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Abstract

Drug-induced cardiotoxicity is a potentially lethal and yet one of the most common side effects 

with the drugs in clinical use. Most of the drug-induced cardiotoxicity is associated with an off-

target pharmacological blockade of K+ currents carried out by the cardiac Human-Ether-a-go-go-

Related (hERG1) potassium channel. There is a compulsory pre-clinical stage safety assessment 

for the hERG1 blockade for all classes of drugs, which adds substantially to the cost of drug 

development. The availability of a high-resolution Cryogenic Electron Microscopy (cryo-EM) 

structure for the channel in its open/depolarized state solved in 2017 enabled the application of 

molecular modeling for rapid assessment of drug blockade by molecular docking and simulation 

techniques. More importantly, if successful, in-silico methods may allow a path to lead-compound 

salvaging by mapping out key block determinants. Here, we report the blind application of the 

Site-Identification by Ligand Competitive Saturation (SILCS) protocol to map out druggable/

regulatory hotspots in the hERG1 channel available for blockers and activators. The SILCS 

simulations use small solutes representative of common functional groups to sample the chemical 

space for the entire protein and its environment using all-atom simulations. The resulting chemical 

maps, FragMaps, explicitly account for receptor flexibility, protein-fragment interactions, and 

fragment desolvation penalty allowing for rapid ranking of potential ligands as blockers or non-

blockers of hERG1. To illustrate the power of the approach SILCS was applied to a test set of 55 

blockers with diverse chemical scaffolds and pIC50 values measured under uniform conditions. 

The original SILCS model was based on the all-atom modelling of the hERG1 channel in an 

explicit lipid bilayer and was further augmented with a Bayesian-Optimization/Machine-Learning 
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(BML) stage employing an independent literature-derived training set of 163 molecules. BML 

approach was used to determine weighting factors for the FragMaps contributions to the scoring 

function. pIC50 predictions from the combined SILCS/BML approach to the 55 blockers showed a 

Pearson Correlation (P.C.) coefficient of > 0.535 relative to the experimental data. SILCS/BML 

model was shown to yield substantially improved performance as compared to commonly used 

rigid and flexible molecular docking methods for a well-established cohort of hERG1 blockers 

where no correlation to experimental data was recorded. SILCS/BML results also suggest that a 

proper weighting of protonation states of common blockers present at physiological pH is essential 

for accurate predictions of blocker potency. The pre-calculated and optimized SILCS FragMaps 

can now be used for the rapid screening of small molecules for their cardiotoxic potential as well 

as for exploring alternative binding pockets in the hERG1 channel with applications to the rational 

design of activators.

Graphical Abstract

Introduction

Drug-induced cardiotoxicity is by far one of the most common and dangerous side effects 

associated with the use of drugs. The majority of the drug-induced cardiotoxicity is 

associated with an off-target pharmacological block of the cardiac Human-Ether-a-go-go-

Related (hERG1) potassium channel 1–3. The channel is found throughout the body 

including the gall bladder 4, the digestive tract 5, the mid-brain6, and the abnormal 

expression of the channel is associated with cancer 7. However, the function and the role of 

the channel is most studied and understood in the heart 8, where the channel carries the 

majority of the IKr current corresponding to phase 3 of the Action Potential (AP) in 

cardiomyocytes 9–10. One of the major problems in drug development is the cardiovascular 

side effects associated with off-target drug binding particularly, to the hERG1. Binding of 

drugs to channels, alters cardiac IKr current, potentially causing a long-QT syndrome 

(LQTS) which may lead to irregular heartbeats, fainting, and sudden cardiac death 1, 11–12. 

The sudden cardiac death of patients and prolongation of the QT interval in the heart due to 

the drug-induced block of hERG1 is the main cause of the withdrawal of drugs from the 

market and mandatory drug screening for hERG1 interactions was implemented by Food 

and Drug Administration (FDA)13–14 and European Medicine Agency (EMEA). The drug-

induced long-QT syndrome and drug arrhythmogenic activity associated with the hERG1 
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block made the channel infamous in the pharmacological field, making it one of the most 

studied ion channels. A massive effort by the scientific alliance using high-throughput 

screening of several drugs provided additional evidence for the central role of the hERG1 

blockade in drug safety assessments 15. Several methods have been developed and tested in 

attempts to find and predict drug binding pockets by screening large datasets of drug 

libraries, including assays based on binding, flux, electrophysiology, and fluorescence 1, 16. 

However, hERG1-mediated toxicity detection remains a challenging task due to the inherent 

variability of the methodologies used at laboratories throughout the world. Moreover, in 
vitro studies for the determination of drug binding pockets in hERG1 are costly, labor-

intensive, and technically demanding. Accordingly, affinity prediction using in silico 

screening is considered a potential cost-effective screening tool 17–18.

Despite years of experimental and theoretical studies aimed at studying and determining 

interactions of drugs with the hERG1 channel, a-priori prediction of the cardiotoxic potential 

for novel compounds without expensive testing remains an elusive problem in drug 

development. Therefore, many efforts were pushed towards developing predictive models of 

different complexity ranging from traditional Quantitative Structure-Activity Relationship 

(QSAR) and pharmacophore-based models to Deep-Learning (DL) techniques for the 

screening of a large cohort compound. While very useful, DL- or QSAR- based approaches 

are focused on ligand-based inference driven by biological assay data and therefore provide 

little information about the molecular underpinnings of the drug-receptor interactions 19–20. 

The DL/QSAR-based approaches are often focused on the binary classification e.g. blocker 

vs. non-blocker providing very little guidance on potential modifications of the blocker 

chemical structure needed for salvaging of the promising drug lead. In addition, these 

ligand- or knowledge-based methods face serious challenges in predicting drug blockade by 

a compound without strong similarity to the chemical scaffolds used to train the model 17–18.

