosome functions depend on their
ability to interact with recipient cells and deliver their
contents to these cells [49]. Exosomes are involved in
obsolete molecules eradication [50]; antigen presentation
[51]; tumor progression, by promoting angiogenesis and
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Fig. 1 Distribution of cases in lung cancer, 5-year survival rate of lung cancer based on subtypes and stages, and risk factors contributing to lung
carcinogenesis. Small-cell lung carcinoma (SCLC) and non-small cell lung carcinoma (NSCLC), accounting for 15% and 85% of all lung cancers
respectively. Squamous cell carcinoma (SCC), adenocarcinoma (AD), and large cell carcinoma (LCC) comprises 25-30%, 40-45% and 5-10% of
lung cancers. The overall 5-year survival rate of lung cancer is about 19%. Low lung cancer survival rates are due to patients diagnosed with
metastatic disease. Among patients with NSCLC, 5-year relative survival rate reach 90% for stage 1A1 but drop below 10% for stage 4. Among
patients with SCLC, 5-year relative survival rates are about 30% for limited disease and below 10% for extensive disease. About 80% of lung
cancer cases are directly related to smoking. About 20% of lung cancer cases are developed in Non-smokers.
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tumor cell growth and migration [11], regulatory T lym-
phocytes differentiation or myeloid cells suppressing im-
mune responses [52]; and pathogenesis dissemination
through interaction with recipient cells [53]. The bio-
compatible nature of exosomes could enhance the stabil-
ity and efficacy of imaging probes and therapeutics [54].
Due to their potential use in clinical applications, exo-
somes have attracted much research attention on their
roles in health and disease. The biological properties and
functions of exosome are summarized in Fig. 2.

Exosome biogenesis and cellular uptake

Exosome biogenesis originates in the endocytic pathway
[10, 11]. It begins with invagination of endosomal limit-
ing membranes by formation of the early sorting endo-
somes (ESEs). Some of ESEs therefore contain
membrane and luminal constituents, which can repre-
sent diverse origins. ESEs give rise to late sorting endo-
somes (LSEs). Second invagination in the LSE leads to
generation of intraluminal vesicles (ILVs). This step can
lead to further modification of cargoes in the future exo-
somes, and ultimately form multivesicular bodies
(MVBs). Some MVBs end up in lysosomes with enzymes
to degrade the components of MVBs. However, some
MVBs escape degradation due to the presence of specific
surface proteins, such as tetraspanins and lysosomal-
associated membrane proteins LAMP1 and LAMP2.

These MVBs then fuse with the plasma membrane and
get released as vesicles termed as exosomes [55]. Exo-
some formation requires the coordinated efforts of sev-
eral protein networks in cell: Rab GTPase proteins
control endosomal trafficking [56]; endosomal sorting
complexes required for transport (ESCRT), which con-
sists of multiple protein complexes, regulate ILV forma-
tion [57]; tetraspanins as transmembrane proteins
induce membrane curvatures to enable vesicle formation
[58]; and various lipid-modifying enzymes (such as
sphingomyelinase, which generates ceramides) promote
vesicle formation [59]. TSG101 (tumor susceptibility
gene 101) [60], ALIX (apoptosis-linked gene 2-
interacting protein X)/Syntenin/syndecan complex [60,
61], phospholipids [62], Flotillin [63], ARF6 and SNARE
complex proteins [64] are also involved in the origin and
biogenesis process of exosomes, although their functions
in exosome biogenesis require further exploration. These
factors interact directly with exosomal cargoes and are
tightly coupled with the destined substrates for exosome
secretion.

Several mechanisms and pathways have been associ-
ated with exosome uptake [65, 66], Exosome fusion with
cellular membrane of recipient cell lead to the release of
exosomal cargoes into cytoplasm. Human melanoma
cells uptake exosomal cargoes through exosome fusion
with the plasma membrane [67]. Juxtracrine signaling
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through receptor-ligand interactions is also involved in
cellular uptake of exosome. There are several proteins
that may act as potential receptors for exosome uptake,
such as Tim1/4 for B cells [68] and ICAM-1 for APCs
[69]. Various types of endocytosis have been identified
as possible mechanisms of cellular uptake of exosome.
Endocytosis by phagocytosis and micropinocytosis are
much more common method of exosome uptake [70,
71]. Clathrin-dependent endocytosis [72, 73], lipid raft
dependent [74], and caveolae endocytosis [64] are the
other three kinds of endocytosis for exosome uptake.

In any given cell, exosome biogenesis and cellular up-
take pathways may intersect, resulting in a composition
of net production of mixed endogenous and exogenous
exosomes population (Fig. 3).

