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• This study identified areas with
high COVID-19 transmission risk in
Hong Kong.
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confirmed cases and the places or
venues they visited.
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features that influenced risk were
identified.

• The space-time patterns of high-risk
locations are complex.
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Identifying the space-time patterns of areas with a higher risk of transmission and the associated built
environment and demographic characteristics during the COVID-19 pandemic is critical for developing targeted
interventionmeasures in response to the pandemic. This study aims to identify areaswith a higher risk of COVID-
19 transmission in different periods in Hong Kong and analyze the associated built environment and
demographic factors using data of individual confirmed cases.We detect statistically significant space-time clus-
ters of COVID-19 at the Large Street Block Group (LSBG) level in Hong Kong between January 23 and April 14,
2020. Two types of high-risk areas are identified (residences of and places visited by confirmed cases) and two
types of cases (imported and local cases) are considered. The demographic and built environment features for
the identified high-risk areas are further examined. The results indicate that high transport accessibility, dense
and high-rise buildings, a higher density of commercial land and higher land-usemix are associatedwith a higher
risk for places visited by confirmed cases. More green spaces, higher median household income, lower commer-
cial land density are linked to a higher risk for the residences of confirmed cases. The results in this study not only
can inform policymakers to improve resource allocation and intervention strategies but also can provide guid-
ance to the public to avoid conducting high-risk activities and visiting high-risk places.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic has seriously
threatened global public health since it was first identified in December
2019. Due to its high contagiousness and rapid spread, COVID-19 was
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officially declared a pandemic by the World Health Organization
(WHO) on March 11, 2020 (World Health Organization, 2020).

During a pandemic, prompt and accurate space-time surveillance of
disease are critical for detecting outbreaks and identifying areas with
high transmission risks (Lai et al., 2015). As the transmission risk of an
infectious disease varies over space and time, monitoring the space-
time trends of disease occurrence can highlight the dynamic patterns
in risk and help mitigate the spread of the disease. In recent decades,
analysis of the spatiotemporal patterns of diseases has become an in-
creasingly common task in the fields of epidemiology, public health
and geography (Robertson and Nelson, 2010). The main objectives of
analyzing the space-time patterns of a disease are identifying disease
clusters, explaining the spatial patterns of the clusters, and predicting
the transmission risk of the disease (Caprarelli and Fletcher, 2014).

Existing approaches to exploring the space-time patterns and de-
tecting the high-risk areas of infectious disease include space-time
clustering, density estimation and spatial statistics. For instance, local
indicators of spatial association (LISA) were used to map clusters and
detect hot spots of hand-foot-mouth disease in Beijing, China (Wang
et al., 2014). Space-time K function was applied to investigate the
space-time interactions and excessive risk of Rift Valley fever transmis-
sion in South Africa (Metras et al., 2012). Patterns of dengue cases in the
city of Cali, Colombia were mapped with space-time kernel density es-
timation (Delmelle et al., 2014). Among the various space-time analysis
approaches, space-time scan statistics is an effective method for map-
ping significant clusters of diseases and estimate the associated risk
levels based on a variety of statistical models (Kulldorff, 2018). It has
been widely used in exploring and mapping the patterns of various
diseases, such as vector-borne diseases (Desjardins et al., 2018), rash
and respiratory diseases (Takahashi et al., 2008), measles (Tang et al.,
2017), dementia (Xu and Wu, 2018), and most recently COVID-19
(Desjardins et al., 2020).

It has long been recognized that spatial context and the built envi-
ronment contribute to both the initial establishment and dynamic
space-time patterns of diseases (Real and Biek, 2007). Research on the
relationship between the built environment and spatial distribution of
disease can be traced back to the 19th century to the study of the spread
of cholera by John Snow (1855). Built environment features at different
spatial scales can affect the prevention and spread of infectious diseases.
At a smaller scale, as a disease can spread through contaminated objects,
certain designs of the physical structure and surface materials of build-
ings may prevent the spread of infectious diseases. Poor housing condi-
tions and high building density may lead to the problem of inadequate
sanitation,whichwould create an environment conducive to the spread
of disease (Pinter-Wollman et al., 2018).