Therefore, mapping atomistic details of the hERG1 high-affinity site for blockers potentially 

opens up the potential of using target structure-based approaches for the prediction of the 

hERG1 blockers as well as a potential strategy for “de-toxifying” a drug during 

development. In 2017, the cryo-EM structure of the hERG1 was solved at 3.8 Å resolution 
21. The structure of the transmembrane region of the channel consists of four repeating 

chains comprised of the six transmembrane segments, S1-S6. The segments S1-S4 make up 

a Voltage Sensing Domain (VSD) that responds to the voltage changes across the membrane 

and the S5-S6 segments make up the Pore Domain (PD) which open and close in response to 

the VSD, allowing selective passage of the potassium ions (Figure 1). Experimental and 

theoretical studies have firmly established a water-filled intra-cellular central cavity (IC) 

located in the PD as the main site for blockers with diverse scaffolds 22–23. It has also been 

postulated that the large size of the IC binding site for blockers was one of the culprits 

resulting in the promiscuity in drug binding to the hERG1 28. The cryo-EM resolved 

structure revealed key features that were not predicted experimentally or observed in the 

structural models developed based on the 3D templates from bacterial or mammalian K+ 

channels with known structures 24. In contrast to the previously established wide IC which 

was proposed to accommodate drugs of various chemical structures, the cryo-EM structure 

features a long and narrow IC in its presumably depolarized (open) state 21. Several recent 

efforts to extend molecular modelling of the hERG1 blockade using the new cryo-EM 
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structure have been made to develop structure-based models to predict hERG1 blockade by 

drug-like molecules 25–29. However, the narrow and elongated cavity presented a challenge 

to traditional applications of molecular docking due to the steric constraints in the cavity 

with the apparent need to re-pack aromatic residues such as F656 upon ligand binding 

(Figure 1) 27, 29–30. Our studies utilizing multi-microsecond MD simulations have shown 

that the IC site remains narrow but hydrated allowing both K+ permeation and binding of 

several canonical blockers of hERG1 (dofetilide, d-sotalol) 25, which is also in agreement 

with known binding pockets for channel activators 25, 31. In addition, the availability of the 

structure enabled the mapping of alternative mechanisms for drug access to the main 

blockade site located in the IC. For example, a heart-pace lowering agent, ivabradine, was 

proposed to block the hERG1 via a lipophilic route 26, while moxifloxacin was found to 

bind in a “shallow” portion of the IC 9. Thus, the new structure presents a natural challenge 

to direct applications of traditional all-atom simulation techniques due to its apparent 

flexibility, need to sample slow conformational dynamics of residues comprising the binding 

pocket and located at the protein-membrane interface while correctly accounting for 

conformational dynamics of the bound drug. For example, to reduce the complexity of the 

problem at hand, Dickson et al. 25 extracted specific frames from a large-scale MD 

simulation trajectory based on the principal component analysis (PCA) analysis to assess 

contributions of different conformational states of key coordinating residues on hERG1-drug 

interactions. The authors noted significant challenges in determining optimal binding 

pockets in an integral membrane protein such as hERG1, issues arising from the choices of 

drug protonation, and inherent flexibility of the receptor. A very poor correlation between 

molecular docking results with the receptor structure based on the cryo-EM conformation 

and measured binding affinities were also cited as major challenges in several recent 

modeling studies 28–29, 32–33.

An alternative to traditional molecular docking approaches that utilize a rigid structure or 

ensemble of structures for the receptor is the use of co-solvent drug design approaches that 

produce functional group affinity maps that account for protein flexibility among other 

terms, including the Site Identification by Ligand Competitive Saturation (SILCS) method 
34–37. In SILCS simulations, the combination of solute size and chemical diversity allows for 

direct mapping and ranking of putative binding pockets available in the system for drug 

binding. Notably, the SILCS FragMaps may also be used for the docking of drug-like 

molecules in which the presence of several rotamer and protonation states along with 

complexities of chiral centers contribute to the significant sampling challenges in 

computational modeling of drug binding to the proteins. Here, we used the SILCS approach 

to identify hotspots in the hERG1 channel taking advantage of the oscillating chemical 

potential Grand Canonical Monte Carlo/Molecular Dynamics approach to calculate the 

receptor FragMaps 38. The computed FragMaps were then used to explore binding affinities 

of fragment-like molecules for the identification of hotspots throughout the entire channel 

including the lipid exposed surface of the channel 39. The hotspot analysis shows the 

presence of two distinct binding regions in the intracellular cavity of the hERG1 channel 

lending direct support to the postulated presence of “shallow” and “deep” binding pockets in 

the cavity/distal S6 helix in hERG1 channel 40. Subsequently, the SILCS FragMaps were 

used to produce a predictive model of the affinity of drug-like molecules for these binding 
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sites. To improve the determination capabilities of SILCS to predict the affinities of blockers 

we combined the FragMaps protocol with a Bayesian Machine Learning (BML) FragMap 

reweighting method 34. The BML optimization was based on a training set of 163 hERG1 

blockers that were used to train the SILCS affinity model. The power of the SILCS/BML 

approach is illustrated with a set of 55 blockers/non-blockers where uniformly measured 

IC50 is available 41 and compared to data from the Glide molecular docking approach.

Methods

Site Identification by Ligand Competitive Saturation (SILCS) Simulations:

SILCS methodology generates a functional group affinity pattern of a receptor, termed 

FragMaps, through simulations of a macromolecule in the presence of probe or solute 

molecules and explicit water molecules. SILCS simulations were initialized based on the 

cryo-EM derived structure of the hERG1 (PDB: 5VA1) channel. The building of the 

unresolved region of the hERG1 structure and additional refinement has been described in 

our previous publication 43. The channel was embedded in 2-oleoyl-1-pamlitoyl-sn-

glyecro-3-phosphocholine (POPC) lipids along with cholesterol at a 9:1 ratio, respectively, 

with explicit water molecules, eight types of solutes each at a concentration of 250 mM. The 

system setup was performed with the MolCal package 36, 44 (SilcsBio LLC) in conjunction 

with GROMACS tools 45. The eight fragments used in our study are benzene (benz), 

propane (prpa), methanol, formamide, acetaldehyde, imidazole, methyl-ammonium 

(mamm), and acetate (acet). The simulation box is selected to be larger than the hERG1 

dimensions by 20 Å. The REDUCE software 46 was used to place missing hydrogens and to 

optimally rearrange ring orientations of the following side chains: Asn, His, and Gln. Ten 

independent systems with the same settings were set with different distributions of water and 

solutes (Figure 2).