Exosome isolation and characterization

Generally, exosomes can be isolated from a variety of
body fluids and conditioned cell culture media, such as
blood, semen, saliva, plasma, urine, cerebrospinal fluid,
epididymal fluid, amniotic fluid, malignant and pleural
effusions of ascites, bronchoalveolar lavage fluid, synovial
fluid, and breast milk [75, 76]. Several conventional
methods have been employed to isolate exosomes as: 1)
Ultracentrifugation, including differential and density-
gradient ultracentrifugation, is conventional method and
suitable for pelleting lipoproteins, extravesicular protein
complexes, aggregates, and other contaminants [77]. In
addition, density-gradient ultracentrifugation, which sep-
arates particles by layers of biocompatible medium with
varying densities (e.g., sucrose), yield the exosome prepa-
rations with a higher purity as compared to a classic
ultracentrifugation and gain great popularity in the cur-
rently used exosome strategies [78]. However, it cannot
apply for small volumes of clinical samples and is time-
consuming, labor-intensive, costly instrumentation re-
quirement, and multiple overnight centrifugation steps
included [77]; 2) Ultrafiltration (UF), including Size-
Based Filtration, Size-Exclusion Chromatography, and
Polymer Precipitation, is size-based exosome isolation
method using membrane filters with defined molecular
weight or size exclusion limits [79]. UF is faster than
ultracentrifugation, and does not require costly equip-
ment. The method is not suitable for exosome enrich-
ment, and disadvantages include that different size
exosomes are mixed together and non-exosome material
such as protein aggregates exist [80]; 3) Immune affinity
capture is applied for isolating exosomes based on spe-
cific interactions between proteins (antigens) and their
antibodies or between receptors and their ligands [81]. It
has been used to capture specific exosomes from a com-
plex population, with the advantage of specificity and
disadvantage of low yields; 4) Commercially available
kits have been emerged to enrich exosomes, such as
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ExoQuick kit (System Bioscience), Total Exosome Isola-
tion kit (Invitrogen), qEV columns (Izon), the exoEasy
Maxi kit (Qiagen), Ultrafiltration (UF) Amicon® ultra-0.5
centrifugal  filter  devices (Millipore) [82]; 5)
Microfluidics-Based Isolation Techniques are essential
and important techniques for the microscale isolation,
detection, and analysis of exosomes. By using both phys-
ical and biochemical properties of exosomes, this tech-
nology meets the challenge of providing high-purity
exosomes for clinical settings [83]. The device with a
size-based exosome isolation chip facilitates high-yield
and high-purity exosome isolation from biofluids and
clinical samples, including plasma, urine, and lavage,
demonstrating its broad applicability to cancers and
other diseases [84]. It is reported that construction of
anti-CD9 antibody-coupled highly porous monolithic sil-
ica microtips allows automated, rapid and reproducible
exosome extraction from multiple clinical samples [85].
A microfluidic chip for immunocapture and quantifica-
tion of EpCAM-positive and HER2-positive exosomes
has been developed [86]. Each approach has its advan-
tages and disadvantages, and may be dictated by the
sample source and intended exosome uses. Improve-
ments and innovations in isolation methods are essential
for translating exosome research into clinical applica-
tions and patient care.

Exosomes are characterized by size, morphology,
flotation density, and presence of marker proteins [10,
11]. Several techniques have been routinely used to
characterize exosomes. These include Dynamic light
scattering (DLS) [87], Nanoparticle Tracking Analysis
(NTA) [87], Tunable Resistive Pulse Sensing (TRPS)
[88], Transmission Electron Microscopy (TEM) [89],
Atomic Force Microscopy (AFM) [90], flow cytometry
[91], and Western blot for detecting marker proteins
[10, 11]. Each of these techniques has its own limitations
that must be taken into consideration: 1) DLS is an al-
ternative technique for measuring exosome size to pro-
vide diameter range of the analyzed vesicles, while does
not provide any biochemical data [87]; 2) NTA can
measure the exosome movement by tracking each par-
ticle through image analysis and then to correlate this
movement to particle size [87]. Advantage of using NTA
includes quick sample preparation, easy and quick meas-
urement, and samples recovery to their native form after
NTA measurements. Moreover, the presence of antigens
on exosomes can be detected by applying fluorescent-
labeled antibodies [87, 92]; 3) TRPS, with the salient fea-
ture of in situ single-particle characterization and con-
centration measurement, is the most useful for
measuring exosomes size distribution and concentration,
characterizing particles ranging from approximately 50
nm in diameter up to the size of cells, and investigating
cellular function and uptake [88]. Essentially, TRPS
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resulting plasma membrane bud leads to the formation of Early sorting endosomes (ESEs) or fuses with ESEs pre-formed by the constituents of
the endoplasmic reticulum (ER), trans-Golgi network (TGN), and mitochondria. ESEs give rise to Late sorting endosomes (LSEs). Invagination in the
LSE results in the Multivesicular bodys (MVBs) generation containing Intraluminal vesicles (ILVs) as future exosomes. MVBs can ultimately undergo
degradation in the lysosomes with the degradation products recycled by the cells. MVBs can also be transported to the plasma membrane and
dock on the luminal side of the plasma membrane. Exocytosis follows and results in the release of the exosomes. b Cellular uptake and journey
of internalized and endogenously produced exosomes. In the recipient cell (which can be the exosome-producing cell itself), exogenous
exosomes may be internalized by multiple pathways and can undergo various fates. Depending on the cell type, extracellular exosomes can dock
either at the plasma membrane to release their intraluminal contents into the cytoplasm of recipient cell by fusion. They can remain bound to
the surface (for example, to integrins) and initiate intracellular signalling pathways (for example, antigen presentation). Extracellular exosomes may

also be internalized by various types of endocytosis: phagocytosis, micropinocytosis, clathrin-dependent endocytosis, lipid raft dependent
endocytosis, and caveolae endocytosis. Internalization will target exogenous extracellular exosomes into the canonical endosomal pathway,
whereby they reach MVBs, in which the internalized exosomes are likely to mix with endogenous ILVs. Exosome biogenesis and cellular uptake
pathways intersection results in a composition of net production of mixed endogenous and exogenous exosomes population.