At a larger scale, the built environment affects the space-time pat-
terns of disease transmission by shaping people's activities and social
interactions. First, built environment characteristics like the spatial con-
figuration and functional zones of a city significantly affect human mo-
bility and social interactions, which are closely linked to the spread of
infectious diseases. For instance, the increasing mobility of people has
been identified as the main factor for the emergence of dengue fever
(Vazquez-Prokopec et al., 2010). Second, outbreaks of infectious disease
are always associated with a disturbance in the usual functioning of
public spaces and city infrastructures, which have impacted human
mobility and social interactions. In the context of COVID-19, non-
pharmaceutical measures including contact tracing and quarantine, so-
cial distancing, and the closing of gathering places and venues, have
been identified to have a significant impact on human behaviors and
social interactions, which are observed to be associatedwith a reduction
in the spread of COVID-19 (Cowling et al., 2020). Kraemer et al. (2020)
found thatmobility statistics could offer a precise record of the spread of
COVID-19 among the cities of China. In the United States, online
mapping platformswere developed to provide quantitative informa-
tion on the changes in people's mobility patterns in response to so-
cial distancing guidelines and stay-at-home mandates during the
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COVID-19 pandemic (Gao et al., 2020; Zhang et al., 2020). As the
mobility patterns (e.g., journeys to work) in developed high-
density urban societies are highly predictable, transportation infra-
structures are usually considered when modeling the transmission
of infectious disease (Mei et al., 2015; Mpolya et al., 2014).

There is a vast body of research examining how the built environ-
ment shapes people's physical activities, which in turn affect their
health outcomes. For instance, characteristics of the built environment
such as singular land uses, lower residential densities, poor-quality pub-
lic open spaces, limited access to public transport, inadequate health
care and social service infrastructure are associated with higher risks
for major non-communicable diseases, such as being overweight and
obesity, physical inactivity and poorer mental health (Koohsari et al.,
2013; Garfinkel-Castro et al., 2017; Wang et al., 2020). However, there
has been less research on the relationship between the built environ-
ment and the transmission risk of infectious disease in space and time.
Especially, built environment characteristics associatedwith high trans-
mission risk of COVID-19 at the local scale have rarely been examined.
This study fills this research gap by exploring areas with high COVID-
19 transmission risks and the associated built environment and demo-
graphic factors in Hong Kong with individual COVID-19 case data.
First, this study analyzes the space-time patterns of COVID-19 transmis-
sion in Hong Kong using the space-time scan statistic. Second, it exam-
ines the built-environment and demographic factors associated with a
higher risk of COVID-19 transmission through quartile and correlation
analysis. The results reveal much difference in the space-time patterns
of high-risk locations aswell as the associated factors,whichwould gen-
erate critical insights for developing targeted intervention measures in
response to the COVID-19 pandemic.

2. Methods

2.1. Study unit and data

2.1.1. Study area and unit
The study area of this research is Hong Kong, a metropolitan city

with a very high population density. As of 2019, 7.4 million residents
lived in its 1104 km2 territory. Large Street Block Group (LSBG), delin-
eated by the Hong Kong Planning Department and used by the census
for data reporting purposes, is the study unit in this research. An LSBG
is a group of street blocks with similar demographic characteristics.
There are 1622 LSBGwith 1000 ormore residents each inHongKong ac-
cording to the 2016 Hong Kong Census. The study area and study unit
are shown in Fig. 1.