The SILCS simulations involve iterative oscillating chemical potential, μex, Grand-

Canonical Monte Carlo (GCMC) 38, and MD simulations using GROMACS. GCMC is used 

to sample the distribution of water and the eight small solutes in and around the protein 

while the MD simulations explore the conformational changes within the protein along with 

additional sampling of the solvent environment as previously described 34. Simulations used 

the CHARMM36m protein forcefield for proteins and lipids 47, and the CHARMM TIP3P 

model for explicit water molecules 48–49. The solutes were modelled using the CHARMM 

general force field (CGenFF) 50–51. Timestep for MD runs was set to 2 fs and the Nose

−Hoover method was used to keep the temperature at 298 K 52. Using the Parrinello

−Rahman barostat the pressure was kept at 1 bar while the time constant for pressure and 

temperature coupling was 1ps 53, and the LINCS algorithm was used to maintain bond 

geometries 54. The rotation and potential denaturation of the protein due to the solutes in the 

system 55 were circumvented by applying harmonic restraints to the protein. A force 

constant of 2.4 kcal/mol*Å2 was used as a harmonic positional restraint on all non-hydrogen 

atoms of the protein during the minimization and equilibration steps. During the production 

run, the restraint was applied only on Cα carbon backbone atoms of the protein with a force 

constant of 0.12 kcal/mol*A2. To prevent aggregation between the solutes a repulsive 

intermolecular wall was applied to the following fragment pairs: benz:benz, benz:prpa, 
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prpa:prpa, mamm:acet, mamm:mamm, and acet:acet. Following the minimization and 

equilibration procedure, the system was subjected to 25×200,000 cycles of the GCMC 

simulations with the oscillating μex to re-equilibrate the solutes and water around the protein. 

Then, the production run of 100 cycles of oscillating μex GCMC/MD involving 200,000 

GCMC steps followed by 1ns of MD simulation producing 100 ns data for each of the 10 

simulation systems is performed (1μs in total).

The 1μs of MD trajectories were used to calculate the 3D-occupancy maps for the selected 

solute atoms that encompass the entire system by binning each atom into 1 Å* 1 Å* 1 Å 

cubic volumes elements (voxels) every 10 ps. The voxel occupancy for each selected atom 

from each solute was calculated for each voxel. To normalize the occupancy, the distribution 

of solutes in solution was calculated without the protein. This 3D probability distribution 

(FragMaps) was constructed for different atoms: benzene carbons, propane carbons, 

methanol polar hydrogens, methanol oxygens, formamide polar hydrogens, formamide 

oxygen, acetaldehyde oxygens, methylammonium polar hydrogens, and acetate oxygens. In 

addition to these specific FragMaps, generic FragMaps were generated including apolar 

(benzene and propane carbons), generic hydrogen bond donor (formamide and imidazole 

polar hydrogens, and generic hydrogen bond acceptors (formamide and acetaldehyde 

oxygens and imidazole acceptors nitrogen). The methylammonium nitrogen comprises the 

positive FragMaps and the acetate carbonyl carbon comprises the negative FragMaps 34. The 

Boltzmann transformation was used on the normalized probability distributions to calculate 

the Grid Free Energy (GFE) for each type of FragMap (T) yielding GFE FragMaps using the 

following equation 1:

GFExyz
T = min −RT loge

occupancy
〈bulk occupancy〉 (1)

With GFE value capped at 3 kcal/mol. To assess the convergence in the calculated GFE 

FragMaps, the ten independent simulations were split into two equally-sized sets and then 

used independently to calculate FragMaps. This comparative analysis showed that the 

Overlap Coefficient (OC) between two maps was greater than 0.6 indicating the convergence 

in the SILCS simulations 44. In addition to the FragMaps, Exclusion Maps were defined as 

regions of the grids in which no sampling by water or the solutes occurred during the SILCS 

simulations. All visualizations shown in this work were generated using PYMOL and VMD 
5657.

Ligand Grid Free Energy Calculation and SILCS-MC Sampling:

The SILCS FragMaps allow for rapid fragment and ligand scoring using the SILCS Monte 

Carlo (SILCS-MC) algorithm on the pre-generated FragMap grid. In this approach, each 

classified atom in the ligand is associated with a FragMap type and a GFE score assigned to 

each atom based on the value of the FragMap at that position combined with a scale factor 

as previously presented 34. The assignments are based on the translation of CGenFF atom 

types into FragMaps classes via an Atom-Classification Scheme (ACS) (see ref. 34, 36 for 

more information). A ligand GFE (LGFE) score is then calculated based on a summation 

over the atomic GFE scores as shown in Equation 2:
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LGFE = ∑
FragMaps, T

∑
atoms, iT

GFExi, yi, zi(iT )
T

(2)

where iT corresponds to FragMaps types and GFET are the Grid-Free Energies for various 

FragMaps types. The FragMaps types include the Exclusion Map to which a GFE value of 

1000 kcal/mol is assigned, disallowing sampling of the interior region of the protein. During 

SILCS-MC ligand sampling the ligands are sampled with respect to translational, rotational, 

and dihedral degrees of freedom where the CGenFF parametrization is used for 

intramolecular energies including dihedral (dihe), vdW, and electrostatic (elec) terms in 

addition to the LGFE score, as previously described 34, 36. The LGFE scores are an 

approximation of the binding affinity as they do not account for the covalent connectivity of 

the atoms of the ligands. The intramolecular energies are not considered in the final ranking 

scores as we assume those terms do not contribute significantly in the binding process where 

the ligand is transferred from the bulk phase to a binding pocket. As LGFE scores are 

representative of binding affinities they may be used to rank ligands and perform correlation 

analysis as performed below.

SILCS-MC was performed on all accessible protonation states of the studied ligands. The 

pKa values from the DrugBank dataset were used in analyzing possible protonation states 

for the compound and in assessing protonation equilibrium. The protonation sites of drugs 

were determined using the Chemicalize ChemAxon pKa distribution calculator under 

biological constraints (pH=7.4) 58. Then, the 3D-protonated structures were generated using 

Avogadro software where the optimization plugin was used to produce optimized 

intramolecular conformations 59. These optimized structures were used in the SILCS-MC 

calculations.