measures the brief increase in electrical resistance pro-
duced by individual nanoscale particles as they translo-
cate through a size-tunable micrometer-sized pore. The
length of the resistive pulse can be correlated to the par-
ticle size. In addition, the number of resistive pulses over
a given time reveals particle concentration within a sam-
ple [88]. Its defects include system stability issues due to
the blockage by particles, and sensitivity issues due to
too small particles to be detected against the system
background noise [88]; 4) TEM is a widely used tech-
nique to characterize the structure, morphology, and size
of various biological components [89]. Consideration
should be given on sample preparation, which is exten-
sive, involves multiple steps, and may induce changes in

exosome morphology. Moreover, in some cases, the
electron beam may also damage biological samples. Fro-
zen exosomes examined by cryo-TEM is an alternative
method which has been shown to well maintain exo-
some morphology [49]; 5) AFM is a unique technique
for studying exosomes, which measures samples in na-
tive conditions with minimal sample preparation and
without any destructive operation mode [90]. The defect
is that sample characterization carried out from external
analyses lead to different experimental conditions affect-
ing the measure [90]; 6) Flow cytometry is a molecular
approach and one of the most frequently used tech-
niques to characterize exosome size, structure, and sur-
face proteins [91]. It is well-adapted to the reproducible



Li et al. Molecular Cancer (2021) 20:22

analysis of clinical samples, allowing measurement of
exosomes size and structure [91]. 7) Western blot for
detecting marker proteins is also used for exosome con-
firmation (Fig. 1 and Fig. 4) [10, 11]. It is the most com-
monly used methods to quantify proteins in exosomes.
Common proteins that can identify exosomes must be
analyzed to demonstrate the nature, purity degree and
functional activities of exosome preparation. Further-
more, several proteins that are frequently enriched in
specific cancer (eg., lung) cell-derived exosomes should
be considered for screening cancer biomarkers [93, 94].
The various methods of exosome isolation and routinely
used techniques of exosome characterization have been
summarized in Fig. 4.

Tumor-derived exosomes

Secreted by cancer cells, Tumor-derived exosomes (TDEs)
might modulate the recipient cells activity and play im-
portant roles in tumor growth and metastasis through
participating in cellular communications, modulating cell
signaling, and contributing to pre-metastatic niche (PMN)
formation [11, 95-97]. Recent evidences indicate that
TDEs have significant effect on of cancer angiogenesis by
transferring proteins such as VEGF, FGF, IL-6, IL-8 and
angiopoietin [98]. TDEs modulate antitumor immune re-
sponses by inhibiting T-cell activation and proliferation,
inducing regulatory T-cells and myeloid-derived
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suppressor cells (MDSCs), and inhibiting natural killer
(NK) and CD8+ T-cells function, thus to facilitate tumor
progression by evasion of host immune system [99-101].
Furthermore, TDEs from drug-resistant cancer cells in-
corporate cell surface P-glycoprotein from their donor
cells. They effectively bind to drug-sensitive recipient cells
and transfer functional P-glycoprotein to the latter, which
are crucial importance in induction of signal pathway for
drug resistance in recipient cells [102]. With a significantly
increased number traced in cancer patient blood than in
normal human blood, TDEs can be useful diagnostic and
prognostic biomarkers [103]. Collectively, TDEs can pro-
mote cancer carcinogenesis, angiogenesis, and drug resist-
ance, help cancer cell escape from host immune system,
and can be useful diagnostic and/or prognostic bio-
markers (Fig. 4).

Exosome in lung cancer

The poor survival rates of lung cancer are mainly due to
late-stage diagnosis and/or inefficient therapeutic regi-
mens. Lung cancer cell derived-exosomes (LCCDEs)
have received recent interest in their pivotal role in lung
cancer carcinogenesis, early detection/diagnosis, drug re-
sistance, exosome drug delivery system establishment for
target therapy, and prognosis, which are summarized in
Table 1 and Fig. 5.

Methods for exosome isolation
Ultracentrifugation
Differential ultracentrifugation
Density-gradient ultracentrifugation
Ultrafiltration
Size-Based Filtration
Size-Exclusion Chromatography
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Total Exosome Isolation kit (Invitrogen)
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Carcinogenesis == = Metastasis

|

Angiogenesis

/7

Blood vessel

T-cell activation
. / and proliferation
Host immune

=~/ RNA mutation

Fig. 4 Exosome isolation, characterization, and tumor-derived exosomes role in tumor development. Methods for exosome isolation and
characterization are listed. Tumor-derived exosomes role in tumor development includes to promote cancer carcinogenesis, angiogenesis, and
drug resistance, help cancer cell escape from host immune system, and can be useful diagnostic and/or prognostic biomarkers.
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Act as prognostic biomarkers