2.1.2. COVID-19 case data
The data of daily individual confirmed COVID-19 cases were col-

lected by the Hong Kong Centre for Health Protection and are available
to the general public online (at https://data.gov.hk). There were 1013
confirmed cases between January 23 and April 14, 2020. The record of
each confirmed case includes the characteristics of each case (e.g., age,
gender), type of case (imported, local, close contact with local cases,
possibly local, close contact of possibly local cases, and close contact of
imported cases), and buildings or venues resided or visited by the con-
firmed cases in the 14-day period before the day of confirmation. We
categorize the case-related locations into residences of the confirmed
cases and the locations visited by them (visited locations). For the
type of case, imported cases refers to the individuals confirmed with
COVID-19 upon returning from abroad, while local cases refer to the in-
dividuals who were infected in Hong Kong. We also categorized the in-
dividual cases into two general groups: imported cases (including
imported and close contact of imported cases) and local cases (includ-
ing local, close contact with local cases, possibly local, close contact of
possibly local cases). The temporal distribution of the confirmed cases
in Hong Kong during the study period is shown in Fig. 2, which presents
two peaks of confirmed COVID-19 cases.

https://data.gov.hk


Fig. 2. COVID-19 cases in Hong Kong by dates of confirmation.

Table 1
Four categories of building-level locations related to different types of cases.

Location
category

Description Indication

IR Residences of imported cases Incidences of COVID-19
LR Residences of local cases
IV Locations visited by imported cases Intensity of spatial interaction
LV Locations visited by local cases

Fig. 1. Study area and study unit.
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Based on the types of buildings/venues and cases, the building/
venue-level locations resided or visited by different types of cases are
thus categorized into four categories, as Table 1 shows. Residences of
the confirmed cases in an LSBG indicate the incidences of COVID-19 in
the LSBG, while the locations visited by the confirmed cases in an LSBG
reflect the spatial interactions between the confirmed cases and loca-
tions in the LSBG, which are potential places of disease transmission.

2.1.3. Demographic and built-environment data
Demographic data used in this study include LSBG-level population

and median household income, which are obtained from the Hong
Kong Census and Statistics Department. Built environment feature
data, covering nodal accessibility, building density, average building
height, green spaces, sky view, and land use are calculated from differ-
ent geospatial data sources.

The nodal accessibility of a transport node, as our first built
environment feature, represents how well the node (e.g., a subway or
3

bus station) is connected with other transport nodes in the transport
network. As over 90% of the trips in Hong Kong are made by public
transport (Hong Kong Transport Department, 2017), this study only
considers the public transport networks of the study area, including
the Mass Transit Railway (MTR), bus and ferry. Using the transport net-
work data obtained from the Hong Kong Transport Department, the
nodal accessibility in each LSBG is calculated based on the connectivity
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matrix of the nodes of the Hong Kong transportation network in the
LSBG. Building density and average building height are derived from
the 3D spatial dataset with building geometry and height provided by
the Hong Kong Planning Department. The sky view factor is the ratio
of the area of sky visible from a given location on the ground to the
sky area that is potentially available. It is a 10 m × 10 m raster dataset
calculated from multiple data sources including airborne LiDAR data,
building GIS data, and land cover data in a previous study (Yang et al.,
2015). The area of green spaces in each LSBG is calculated using theNor-
malized Difference Vegetation Index (NDVI) derived from SPOT-7 Satel-
lite images (2017) with a spatial resolution of 6 m.

Data of a variety of land-use types are acquired from a raster land-
use dataset with 27 land-use types and with a spatial resolution of
10 m × 10 m from the Hong Kong Planning Department. The study in-
cludes four of these land-use types in its analysis: private residential
land density, public residential land density, commercial land density,
as well as open spaces and recreation land density. The density of
each of these land-use types is obtained by dividing the area of each
type of land use in an LSBG by the area of the LSBG. In addition, a
land-use mix index (LUMI) is calculated as the degree of the land-use
mix for each LSBG based on the notion of entropy, as Eq. (1) shows.

LUMI ¼ −∑N
i¼1

Li ⁎ ln Li
N

ð1Þ

where Li represents the proportion of the ith type of land use, and N is
the total number of land-use types.