Bayesian Machine-Learning Re-Scoring of FragMaps:

To improve model performance of the SILCS method for predicting relative affinities, we 

adopted the optimization of the FragMap weighting factors, used to calculate the LGFE 

scores, using a Bayesian Machine Learning (BML) FragMap reweighting method34. This 

method allows for optimization of the GFE contribution of each class of atoms present in the 

fragments or ligands. To perform the BML optimization, a dataset of 163 compounds with 

diverse scaffolds and functional groups from our previous study was used 17. A flat penalty 

potential of 1000 kcal/mol was used to cap upper- and lower- boundaries of the FragMap 

weighting factors. The error function is the Pearson R between the predicted LGFE scores 

and the experimental pIC50 values. Overfitting was avoided using upper and lower 

boundaries set as double and half of the initial FragMap weight. These compounds were 

subjected to SILCS-MC and the most energetically favorable poses and LGFE scores were 

used as an input for the BML optimization 34. The optimized weighting parameters based on 

FragMap weights were used to verify that no overfitting by performing SILCS-MC on the 

163 training ligands using the new optimized 2018 ACS and redetermining the Pearson R. 

When overfitting does occur the resulting poses from SILCS-MC degraded significantly as 

does the metric PC value 34. Following the optimization of weighting factors, the re-

weighted FragMaps were used with SILCS-MC to predict LGFE scores for the 55 blockers 

assayed in the MICE study (listed in Table S1) 41.

Mousaei et al. Page 7

J Chem Inf Model. Author manuscript; available in PMC 2021 January 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SILCS-Hotspots:

SILCS-Hotspots is based on comprehensive fragment screening using the SILCS-MC 

docking approach to generate an ensemble of fragments poses with associated LGFE scores 

for the entire hERG1 channel 39. Approximately 100 monocyclic and bicyclic rings found in 

drug-like molecules were used as fragments in this study 39, 60–61. In SILCS-Hotspots, the 

full hERG1 channel is partitioned into subspaces that encompass the full protein to identify 

all possible fragment binding sites. Specifically, the simulation box was partitioned to 

sampling boxes with a size of 14.14 Å ×14.14 Å ×14.14 Å, covering the hERG1 channel and 

surrounding area. Using SILCS-MC, the fragment is randomly positioned in a sphere of 10 

Å centered in each sampling box where the random variation of one rotatable bond of the 

fragment is generated. Subsequently, the fragment is subjected to 10,000 MC steps (at 300 

K) followed by 40,000 MC annealing steps from 0 to 300 °K. This procedure is applied 

1000 times on each fragment in each subspace. The collection of posed orientations is 

subjected to two rounds of Center-of-Mass (COM) clustering to identify orientations with 

the highest neighbor population thereby identifying putative fragment binding sites in round 

one followed by clustering of the different fragment types to identify those fragments that 

occupy each site. The radius of COM clustering used values of 3 Å and 4 Å for the first and 

second round, respectively.

Molecular Docking:

The cryo-EM solved structure of the tetrameric hERG1 was taken from the PDB, 

specifically biological assembly 1 (PDB: 5VA2). The receptor structure was prepared using 

Schrödinger’s restrained minimization Protein Preparation Wizard 62. The hydrogen atoms 

and missing parts of the residues were added, and the positions of hydrogen atoms were re-

optimized. The Ligprep Wizard, available in the Schrödinger suite (Schrodinger 2012), was 

utilized to prepare 55 ligands which include restraint of bond lengths, bond angles, 

conversion of the 2D representation into the 3D format, adding hydrogens, sampling ring 

conformations, and minimizing the structure based on the OPLS force field 63–64. Charged 

states of the drugs were generated using EPIK at a pH of 7±2 for drugs and using PROPKA 

at pH 7. We utilized an automated Glide cross-docking script available in Maestro to 

automate the docking of 55 ligands to the receptor. The Glide-XP (extra-precision) 65 cross-

docking modules of the Maestro suit in Schrödinger were used for all docking calculations 

with a ligand vdW scale factor of 0.80 and an RMSD cut-off of 2.0 Å. We restricted the 

outcome to a maximum of 3 docking poses for each drug. In order to generate a receptor 

grid for docking, we used an inner box edge length of 10 Å which represents the space 

explored by Glide as acceptable positions for the center of the drugs and the outer box of 30 

Å, the space that all atoms of the drug must occupy. The coordinates used for the generation 

of the receptor grids for the docking was defined as a centroid of F656 and Y652 from each 

four subunits as these residues are key determinants of the drug-induced block of the 

hERG1. The main purpose of the Glide-XP docking studies was to evaluate the usefulness of 

the receptor state captured in the cryo-EM for high-throughput screening of large ligand 

libraries. Several recent studies utilizing large-scale MD simulations pointed out that the 

conformational arrangement of the aromatic cassette (F557, F656, and Y652) captured in the 

cryo-EM structure may inhibit high-affinity binding to the intra-cavitary site 9, 25, 29, 66. 

GLIDE outputs GScore, which is calculated in kcal/mol and accounts for the hydrophobic 
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interactions, π-π stacking interactions between aromatic rings, root mean square deviation 

(RMSD), desolvation, protein-ligand interaction, and hydrogen bond formation 62. For the 

purposes of our study, we only show results of the best docking score of all ligands binding 

to the high-affinity site present the central cavity of the hERG1. To distinguish between 

outcomes of docking from GLIDE and SILCS approaches we will use GLIDE|Gscore| and 

SILCS|LGFE| for predicted binding scores, respectively.

Results and Discussion

SILCS is advantageous over the majority of molecular docking approaches in that it directly 

considers the flexibility of the protein along with protein and ligand desolvation and 

functional group-protein interactions in the form of the FragMaps allowing for 

comprehensive mapping of both orthosteric and possible allosteric binding sites of the 

hERG1 channel. The calculated FragMaps were then used in the SILCS-MC method to 

estimate the binding affinities of drugs in the pockets of interest.