NY-ESO-1, PLAP, EGFR, Alix,
EpCam (147)
Has-miR-10b-5p, -23b-3p, -21-5p,
-146a-5p, -125b-5p, -29a-3p, -21,
-150-5p, -155, -4257 (130, 148-
152)

Act as diagnostic biomarkers \ t

hsa-miR-17-3p, -106a, -146, -155, -191,
-21, -192, -203, -205, -210, -212, -214,
-378a, -379, -139-5p, -200b-5p, -320d,
-320c, -320b, -181-5p, -30a-3p, -30e-3p,
-361-5p, -10b-5p, -15b-5p, -146a-5p,
-486-5p (128-132)
lower Exo-GAS5 expression (133)
hsa-miR-17-5p combined with CEA,
CYFRA21-1 and SCCA (134)
Exosome RNA/DNA-based identification of
EGFR, TP53, PKD1, and ALK gene
mutation (135, 136, 143)
circSATB2, LRG1, EGFR, CD91, CD151,
CD171, tetraspanin 8, GRB2, SRC (108,
137, 138, 85, 140, 106)
ALK-positive associated with the decreased
Tim-3 and Galectin-9 (141)
Plasma exosome lipid features as
metabolomics-based
biomarkers (144)

/]

therapy vesicles for lung cancer drugs.

Mediate drug resistance

LC3-Il, Bcl-2, p62 and Bax (158)
EGFR T790M mutation (159, 135)
miR-21, -98, -133b, -138, -181a, -200c
+ mRNAs (ERCC1/BRCA1/RRM1) (160)
miR-100-5p-targeted mTOR (161)
miR-21-mediated Akt activation (162)
ZEB1 mRNA (163)
miR-1246 targeting DR5 (164)
miR-208a targeting p21 (165)

Lung cancer
cell-derived
exosome

Modulate antitumor
immune responses

EGFR-mediated inhibition of
CD+ T cells (123, 124)
HSP72-activated STAT3
suppressing T cell activation
(124, 125)
miR-21/miR-29a-activated
TLR7/8 and NFkB (126)

Fig. 5 Summary of the potential molecules in lung cancer cell-derived exosomes in carcinogenesis, diagnosis, prognosis, and therapy of lung
cancer. Lung cancer cell derived-exosomes have potential role in promoting lung cancer growth, metastasis, and angiogenesis; modulating
antitumor immune responses and drug resistance to lung cancer; acting as diagnosis and prognosis biomarkers in lung cancer; and exploring as

Act as drug delivery vehicles

Anthos, paclitaxel, and Celastrol
encapsulated in exosomes (172,
174, 175, 176)
Exosomes-loaded gold anticancer
nanoparticle drugs (doxorubicin or
cisplatin) (177)

Promote lung cancer cell
proliferation and growth

/ NFkB-TLR signaling pathway (104)
COX-2, PGE2 and VEGF (105)
EGFR, GRB2 and SRC (106)
miR-660-5p targeting KLF9 (107)
circSATB2 (108)

Promote EMT and metastasis
Mutant p53s, Podocalyxin
and Integrins (112)
TGF-B and IL-10 (114)
TGF-B 1 and miR-23a (115)
AREG-induced EGFR pathway (116)
circSTAB2 (108)

Promote angiogenesis

miR-23a, PHD1/2 and ZO-1 (118)
STAT3-regulated miR-21
and VEGF (119)
PI3K/AKT/HIF-1/miR-210/EphA3
signaling (120)
repressed miR-192, IL-8, ICAM and
CXCL1 (121)

Exosome promotes lung cancer growth and metastasis
LCCDEs can affect lung cancer progression by regulating
the physiological functions of surrounding tissue cells and
microenvironment. LCCDEs induce mesenchymal stem cell
(MSC) transformation into a pro-inflammatory phenotype
via NFkB-TLR signaling pathway to promote MSCs getting
tumor supportive characteristics [104].The induced COX-2
expression in lung cancer cells is transferred to other cells
by exosomes, which leads to an increased PGE2 and VEGF
production and affects the microenvironments, including
COX-2-involved inflammatory reactions [105]. Proteins as-
sociated with signal transduction, including EGFR, GRB2
and SRC, are enriched in NSCLC exosomes and actively
regulate recipient cells proliferation [106]. High levels of
miR-660-5p in NSCLC exosomes promote NSCLC progres-
sion by targeting KLF9 [107]. circSATB2 can be transferred
by exosomes and then promotes the NSCLC cells prolifera-
tion and metastasis, as well as induces abnormal prolifera-
tion in normal human bronchial epithelial cells [108].
Metastasis is a critical phase of tumor progression and
major cause of cancer mortality, which is related to a var-
iety of mechanisms and involves multiple steps [11]. Differ-
ent types of metastatic cancer cells are significantly
different in organ tropism, which is highly associated with
TDEs integrins [96]. The main sites of lung cancer