2.2. Identifying space-time clusters with high COVID-19 transmission risk

2.2.1. Space-time scan statistic (STSS)
This study analyzes the space-time patterns of COVID-19 in Hong

Kong by detecting significant space-time clusters using a space-time
scan statistic (STSS) implemented in the SaTScan™ software package
(Kulldorff, 2018). We conducted a scan statistic analysis at the LSBG
level instead of the individual level because we seek to examine the as-
sociation between COVID-19 risk and socioeconomic and built environ-
ment features, which aremeasured based on the areal unit of LSBG. This
would ensure the consistency of the analytical unit in the study. Given
the baseline conditions, an STSS can identify significant space-time clus-
ters of disease locations based on different base models. Relative risk as
formulated in Eq. (2) is also calculated for each cluster and each LSBG in
a cluster.

RR ¼ n=e
N−nð Þ= N−eð Þ ð2Þ

where RR is the value of the relative risk of an LSBG; n is the total num-
ber of confirmed cases in an LSBG; e is the number of expected cases in
an LSBG; N is the total number of confirmed cases in the entire study
area. Eq. (2) indicates that the relative risk of an LSBG is the estimated
risk in the LSBG divided by that outside the LSBG. In this way, a relative
risk value higher than 1 means that the LSBG has a higher possibility of
exposing to the disease compared with the LSBGs outside it, and the
higher the relative risk value, the higher the possibility it would have
been exposed to the disease compared with the LSBGs outside it. In
the same way, relative risk can also be calculated for a cluster by divid-
ing the estimated risk within a cluster by the estimated risk outside the
cluster. A maximum likelihood ratio test is performed to identify the
LSBGs with an elevated risk. SaTScan™ uses Monte Carlo simulation to
test the statistical significance of the space-time scan statistic. Because
the socioeconomic and built environment factors of the study area are
at the aggregate LSBG level, by conducting STSS at the LSBG level, we
could evaluate the relative risk of each LSBG and analyze its association
with the socioeconomic and built environment factors. Further, we use
the retrospective SaTScan instead of prospective SaTScan (Hohl et al.,
2020; Desjardins et al., 2020) because our study period covers the
4

complete first and second waves of COVID-19 in Hong Kong, and there
were no emerging clusters by the end of this period (Fig. 2). In this light,
retrospective SaTScan seems more suitable for our dataset.

2.2.2. STSS for residential locations and visited locations
As Section 2.1mentioned, the building/venue-level locations are cat-

egorized into four types: IR, IV, LR, LV. Different types of clusters can be
identified based on these four types of locations (e.g., clusters of the res-
idences of local cases or clusters of the locations visited by imported
cases). A cluster of residences indicates a higher risk of incidence,
while a cluster of visited locations indicates a higher risk of interactions
between cases and spatial locationswithin the cluster, which tend to be
conducive to COVID-19 transmission. Therefore, this study identifies
space-time clusters of LSBGs and calculates the associated relative risk
based on the four types of locations. The discrete Poisson model is cho-
sen as the baseline model in this study because we assume that the
number of observations in each LSBG follows a Poisson distribution
based on the population or number of buildings/venues in each LSBG.
For residential locations (i.e., IR and LR), the null hypothesis is that the
expected number of COVID-19 cases is proportional to the population
in each LSBG. For visited locations (i.e., IV and LV), however, the null hy-
pothesis is that the expected number of visits is proportional to the
number of buildings or venues in each LSBG. Based on the expected
number and observed number of COVID-19 cases, the relative risk of
COVID-19 transmission for each LSBG or cluster can be calculated by
Eq. (2).

2.3. Analyzing the characteristics of clusters with a higher relative risk

This study then uses quartile analysis to depict the trends and patterns
of relative COVID-19 risk in each LSBGwith respect to the variations in de-
mographic and built environment features. Quartile analysis is similar to
decile analysis, which is commonly used as a graphical tool to elucidate
the relationships between indicators of different population groups and
the associated environmental outcomes (e.g., exposure to air pollution)
(Fan et al., 2012). This method sorts each indicator in ascending order
and places the corresponding relative risk into each quartile. Because
there are variations in the demographic and built-environment indicators
in different types of location clusters, this study uses absolute values on
the horizontal axis instead of quartile percentages. In this way, the differ-
ences in demographic and built environment characteristics between the
types of locations can be revealed. Further, Pearson correlation analysis
was performed to assess the associations between the relative risk of
different location types and different indicators. t-Test is conducted to es-
tablish whether the correlation coefficient is significant. Using these
methods, significant variables contributing to the relative risk of COVID-
19 transmission can be identified.