FragMaps from Site Identification by Ligand Competitive Saturation Simulations:

SILCS uses Grand Canonical Monte Carlo and Molecular Dynamics (GCMC/MD) 

simulations for solute and protein conformational sampling which enables the determination 

of regions explored by the solute and water molecules during the simulation. In addition to 

orthosteric sites, hidden pockets of allosteric sites may be identified by the SILCS method as 

it comprehensively maps the 3D space of the protein 44. SILCS FragMaps, which represents 

the predicted binding affinity of functional groups around the hERG1 channel, are shown in 

Figure 3 and the detailed description of the maps is in Table 1. SILCS identifies and 

characterizes all possible binding sites via the FragMaps. The regions in the vicinity of the 

most important residues involved in drug binding, determined from a plethora of 

experimental studies, were excellently mapped by our SILCS simulations. The central cavity 

mapped residues by our simulations include F557, S624, Y652, and F656, all of which are 

crucial for drug binding (Figure 3b) 29, 31, 40, 67. The FragMaps of the central cavity show 

the preferential binding of apolar fragments including aromatic and aliphatic moieties 

(Figure 4a). The positively charged fragments also favorably bind to the central cavity of the 

hERG1 in agreement with the reported significant negative electrostatic potential inside the 

cavity 21.

The pocket around L529 vicinity has also been mapped. The residue is in the VSD and has 

been proposed as an important binding determinant of the NS-1643 activator 71. Our 

FragMaps of this pocket reveal the presence of the apolar, hydrogen-bond donor, and 

acceptor maps. The FragMaps for anionic (acetate) and cationic functional groups 

(methylammonium) indicate favorable binding to the region between the intracellular gate in 

the pore-domain and the cytoplasmic region (Figure 4b). This corresponds to the presence of 

a highly polar intra-cellular surface with multiple salt-bridges and interactions between the 

transmembrane (TM) domain and the cytoplasmic domains.
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SILCS Hotspots Binding Site Identification in the hERG1 channel:

SILCS-Hotspots employs the SILCS-MC method to sample all possible binding sites for 

fragments on the hERG1 channel including low affinity and/or occluded sites in the interior 

of the protein 39. Such sites are not immediately evident from the examination of the 

experimental structure and unlikely to be detected from blind docking studies. Several recent 

publications have commented on the apparent difficulties in docking or simulations of 

binding of diverse ligands known to bind to the very constricted and hydrophobic 

environment of the IC cavity found in the cryo-EM structure 28–29, 33. The receptor 

flexibility plays an apparent role in the high-affinity binding to the intra-cavitary site and 

SILCS-MC has the potential to map the site directly in the presence of explicit lipid bilayer 

and solvent molecules. SILCS-Hotspots for the hERG1 identified favorable binding spots for 

the ring based fragments, which are termed as “hotspots”. 145 hotspots were identified with 

average LGFE scores for the fragments occupying each Hotspot ranging between –2.3 

kcal/mol to –4 kcal/mol in the PD, VSD, and the intra-cellular terminal of the hERG1 

channel (Figure 5). These hotspots were further organized into 32 binding pockets. The 

presence of multiple binding sites with relatively small differences in binding affinities for 

both activators and blockers have also been shown by previous modeling and 

electrophysiology studies 40, 72–73.

Experimentally, the IC cavity is the high-affinity drug binding location and our results show 

several hotspots in the cavity. These hotspots can be grouped as two distinct binding pockets 

labeled as S1 and S2. Similar finding of two distinct pockets is recently published for 

dofetilide 33. The S1 corresponds to the deeper classic drug binding pocket in the immediate 

vicinity of F656 or Y652. These Hotspots are mapping the primary binding pocket in the IC 

reported in many previous studies 22. On the other hand, the S2 is in the distal S6 (R665) 

and closer to the CNBD domain (T675, L678, and R679), represents a shallow drug binding 

region.

Hotspots #1 and #2, based on the average LGFE score ranking, represent nearly identical 

binding pockets determined by the location of R665 in the distal S6 and T675/R679 in the 

CNDB domain. These represent the “shallow” easily accessible site S2 (Figure 5). R665 is 

one of the key residues establishing a direct link between VSD of the channel and pore gate 

located in the S6 helix 76. However, the cryo-EM structure used in the calculations of the 

SILCS maps was lacking the PAS domain, which may impact its accuracy in assessing 

accessibility to the intracellular surface of channel 49. Hotspot #3 is defined by Y569 and 

F431 on the S5 and S4 helices, respectively. Both residues are known to be essential for the 

channel’s activation and were proposed to facilitate binding to channel agonists 74–75. 

Interestingly, this inter-digitated cluster of aromatic residues was also proposed to be 

essential for conformational coupling to the pore-opening during repolarization dynamics 

and drug access to the main sites. Hotspot #4 is located in the “deep”/high-affinity part of 

the IC and can be classified as part of the site S1 binding pocket. The site is formed by polar, 

aromatic, and amphipathic residues with well-established roles in the interactions with the 

channel blockers 22. It is important to emphasize that FragMaps featured in Figure 5 may be 

impacted by the truncated PAS domain in the cryo-EM, thus missing in our simulations. 

Overall, it can be concluded that fragment hotspot mapping of the accessible binding 
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pockets of the cryo-EM structure of hERG1 is in general agreement with known sites for 

blockers and/or for activators.

Binding Scores for Blockers from SILCS and High-Precision Docking:

As a proof-of-principle assessment of the ability of SILCS to predict binding scores using 

maps generated with the hERG1 structure solved by cryo-EM, we selected 55 blockers with 

IC50 values measured in the same cell-line and under controlled experimental conditions 

(temperature, N of experiments, voltage-ramp protocols, etc) as part of the MICE study 41. 

The ligands were selected to contain diverse chemical groups, topologies, and binding 

affinities, with the list including very high μM to low nM blockers. This set was selected to 

reduce cell-type or temperature-dependent variations of IC50 values across a large cohort of 

blockers/non-blockers compounds which is a well-known issue in safety pharmacology 
76–77. We considered both protonated and neutral forms of all the compounds in Table S1 

including stable zwitterionic forms. An example of neutral and protonated structures for the 

well-known hERG1 blocker, dofetilide, is shown in Figure S1. The neutral, protonated, and 

zwitterionic states of the drugs were considered in the SILCS-MC and GLIDE docking. The 

resulting LGFE and Gscore values were weighted using the Henderson–Hasselbach equation 

using pH=7.4 (Equation 3) 78.

pH = pKa + log10
[A−]
[HA] (3)

The initial SILCS|LGFE| scores were calculated using SILCS-MC on the 55 blockers dataset 

with the default FragMap weighting in the 2018 ACS. As is evident in Figure 6 weak 

correlations are present with experimentally observed pIC50 values. This motivated scaling 

of the default FragMap ACS weighting factors using the published Bayesian Machine 

Learning (BML) approach. Target data for the BML approach was the dataset of 163 hERG1 

blockers with diverse chemical scaffolds and standardized IC50 values selected from our 

previous study 17. The compounds from this dataset were chosen for SILCS-MC affinity 

determination in the intra-cellular cavity of the hERG1 channel using the default 2018 ACS. 