metastasis are brain, adrenal gland, bone and liver [155].
LCCDEs, as carriers of information transmission, can in-
crease tumor cell invasiveness by promoting formation of
the PMN microenvironment [11, 156]. Recently, it has been
found that tumor-associated fibroblast behavior including
pro-invasive extracellular matrix (ECM) deposition fosters
cancer cell migration and invasion [157]. Mutant p53s in
NSCLC cells modulate exosomal podocalyxin expression to
impact integrin trafficking in fibroblasts and promote de-
position of a highly ECM to create a microenvironment
supportive of tumor cell metastasis [109]. There is a syner-
gistic interaction between invadopodia biogenesis and exo-
some secretion with consequent matrix degradation and
overall aggressive behavior in promoting cancer cell inva-
siveness [158]. TGF-f and IL-10 in LCCDEs enhance
tumor cells rapid growth and migration [110]. Also, TGE-
Bl and miR-23a in LCCDEs are involved in the EMT,
which is an important process before the tumor cells me-
tastasis [111]. NSCLC exosomal Amphiregulin (AREG) in-
duce activation of EGFR pathway in pre-osteoclasts to
trigger a vicious cycle in osteolytic bone metastasis [112]. It
is certainly critical for future work to better dissect how
LCCDEs cargoes serve as a novel cellular communication
to regulate lung cancer progression, which can help to elu-
cidate the mechanism of lung cancer development.
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Exosome promotes angiogenesis during lung
carcinogenesis

Angiogenesis is vital for tumor growth since tumor ves-
sels are the important nutrient sources for tumor cells
[159]. Exosomal miR-23a from hypoxic lung cancer cells
can increase angiogenesis and vascular permeability
[113]. LCCDEs miR-21, regulated by STAT3, enhances
VEGEF level to promote tumor angiogenesis and induce
malignant transformation of bronchial epithelial cells
[114]. LCCDEs miR-210 participates in PI3K/AKT/HIE-
1/miR-210/EphA3 signaling to promote tumor angio-
genesis [115]. A repressed miR-192 in LCCDEs induces
angiogenesis and associates with high metastatic activity
of bone [116]. All of these indicate that LCCDEs can
promote angiogenesis to facilitate lung carcinogenesis.

Exosome modulates antitumor immune responses during
lung carcinogenesis

LCCDEs can affect the immune cells function in the
tumor microenvironment. TDE promotes tumor pro-
gression by reprogramming immune cell functions and
helps immune escape by transferring specific proteins
and RNA into the recipient cells [99, 160]. LCCDEs
EGFR induce tolerogenic dendritic cells and tumor
antigen-specific regulatory T cells (Treg) to inhibit anti-
tumor function of CD8+ T cells and thus promote lung
cancer growth [117, 118]. LCCDEs HSP72 can activate
the Stat3-dependent immunosuppressive effect of
MDSCs (myeloid-derived suppressor cells) to suppress T
cell activation [118, 119]. LCCDEs miR-21 and miR-29a
can activate Toll-like receptors 7 (TLR7) and 8 (TLRS)
on immune cells to activate NFkB and prometastatic in-
flammatory response, ultimately leading to tumor
growth and metastasis [120].