3. Results

3.1. Space-time clustering of COVID-19 cases

Our analysis beginswith detecting clusters of different types of loca-
tions using the space-time scan statistic. In order to determine the opti-
mum spatial and temporal windows for the space-time statistic, we
tested five spatial and temporal windows on the residential data of all
confirmed cases in the study period, which are 1%, 5% and 10% of the
population at risk as spatial windows, and 10%, 30% and 50% of the
study period as temporal windows. We did not select larger spatial
and temporal windows in order to avoid detecting extremely large clus-
ters. The results of this exercise using the 5 parameters indicate that the
detected clusters are generally stably distributed with different tempo-
ral and spatial windows. However, as the spatial and temporal window
expands, the spatial and temporal range of the detected clusters be-
comes larger. We determined that some clusters detected with the spa-
tial windows of 5% of the population at risk and 10% of the population at



Z. Kan, M.-P. Kwan, M.S. Wong et al. Science of the Total Environment 772 (2021) 145379
risk are too large for the study area. For the temporal windows, 10% of
the study period failed to detect some clusters that appeared in 30%
and 50% of the study period, while the clusters results in 30% and 50%
of the study period are similar. The largest time span of the clusters de-
tected by 30% and 50% of the study period are both 23 days, which is
within the 30%of the study period. Therefore,we selected 1% of the pop-
ulation at risk and 30% of the study period as the spatial and temporal
window. In addition, a cluster is set to have at least 2 confirmed cases
to avoid extremely small clusters.

Fig. 3 shows the time distributions for different types of significant
clusters (with p values ≤0.05). The horizontal lines in each row repre-
sent the detected clusters for each location type (IV, IR, LV and LR).
The coverage of each cluster on the horizontal axis depicts the time
span of the cluster. The depth of color indicates the number of clusters
detected within a period of time. Some important time-variant inter-
ventions are also identified and visualized in the form of time line dur-
ing the study period. As shown in Fig. 3, prior to the restriction on
travelers from Mainland China in early February, there are only a few
clusters of imported cases fromMainland China. Then in early February,
a series of travel restrictions and quarantine measures were imple-
mented aiming at reducing the travel between Hong Kong and Main-
land China, including closing all but two border control points and
mandatory quarantine for the travelers from Mainland China. The im-
plementation of travel restrictions and quarantine measures between
mainland China and Hong Kong corresponds well with a significant
drop in the clusters of imported cases as shown in the figure. In compar-
ison, the occurrence of local case clusters persisted throughout February.

Then starting in March, with the deterioration of the pandemic in
Europe and other parts of the world (e.g., South Korea), many overseas
Hong Kong residents and students returned toHongKong, leading to in-
creasing clusters of imported cases from overseas. The Hong Kong gov-
ernment implemented a series of quarantine measures on travelers
from many foreign countries or regions fromMarch 1, first on travelers
from high-risk areas in Italy or Iran and then from France, Germany,
Japan, and thewhole of Italy. Clusters of imported cases were at a stable
level throughout the first half of March but the clusters of imported
cases surpassed that of local cases during this period. From mid-
March, the clusters of imported cases started rising sharply due to the
deterioration of the pandemic overseas despite the 14-day quarantine
requirement being expanded to all travelers arriving at Hong Kong on
March 19. As many of these inbound travelers were confirmed with
COVID-19 during their quarantine and some returning residents vio-
lated the quarantine requirement, the local case clusters also started
witnessing a spike.