The resulting optimal binding conformations for compounds from the dataset were used as 

input for training the FragMap weighting factors. The default ACS and BML optimized ACS 

weighting factors are provided in Table S2. The optimization of ACS weighting factors for 

this 163 molecules dataset, improved the Pearson correlation coefficient between calculated |

LGFE| and experimental pIC50 from 0.091 to 0.467 for the 163 compounds (Figure S3).

Subsequently, the BML optimized weighting factors were used to re-pose and score these 55 

drugs from the MICE study. Using this optimized ACS, these blockers (Table S1) were 

subjected to SILCS-MC sampling within the sphere of radius 10 Å in two binding regions 

located in IC (S1 and S2) as shown in Figure 5. The sphere centers were determined by the 

location of Cα atoms from Y652 and F656 for S1 while for the S2 the Cα atoms selected 

are from R665 and T675 residues. Spheres of radius 10 Å and 15 Å were used to test the 

effects of sampling space on the LGFE scores. The spherical boundaries for GLIDE docking 

were selected according to the hotspots and binding pockets that are shown in Figure 5 to 

explore blocker predicted binding affinity through the whole IC. The Glide molecular 
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docking using the cryo-EM structure of the hERG1 channel shows drugs only bind to one 

location in the cavity, potentially due to the lack of dynamic movements within the protein 

(Figure S4) 21. However, the dynamic structure from MD simulations shows a wider cavity 

with deep and shallow binding regions (S1 and S2, Figure S4.). Table S1 shows the drug 

pIC50 values from the experimental studies for the wildtype hERG1 channel and the |LGFE| 

scores based on the optimized ACS obtained for the hERG1 channel.

The resulting binding scores for the various methods and protonation states are compared to 

experimental pIC50 values in Figure 6. The BML optimization yields a significant 

improvement in the Pearson correlation coefficient and show our predictive model to be 

capable of discriminating between hERG1 blockers and non-blockers. The BML optimized 

SILCS |LGFE| has a correlation coefficient of 0.535 with the experimental pIC50 whereas 

the GLIDE |Gscore| shows no correlation (Pearson correlation =0.016) for the high-affinity 

site S1 (Figure 5). We note that the poor correlation of GLIDE is consistent with previous 

docking studies on hERG1. Several groups have reported a complete lack of correlation in 

direct application of docking to the pore-domain of hERG1 captured by the cryo-EM 

structure. The incorporation of different rotamers for -OH and -SH has no impact on the lack 

of correlation in predicted scores (data not shown). Several issues may contribute to the lack 

of correlations. One is the low resolution of the structure (3.8 Å), albeit the pore-domain 

architecture is highly conserved across the family of K+-selective channels. Helliwell et al.29 

noted that they were unable to observe binding to experimentally-characterized high-affinity 

pocket referred in the present study as site S1 due to steric clashes with the aromatic cassette 

(F557, F656, and Y652). Helliwell et al. constructed a different conformation of F656 and 

obtained a better agreement with experiment for a small set of compounds 29. Several recent 

studies employing multi-microsecond long MD simulations also corroborated the 

importance of S1 plasticity and conformational dynamics of F656 in high-affinity drug 

binding33. Studies based on homology models of the hERG1 pore domain reported 

reasonable performance for different docking algorithms 24, 72, 79. The key differences 

between the models and the experimentally derived structure were in the orientation of the 

aromatic cassette residues F557, F656, and Y65231. Therefore, docking for hERG1 blockade 

prediction has to account for receptor flexibility as is illustrated by the present lack of 

correlation in GLIDE |Gscore| for the studied cohort of compounds.

One approach to address this challenge is to perform long atomistic simulations followed by 

identification of ensembles of conformational states for docking from those 

simulations25, 33, 66 using clustering algorithms or experimentally-inspired structural 

insights. However, assigning statistical weights for the selected rotameric states of specific 

residues such as those in the aromatic cassette is challenging and their contributions to 

protein-ligand affinity therefore is somewhat arbitrary. An alternative is to apply free-energy 

simulations, ensuring sampling sufficient for affinity estimation 9. While attractive, 

approaches based on free-energy simulations are hard to extend to high-throuhput screening 

of thousands, if not millions, of drug candidates due to their high CPU or GPU 

requirements.

The SILCS/FragMaps explicitly accounts for the flexibility of the binding pockets allowing 

direct evaluation of binding of various substrates to the constricted IC cavity of the hERG1 
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resulting in better correlation with the experimental pIC50 than docking. It should be noted 

that IC50 is not a representation of the experimental ΔGbind, and LGFE is not directly 

analogous to binding affinity due to the lack of parameters such as the configurational 

entropy loss coming from differences between solute based functional groups and covalent 

connections of a full ligand 34. Therefore, correlation analysis suggests that the direct 

incorporation of conformational plasticity in the binding pocket with statistical-weighting 

(FragMaps) led to better performance than a blind docking study considering single receptor 

state with the experimentally determined structure.