Exosomal contents as diagnostic or prognostic

biomarkers of lung cancer

Liquid biopsy, which is based on detection of tumor-
related biomarkers from body-related fluids, represents a
minimally invasive and more comprehensive option for
tumor early detection and investigation. In clinics, tissue
collection is the standard practice for lung cancer diag-
nosis. However, this method is insufficient to present a
complete picture of disease state due to the limited
amount and times of tissue collection, and frequent
tumor heterogeneity. It may not be sufficient to provide
the global disease status, especially in the era of preci-
sion and personal medicine. Hence, alternative routes of
diagnosis are being explored. LCCDEs contain potential
biomarkers for lung cancer diagnosis (Table 1 and Fig.
5). The first study of exosomes in lung cancer shows
that exosomes can be isolated from pleural effusions of
lung cancer patients [161]. Remarkably, some re-
searchers have succeeded in discovering circulating
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exosomal miRNAs for their diagnostic value in lung can-
cer. It has been reported that 12 exosomal miRNAs are
overexpressed in blood of lung cancer patients compared
with control samples (hsa-miR-17-3p/-21/-106a/-146/-
155/-191/-192/-203/-205/-210/-212/-214)  [121]. An-
other report has showed that four exosomal miRNAs
(hsa-miR-378a/-379/-139-5p/-200b-5p)  are  putative
diagnostic markers in plasma samples of lung adenocar-
cinoma patients [122]. Exosomal miRNA expression pro-
file is significantly altered in NSCLC patients compared
with normal controls, as miR-320d, -320c, and -320b are
identified as potential biomarkers for predicting the effi-
cacy of immunotherapy in advanced NSCLCs [123].
Tumor-derived exosome miRNAs (AD-specific miR-
181-5p/miR-30a-3p/miR-30e-3p/miR-361-5p, and SCC-
specific miR-10b-5p/miR-15b-5p/miR-320b) may be
highly sensitive and noninvasive biomarkers for NSCLC
early diagnosis [124]. Serum exosome miRNAs (miR-
146a-5p/miR-486-5p) might be preferable biomarkers
for NSCLC early diagnosis [125]. The lower expression
of noncoding RNA growth arrest-specific transcript 5
(GASS5) in circulating exosomes (Exo-GAS5) could be a
noninvasive blood-based tumor marker for early-stage
NSCLC identification [126]. The expression of exosomal
miR-17-5p, in combination with three circulating tumor
markers CEA, CYFRA21-land SCCA, is significantly
higher in NSCLC patients than in healthy controls [127].
Overexpressed circSATB2 in serum exosomes is highly
sensitive and specific biomarker for NSCLC diagnosis
[108]. Exosomal RNA and DNA have been demonstrated
in identification of EGFR mutations of lung tumor origin
[128, 129]. The leucine-rich a2-glycoprotein (LRG1) is
found to be expressed at higher levels both in urinary
exosomes and lung tissue of NSCLC patients [130].
Plasma exosome EGFR expression levels are remarkably
different between lung cancer patients and normal con-
trols [131]. Serum exosome CD91 is identified as a lung
adenocarcinoma specific marker [85]. The Extracellular
Vesicle Array (EV Array) to phenotype lung cancer-
related proteins in plasma exosomes may be a simple,
minimal invasive tool [162], by which exosomal proteins
CD151, CD171 and tetraspanin 8 are found to be higher
in lung cancer patients of all histological subtypes [132].
NSCLC exosomal proteome has identified the enriched
protein cargoes such as EGFR, GRB2 and SRC for lung
cancer early detection [106]. ALK-positive NSCLC pa-
tients shows a decreased plasma exosome Tim-3 and
Galectin-9 levels [133], which are biomarkers for re-
sponse to first generation ALK-TKIs [163]. Recently,
plasma-derived exosome DNA has been successfully
used in clinical genetic test with TP53, EGFR, PKDI,
and ALK as the top 4 mutated genes in advanced lung
adenocarcinoma patients [134]. Consistent differences in
the lipid profiles could reflect the altered expression of
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many lipid metabolic genes evident in lung tumors.
Plasma exosome lipid features as metabolomics-based
biomarkers successfully distinguish early stage lung can-
cer patient from healthy individuals [135]. Exosome het-
erogeneity can also be conceptualized according to its
size. Recent studies have shown that larger exosomes
and smaller exosomes exhibit different properties and
may have different functions [164]. In particular, the size
distribution of exosomes derived from humoral source is
different between patients and healthy controls, indicat-
ing the importance of size-dependent analysis of exo-
somes [165]. Therefore, using the size distribution of
exosomes as a potential index is helpful for the diagnosis
of diseases. A simple, rapid and economical method to
reflect the size of exosomes has a broad application pro-
spect in the future. These data (Table 1 and Fig. 5) sug-
gest that development of novel exosome biomarkers for
lung cancer diagnosis will be important for enhancing
patient outcome and survival.

Exosomal components can be used as non-invasive prog-
nostic biomarkers of lung cancer [136]. Exosome
membrane-bound proteins NY-ESO-1, PLAP, EGFR, Alix
and EpCam are correlated to NSCLC overall survival (OS),
indicating these proteins as strong prognostic biomarkers
[136]. The elevated levels of exosomal miR-10b-5p, miR-
23b-3p and miR-21-5p are associated with poor OS and are
potential prognostic biomarkers of NSCLC [137]. Down-
regulation of serum exosome miR-146a-5p indicates a poor
progression free survival (PFS) and predicts the cisplatin ef-
fect on NSCLC [138]. NSCLC plasma exosome miR-125b-
5p as T-cell suppressor is downregulated during the treat-
ment, indicating the increased T-cell function and well re-
spond to immunotherapy in patients [123]. The decreased
expression of miR-29a-3p and miR-150-5p in secreted exo-
somes are biomarkers that correlates with the delivered ra-
diation therapy dose and eventually help predict
unexpected responses to radiation therapy, such as toxicity
[139]. miR-21 and miR-155 are significantly upregulated in
recurrent tumors compared to primary tumors, which are
also upregulated in serum exosomes of recurrent tumor-
bearing animals [140]. The increased expression of plasma
exosome miR-21 and miR-4257 has potential as a predict-
ive biomarker for recurrence in NSCLC patients [141]. All
these previous findings are quite encouraging (Table 1 and
Fig. 5), representing a novel and less invasive option for
prognosis of lung cancer.

Currently, exploring biomarkers in LCCDEs is still at a
pre-clinical phase. Although the investigations show prom-
ising results for their application in screening programs or
as prognostic/predictive biomarkers, there exhibits hurdle
for the clinical translation. The main challenges are lack of
reliable cutoffs and great variability among the studies.
Moreover, no established tool has been approved for exo-
some isolation of clinical samples. Finally, large prospective
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clinical trials are mandatory to provide evidence of their
clinical utility. Nonetheless, should these and other issues
be resolved, LCCDEs may account for promising lung can-
cer biomarkers in the near future.