In late March, the Hong Kong government issued a series of warn-
ings to quarantine breakers, who would face criminal prosecution and
compulsory confined quarantine at a government-run quarantine facil-
ity. Then on March 29, any group gatherings of more than 4 persons in
Fig. 3. The temporal distributions of signific
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any public place were banned. In the following days, all karaoke
lounges, nightclubs, and mahjong venues were ordered to close. These
lockdowns and confinement measures seemed to have helped mitigate
the local case clusters, whichwitnessed a steady decline in April follow-
ing the lockdowns and confinement measures.

Then after April 8, all inbound travelers arriving at theHong Kong In-
ternational Airport are required to submit to COVID-19 testing. The
mandatory testing measure appeared to further reduce the number of
confirmed cases. Inbound travelers tested positive were immediately
sent to the hospital for quarantine and treatment, which minimized
the risk of spreading COVID-19. It shows that the series of lockdowns,
confinement as well as mandatory testing had effectively reduced
both the local and imported case clusters as these measures have, on
the one hand, detected the infected individuals upon arrival and mini-
mized the risk of imported cases infecting other locals. On the other
hand, these measures reduced the size of group gatherings as well as
the number of places for group gatherings.

It can be observed that there were only a small number of clusters
from January 23, 2020, the first confirmed COVID-19 case in Hong
Kong, to early March 2020. After early March, a large number of
imported clusters (both of residences and visited locations) appeared,
and many clusters of local cases appeared in mid-March. Therefore,
we visualize the spatial distribution of the clusters before and after
March 1, 2020, in Figs. 4–7.

Table 2 shows the characteristics of the significant space-time clus-
ters (p ≤ 0.05) beforeMarch1, 2020,which include the starting and end-
ing times of every cluster, the number of observed cases, the number of
expected cases, relative risk of the cluster, p-value and the number of
LSBG(s) in each cluster. Since no significant cluster of IV is detected be-
fore March 1, 2020, Table 2 only shows clusters of IR, LR and LV. Fig. 4
visualizes the clusters in Table 2, with Fig. 4a showing the clusters
within the extent of the entire study area and Fig. 4b showing the en-
larged rectangular area in Fig. 4a. The color of each LSBG inside each
cluster in Fig. 4 represents the relative risk value of the LSBG.

Table 2 and Fig. 4b show that the first cluster of COVID-19 cases is
IR1, a cluster of the residences of imported cases that appeared during
January 29–30 and were located in the private residential area near
West Kowloon. This cluster had only one LSBGwith a very high relative
risk. There were four clusters of local cases, among which LR1 and LR3

appeared during February 9–10. LR1 was located in Wan Chai District
with a relative risk value of 164.1. LR2 and LR3, both with higher relative
risk values, were located in the Eastern District and composed of only
one LSBG. LR4 was located in Kwun Tong with only one LSBG and high
relative risk value. According to the news report, clusters LR1-LR4 were
family case clusters. Before March, a cluster of visited places (i.e., LV1)
appeared during February 16–27 in Eastern District, which included
29 LSBGs with a relative risk value of 81.4. Buildings and venues in
this cluster were visited 17 times by confirmed cases during this period.
ant clusters of different types of cases.



Fig. 4. Spatial distribution of space-time clusters of COVID-19 in Hong Kong before March 1, 2020.
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Visited places in this cluster include a private clinic, a public hospital, a
cafeteria and a Buddhist temple, where a group outbreak occurred.

Tables 3, 4 and Fig. 5a and b show the characteristics and spatial dis-
tribution of the space-time clusters of cases (LR and IR) after March 1,
2020. The cluster IDs in Fig. 5a and b correspond to the cluster IDs in
Tables 3 and 4. In Table 3 and Fig. 5a, a total of 67 LSBGs in Clusters
1–3, 9 and 12 were located in Wan Chai District, Central and Western
District, East District and Southern District on Hong Kong Island, with
relative risk values from 55.5 to over 500. There are 36 LSBGs in Clusters
4–6, 8 and 10 located in Kowloon, in which the largest cluster is Cluster
6 (with 32 LSBGs and a relative risk of 19.7) in Tsim Sha Tsui, which has
a high residential density. Only 10 LSBGs in Clusters 7, 11 and 13 were
located in the New Territories, with a relative risk of 26.6, 47.0 and
100. Among them, Cluster 7 was located near the airport, where there
are many residential buildings for the staff of the Hong Kong Interna-
tional Airport and airlines who are high-risk groups for COVID-19
infection.