Considering only neutral states of drugs show a better correlation of SILCS |LGFE| scores to 

the experimental pIC50 values than strictly considering cationic states, in agreement with 

recent studies that employed Replica-Exchange/Umbrella-Sampling simulations for 

dofetilide and moxifloxacin9. It is evident that the weighting of binding scores to account for 

various charge states of the compounds improves correlation to both SILCS and GLIDE 

scores to pIC50 values. The SILCS |LGFE| scores in both S1 and S2 (Figure 5) have a 

higher correlation coefficient than Glide |Gscore|. The high-affinity hydrophobic pocket S1, 

defined by Y652 and F656 results in the highest correlation with experimental pIC50 and a 

higher average of |LGFE| than the shallower pocket S2, around R665/T675 in agreement 

with previous studies3, 23. The SILCS-MC allows individual atom contributions to SILCS|

LGFE| scores to be determined based on atomic GFE scores allowing for the determination 

of key functional groups of the ligand responsible for binding to be identified. Atoms that 

don’t make a significant contribution to the |LGFE| may still play a role in scaffolding 

between moieties on the ligand as required to properly orient favorable functional groups in 

the molecule 80–81. Information on these atomic contributions could be used for further 

ligand optimization to decrease affinity for hERG1, while increasing the ligand predicted 

binding affinity for the specific biological targets as illustrated by the atomic contribution 

analysis for the – Saquinavir (Figure S6). As an example of the role of analysis of the atomic 

GFE contributions, we show our results of neutral and protonated states of an antihistamine 

drug, astemizole, which was withdrawn from the market due to off-target hERG1 block 

(pIC50 = 8.40, HH weighted SILCS|LGFE|= 8.66 kcal/mol)41, 82. Astemizole has an 

estimated pKa value of 8.75 as calculated from Chemicalize ChemAxon, thus the drug is 

assumed to mostly exist in the protonated state at pH=7.4. The protonated drug (SILCS|

LGFE|=8.74 kcal/mol) has a higher affinity to the hERG1 cavity by ~2kcal/mol compared to 

the neutral state (SILCS|LGFE|=6.84 kcal/mol). The favorable energetic contribution of the 

SILCS|LGFE| scores of the cation is shown to mostly arise due to the basic nitrogen of the 

drug (NLGFE score = −2.17 kcal/mol), which is consistent with the experimental predictions 

that speculate protonated basic nitrogen may play a crucial role in the hERG1 block 83–84 as 

shown in Figure 7. The secondary amine and pyridine amine play a role in increasing the |

LGFE| due to the stabilization of the cationic form of astemizole. These two groups also 

overlap with methylammonium nitrogen map in the protonated state and with generic apolar, 

benzene carbon, and propane carbon maps in the neutral state. The para-methoxyphenyl is 

interacting with generic apolar, benzene carbon, and propane carbon in both states while in 

the neutral state and protonated state there is an overlap with methanol oxygen maps and 

acetaldehyde oxygen maps, respectively. In practice, during a medicinal chemistry 

campaign, atomic GFE information for the hERG1 could be combined with analogous 
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information for a drug candidate based on SILCS FragMaps for the desired protein target 

thereby simultaneously maximizing binding to the target protein and minimizing that to 

hERG1.

Analysis of the atomic GFE contribution was also applied to an outlier case for ligand 

binding to S1 and S2 to identify the reason for the discrepancy with the experimental data. 

Saquinavir was predicted by SILCS to be a high-affinity ligand for site S2. Saquinavir is an 

anti-retroviral compound featuring a large number of aromatic groups and aliphatic linkages. 

Analysis of the GFE contributions to the predicted binding score from SILCS |LGFE| 

indicates the overestimation to be due to favourable contribution arising from non-polar and 

aromatic moieties, indicating an area for future improvements of the method. Overall, the 

data clearly shows that SILCS-MC allows a quantitative evaluation of binding affinities with 

direct account for complex membrane environment on par with cutting edge methodologies 

such as all-atom MD or Free Energy simulations29, 32, 85–86. SILCS-MC affinity ranking 

clearly supersedes the ranking obtained with GLIDE docking in agreement with the 

numerous docking reports to the cryo-EM structure. The report of Helliwell et al. shows the 

manual manipulation of the F656 was necessary to obtain reasonable results from molecular 

dockings to the intra-cavitary site in hERG1 channel29. While SILCS FragMap generation is 

a time-consuming step in the protocol, once the FragMaps are developed SILCS-MC allows 

rapid assessment of the drug cohorts. The advantage of the hERG1 flexibility consideration 

in the generation of FragMaps is critical as studies have been proposed the dynamic gating 

mechanism of the central cavity residues involving intricate interplay network of F557, 

M651, and Y652, and F65626, 72, 87.

One of the natural limitations of this study is its focus on only one functional state of the 

channel – open state captured in the cryo-EM structure 21. The state-dependence of hERG1 

blockade has been shown to be an important determinant of drug cardiotoxicity. Blocker 

binding to an inactivated state was proposed to be associated with drug propensity to cause 

Torsades de Pointes 88. There are relatively minor structural differences (RMSD ~ 2.7 Å) in 

the topology/organization of the site S1 in the homologous channel EAG1 with PD in the 

closed state and the pore domain of hERG1 in the open state 43. At the same time, there is 

substantial experimental evidence for the conformational re-packing of the aromatic cassette 

in S6 (Y652 and F656) and slow inactivation itself being key determinants of the high-

affinity blockade87. The only available cryo-EM structure of hERG1 captures the pore-

domain in its open state. Most of the blockers assessed in the MICE study are targeting the 

high-affinity intra-cavitary site, which requires either opening of the intra-cellular gate 

(open-state blockade) or lipophilic access. There is also substantial experimental evidence 

for a pivotal role of drug access to the open-state in the process of hERG1 block 89–90. 

Therefore, we believe that directly accounting for receptor flexibility in the FragMaps 

provides a platform for assessment of the molecular determinants for high-affinity block, 

thus providing the community with an essential tool for use in “safety pharmacology”9.

Conclusions

The availability of the high-resolution cryo-EM provides a unique opportunity for us to 

apply rapidly evolving fragment-based approaches to map potentially druggable sites in the 
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hERG1 channel. The direct application of popular molecular docking techniques leads to 

low correlations in predictions of the hERG1 blockade by small molecules compared to 

SILCS. Molecular docking approaches when applied to integral membrane proteins suffer 

from challenges arising from the inherent flexibility of the receptor, apparent need in 

accurate account for protein-lipid interface and drug lipophilicity or dynamic ionization and 

the potential role of the lipid-exposed areas of the channel involved in drug binding91–92. 