Exosomes in the targeted drug resistance of lung cancer

With the development of molecular biology and tumor
genetics, the targeted therapy has become a hot topic,
which can guide therapeutic decision and thus reduce mor-
bidity and mortality. Among more than 300 mutations in
lung cancer, only a few of these genes such as EGFR, ALK,
c-met, ROS1can promote or drive the lung tumorigenesis
[166, 167]. More recently, treatment with the immune
checkpoint inhibitors targeting axis such as programmed
death protein 1 (PD-1) and its ligand (PD-L1) have revolu-
tionized a large proportion of NSCLC patient management
[168]. The EGFR mutations reveal a potential responsive-
ness of NSCLC to TKIs [169]. Drug resistance is a major
hurdle in cancer therapy. Exosomes originating from either
tumor cells or cancer associated fibroblasts (CAFs) can me-
diate resistance to chemotherapy, radiotherapy and targeted
therapy [170]. Exosomes are involved in inducing lung can-
cer treatment resistance to concurrent chemotherapy and
TKIs. It has been shown that cisplatin sensitivity was sig-
nificantly reduced when lung cancer cells were treated with
cisplatin combined with exosomes derived from gefitinib-
treated lung cancer cells, underlining the importance of
exosomes in mediating antagonistic effects of cisplatin and
gefitinib therapy [142]. T790M mutation is found in pa-
tients treated with EGFR-TKIs which leads to gefitinib re-
sistance [143]. Exosomal RNA is used to detect EGFR
T790M and activating EGFR mutations, with the sensitivity
of 90% and 98% respectively [128]. It has been found that
the exosomes released by A549 cells during cisplatin expos-
ure decrease the sensitivity of non-treated A549 cells to cis-
platin through several miRNAs (increased expression level
of miR-21 while decreased expression levels of miR-98/
133b/138/181a/200c) and mRNAs (increased expression
levels of ERCC1/BRCA1/RRM1) exchange by exosomes via
cell-to-cell communication [144]. Several molecules in
LCCDEs are involved in the targeted drug resistance of
lung cancer (Table 1 and Fig. 5). Cisplatin-resistant LCCD
Es increase cisplatin resistance of recipient cells in exosome
miR-100-5p-dependent manner with mTOR as its potential
target [145]. Exosome-mediated gefitinib resistance in lung
cancer cells is via delivery of miR-21 to activate Akt [146].
Exosomes derived from mesenchymal and oncogenically
transformed lung cells can transfer chemo-resistance and
mesenchymal phenotypes to recipient cells via exosomal
ZEB1 mRNA [147]. Upregulation of miR-1246 and miR-
208a as prognostic biomarker, are associated with radio-
therapy resistance and high proliferation of the tumor by
targeting DR5 and p21 respectively [148, 149]. Although
the detailed mechanism of exosome-mediated drug
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resistance remains unclear, inhibition of LCCDEs forma-
tion and release may present a novel therapeutic strategy
for lung cancer. Furthermore, it is possible to identify drug
targeted therapy resistance of lung cancer patients via
screening specific molecules in LCCDEs.

Exosomes as drug delivery vehicles in the targeted
therapy of lung cancer

Therapeutic Deliverable Exosomes are emerging as promis-
ing drug delivery agents because of their natural intercellu-
lar communication role, excellent biocompatibility, low
immunogenicity, low toxicity, long blood circulation ability,
biodegradable characteristics and their ability to cross vari-
ous biological barriers [48, 54]. Homotypic adhesion mole-
cules on exosome membrane endow exosomes with strong
preferential binding to source cells [171]. Tetraspanin CD9
and CD81 on exosome membrane can promote direct
membrane fusion between exosomes and cells, allowing the
exosomal cargo transportation [172]. CD55 and CD59 on
exosome membrane can protect exosome from comple-
ment attack and increase its stability in circulation [173].
Moreover, high expression level of CD47 on exosome
membrane leads to exosome resistance to phagocytosis by
monocytes and macrophages [174, 175].

However, making exosomes with satisfactory cancer-
targeting ability and controlling encapsulated drug release
is highly challenging. Exosomes are engineered to carry
anticancer therapeutics by active (sonication, electropor-
ation, or freeze—thaw cycles) or passive (simple incubation
with exosomes) drug-loading approaches [150, 176]. Mol-
ecules such as IncRNAs, miRNAs, and siRNAs can also be
added through genome engineering of the donor cells,
which helps in de novo production and incorporation of
these molecules into exosomes [177]. The paclitaxel-
loaded exosome drug delivery system reduces the IC50
values of chemotherapeutics and induces antitumor activ-
ity in mouse lung cancer models [151]. Drugs (Anthos/
paclitaxel/Celastrol) encapsulated in exosomes show en-
hanced therapeutic effect in lung cancer xenografts nude
mice [150, 152, 153]. Another research has also shown
that exosomes loaded with gold anticancer nanoparticle
drugs (doxorubicin/cisplatin) are able to deliver drugs to
lung cancer cells and produce therapeutic response [154].

One biological strategy to equip exosomes with targeting
properties involves incorporating targeting peptides or pro-
teins by inducing their expression in exosome donor cells
[178]. In addition to ligand-mediated targeting, magnetic
drug targeting provides an alternative method to improve
the level of therapeutic efficacy [179]. However, the target-
ing efficiency of a single ligand is not satisfied because of re-
ceptor saturation phenomenon [180]. To overcome these
limitations, dual ligand-based active targeting strategies are
developed to enable the engineered exosomes with ability
of both specific accumulation and improved drug release at
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the target tumor site [181]. Recently, a synthetic exosome
not only preserves the intrinsic functionalities of native exo-
some, but also gains multiple abilities for efficient tumor
targeting via dual ligand-mediated endocytosis, a controlled
release, and thermal therapy at target tumor sites [182].
Tumor-specific targeting of drug-loaded nanoparticles
(NPs) can be implemented by both passive and active strat-
egies. Passive targeting exploits the enhanced permeation
and retention (EPR) effect of small size NPs (50-200 nm)
through the abnormal tumor vasculature to accumulate
into tumor sites [183]. Active targeting of NPs relies on
PEGylation and surface modification of targeting ligands to
efficiently increase the targeting specificity to tumors [184].
However, the synthetic NPs exhibits rapid clearance by the
mononuclear phagocyte system (MPS) during in vivo circu-
lation. Exosome-coated NPs can reduce the MPS uptake
with significant advantages in terms of prolonged blood cir-
culation time, optimal biocompatibility, and enhanced tar-
geting effect [174, 182]. TDE-coated PLGA NPs, using
microfluidic sonication approach to fabricate biomimetic
NPs, show superior homotypic targeting efficacy and im-
mune evasion [185]. Another report shows an exosome-
coated PLGA NPs loaded with DOX achieve efficiently tar-
geted chemotherapy of triple-negative breast cancer [186].
Current studies indicate that exosomes are ideal drug de-
livery vehicles to protect the enclosed drugs from degrad-
ation or damage due to their lipid bilayer membrane and
nanoscale size. Future applications for exosome drug car-
riers include both allogeneic and autologous applications,
the latter can avoid potential immune responses [187].
Multipotent stem cells (MSCs)-derived exosomes are
thought to possess limited immunogenicity due to low ex-
pression of co-stimulatory molecules, such as class I major
histocompatibility complex (MHC) molecules, making
them suitable for allogeneic transplantation [187]. It is un-
clear whether allogeneic exosome sources have the poten-
tial to be streamlined and developed as off-the-shelf
products used for future drug delivery applications. Isola-
tion of distinct exosome subpopulations that display favor-
able transport properties has proved challenging with
current techniques. The versatile designer exosome com-
bined with synthetic materials aims to be used in individu-
alized precise cancer therapy in the future. And the
research endpoint in experimental diagnostics/prognostics/
therapeutics of lung cancer is to be translated into clinical
applications. Clinical Trials play the key role on transla-
tional application of exosome-based diagnostics/prognos-
tics/therapeutics into clinics. A December 7™ 2020 search
of https://clinicaltrials.gov/ct2/search shows about 18 stud-
ies related to exosomes and lung cancer (Table 2). Notably,
although most of the studies are related to development of
exosome-based diagnosis/prognosis, one study investigates
the therapeutic aspects. A dendritic cell-derived exosome
(Dex)-based clinical trial in phase II examines the use of
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Dex as vaccine to impart immunotherapy in combination
with metronomic cyclophosphamide (mCTX) therapy in
patients with lung cancer (NCT01159288) (Table 2).

Conclusion and perspectives
LCCDEs participate in the lung cancer progression. With
deep investigation of LCCDEs-mediated role and signal
pathways, the mechanism of lung carcinogenesis can be
further elucidated. The highlights of exosome biomarkers
include that they contain stable sources of tumor-derived
genetic material; Exosome number is higher in patients
than in healthy controls; Exosomal miRNAs can discrim-
inate healthy individual from patients, early stage from ad-
vanced stage, and recurrence from non-recurrence;
Exosomal RNA and DNA have a higher sensitivity in de-
tection of somatic mutations. Accumulating evidence sug-
gests that exosome biomarker has a prospective use in
lung cancer diagnosis and prognosis. Lung cancer is a dis-
ease worthy of precise and personalized medical treat-
ment. Due to the unique biological characters of
exosomes, delivery of therapeutic agents through exo-
somes is a novel approach that holds a great future in
medicine. We summarize the pivotal role of exosomes in
lung carcinogenesis, and highlights the exemplary capacity
of exosomes to be used as diagnostic, prognostic, and
therapeutic agents in lung cancer (Table 1 and Fig. 5).
However, a number of associated challenges must be re-
solved before exosome-based diagnosis/prognosis and de-
livery systems are applied in clinical settings. The first and
most important limitation is related to exosome isolation
and thorough characterization. The lack of standardized
exosome isolation techniques, storage methods, and ap-
propriate quality controls has hampered further transla-
tion and clinical-grade exosome production. In addition,
bulk and scalable exosomes manufacturing remains a
major hurdle for clinical translation and production cost
control. The biofluids availability and exosomes abun-
dance in biofluids varies frequently. Hence, a standardized
method for exosome isolation is warranted to ensure a
consistent and repeatable exosome supply. The exosome
preparation should also be of high quality, homogenous in
nature, and free from other cellular vesicular contamin-
ation. Meanwhile, challenge for development of exosome
biomarkers is lack of large prospective studies to provide
evidence that exosome liquid biopsy can be a valid alter-
native to tumor tissue biopsy. The foremost challenge as-
sociated with biological-origin exosome therapeutic
system is maintenance of good manufacturing practices.
Hence, the standardized protocols to ensure consistent
production of exosomes will be needed before exosome-
based therapy enters clinical practice. Although exosome-
mediated therapy as well as diagnosis and prognosis ap-
pear promising, more research needs to be done before
exosome is incorporated into clinical applications.
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