The chemical fragments used in SILCS allow for in-depth sampling of hard-to-reach binding 

pockets and/or mapping general preferences of flexible and challenging to map binding 

regions such as the intra-cavitary site in the hERG1 channel. Unlike the traditional methods 

for ligand identification and optimization, SILCS as a functional group mapping approach 

that provides rigorous functional group affinity free energy patterns for the entire space 

around and inside the biological target. The resulting FragMaps include contributions from 

protein flexibility, functional group and protein desolvation, and functional group-protein 

interactions. Accordingly, the calculated FragMaps may be used in database screening, 

fragment-based drug design, lead optimization, and mapping potentially relevant binding 

sites. The intrinsic flexibility of the Y652-F656 binding cassette in the deep binding pocket 

S1 site is an important determinant for drug binding; thus the conformational dynamics of 

these residues must explicitly be accounted. This is indeed accounted for in the SILCS 

approach and once FragMaps are calculated the approach can easily be scaled up to a large 

number of new compounds without additional all-atom MD simulations. The power of the 

approach was further illustrated by direct consideration of various states for the drug with 

pre-computed FragMaps. We showed that a BML optimization with a literature-derived 

training set of diverse chemical compounds allows for improvements in the pIC50 

prediction. Together, the present results yield a predictive model of the relative affinity of the 

hERG1 blockers that has the potential to be used in drug design efforts to minimize the 

inadvertent off-target hERG1 block. This predictive tool could combine with Deep Learning 

methods using large drug datasets to classify fragments that may cause hERG1 blockade at 

different binding pockets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The general topology of the hERG1 channel is shown in a sagittal view and features a 

Voltage-Sensing-Domain (VSD) labeled as S1-S4, pore domain (PD), and the cytoplasmic 

region (C-linker). Only one monomer is shown for clarity as a red cartoon while the rest of 

the channel is shown as a transparent surface. The pore domain is comprised of S5-Pore 

helix-S6 helix and features a large intra-cellular central cavity (IC) which is shown as a cyan 

surface generated by HOLLOW program42. The key chemical moieties in the IC are shown 

in the inset. VSD domain is formed by S1-S4 helices and corresponding linkers. For the 

intracellular region (C-linker), only a fully-resolved CNBD domain is shown.
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Figure 2. 
The SILCS simulation setup for the hERG1 channel is embedded in an explicit POPC 

membrane, eight solutes, water, and ions. The channel is shown as the colorful cartoon, the 

membrane is a red transparent surface, cholesterol embedded in the membrane are shown as 

red sticks, water molecules are shown as blue transparent surface, and solutes are shown as 

sticks and lines.
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Figure 3. 
(a) A subset of SILCS FragMaps presented as isocontour meshes are shown for the hERG1 

channel from the side perspective. The channel is shown as a transparent surface in grey, 

colored areas are the proposed binding spots for various chemical groups. (b) SILCS 

FragMaps distribution of the central cavity of the channel, specifically in the vicinity of 

Y652 and F656 that are the key residues involved in drug binding to the hERG1. (energy is 

shown as the GFE contour level of FragMaps according to Table 1). The FragMaps also 

occupied a pocket located around M651 in the lipid facing portion of the S6 helix, important 

for lipophilic drugs such as ivabradine 33. The lipid facing sides of the hERG1 revealed the 

presence of Apolar, Benzene, and Propane FragMaps with, notably, those maps penetrating 

through the biological membrane, consistent with the tendency of lipids to specifically bind 

to the cardiac channel 68–70.
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Figure 4. 
(a) Top-down perspective view of the pore cavity of the hERG1 channel. The most well 

studied binding pocket is shown around the crucial residues Y652 and F656. Adjacent to 

both residues are generic apolar, benzene carbon, propane carbon, methylammonium 

nitrogen (above Y652), imidazole donor nitrogen, and imidazole acceptor nitrogen, and 

acetaldehyde oxygen FragMap types (b) The region below the central cavity (Y652 and 

F656) is occupied by negative acetate oxygen FragMaps. (c,d) SILCS Exclusion Map shows 

the regions of the hERG1 channel which are not accessible to the water and solute 

molecules. The SILCS Exclusion Map (red) for hERG1 shows how the dynamics of the 

protein allow for regions beyond those defined by the solvent-accessible surface of the initial 

hERG1 structure (transparent white) to open thereby allowing permeation of small 

molecules to the hidden pockets of hERG1 channel that are not evident in the rigid hERG1 

structure. The FragMaps color codes are provided in Table 1.
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Figure 5. Hotspots analysis of the hERG1 channel.
TMD/Cytoplasmic domains considered for the analysis are shown as the transparent grey 

surface with identified Hotspots shown as cyan spheres. Two major binding areas with a 

preference for different functional groups were found in the distal S6/IC region. The 

classical drug binding region around F656 and Y652 is labeled as S1. The second detected 

binding region (S2) is located near the intra-cellular gate located in the distal S6 helix in the 

vicinity of T675 and R665. The Y652, F656, R665, and T675 are depicted as red, blue, 

orange, and magenta sticks, respectively. FragMaps are presented are described in Table 1. 

The top 10 hotspots scores are shown in Figure S1.
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Figure 6. 
The correlation analysis of binding scores obtained with SILCS and Glide Docking for 

neutral, charged, and HH-weighted dugs blocking S1 or S2 sites in hERG1 using default 

ACS 2018 and BML optimized ACS 2018. Pearson correlation coefficients are shown 

relative to the experimentally measured pIC50 values from the MICE study.
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Figure 7. 
The overlap of the neutral vs protonated states of astemizole with FragMaps is shown in 

panels (a) and (c) and the atomic GFE contribution to overall LGFE are shown in (b) and 

(d), respectively. The best pose conformation of neutral vs protonated astemizole shows a 

change of conformation due to the protonation on pyridine amine. The astemizole is shown 

as sticks and FragMaps are shown as iso-surfaces according to Table 1.
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Table 1.

FragMaps identifiers, their representative colors and the energy cutoffs used for visualization

FragMaps Label Color Level (kcal/mol)

apolar Generic Apolar Map Green −1.2

hbdon Generic Donor Map Blue −1.2

hbacc Generic Acceptor Map Red −1.2

excl Exclusion Map Sand 0.6

benc Benzene Carbon Map Purple −1.2

prpc Propane Carbon Map Lime −1.2

meoo Methanol Oxygen Map Red −1.2

forn Formamide Nitrogen Map Blue −1.2

foro Formamide Oxygen Map Red −1.2

mamn Methylammonium Nitrogen Map Cyan −1.2

aceo Acetate Oxygen Map Orange −1.2

aalo Red −1.2

imin Imidazole Acceptor Nitrogen Red −1.2

tipo Water Oxygen Map Red −0.5
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