Table 4 and Fig. 5b show the space-time clusters of the residences of
the imported cases (IR) afterMarch 1, 2020. It can be seen by comparing
Fig. 5a with Fig. 5b that the spatial extent of the IR cluster is larger than
that of the LR clusters. Table 4 shows thatmost of the significant clusters
occur in later March and early April. During this period, a large number
of overseas students and residents returned to Hong Kong due to the
increasingly severe COVID-19 outbreak in certain countries abroad
Fig. 5. Space-time clusters of the residentia
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(e.g., the U.K.). There were 18 significant IR clusters in total, out of
which 10 clusters (Clusters 1, 2, 4–6, 11,12,17) with 126 LSBGs were lo-
cated on Hong Kong Island. The high-risk areas include residential areas
in Wan Chai District, Eastern District and Southern District, as well as
residential neighborhoods atMid-Levels,which is an affluent residential
area in Central andWestern District on Hong Kong Island. Clusters 3, 9,
and 18 were located in Kowloon Peninsula, with 62 LSBGs. The largest
cluster in Kowloon is Cluster 3 in Tsim Sha Tsui, with 32 LSBGs and a rel-
ative risk of 16.2. Different from the LR clusters, there are many IR clus-
ters in the New Territories (i.e., Clusters 7, 8, 10, 13–16), with 15 LSBGs.

Tables 5, 6 and Fig. 6a and b show the space-time clusters of visited
buildings or venues by local cases (LV) and imported cases (IV). As
shown in Table 5 and Fig. 6a, there were 7 LV clusters (Clusters 1, 3,
6–7, 9, 15 and 19) on Hong Kong Island with a total of 165 LSBGs and
241 visits. Cluster 1, with a relative risk of 140.1, received 162 visits dur-
ing March 18–April 8. This cluster was located near Central on Hong
Kong Island, which has a high density of dining and entertainment
venues where multiple group outbreaks occurred (e.g., a night-club
and gym cluster in Lan Kwai Fong). Six clusters (Clusters 2, 4, 5, 8, 11,
16) with 238 LSBGs and 139 visits were located in Kowloon. Cluster 2,
with a relative risk of 500.0, was located in Tsim Sha Tsui and received
70 visits during the week between March 25 and April 2. A group
outbreak took place in a Karaoke bar in this area. Cluster 3 was located
in Wan Chai District on Hong Kong Island and received 35 visits by
l buildings of local and imported cases.



Fig. 6. Space-time clusters of places visited by local and imported COVID-19 cases.
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confirmed cases duringMarch 16–April 7. This is a busy commercial area
with a high traffic volume. Although thereweremore clusters (8 clusters)
in the New Territories than on Hong Kong Island and in Kowloon, the
clusters (Cluster 9, 10, 12–14, 17, 18, 20, 21) were smaller and with
fewer visits compared with the other two areas.

Table 6 and Fig. 6b show the clusters of buildings/venues visited by the
imported cases (IV) of COVID-19. The Hong Kong Government required
that individuals returning to Hong Kong after March 19 must go through
a 14-day mandatory quarantine. Some of these visited buildings
(e.g., bars) were visited by returnees before March 19 while some other
buildings were hotels used by some of the returnees to self-quarantine.
For the imported cases, although there were not many close contacts of
imported cases in Fig. 2, all locations resided or visited by imported
cases should be deemed as at-risk since the imported casesmay unknow-
ingly infect other people in those places. Besides, since COVID-19 can be
transmitted through surface contamination (Ong et al., 2020; Razzini
et al., 2020; Santarpia et al., 2020), it is possible that places resided or vis-
ited by imported cases are capable of infecting others via contaminated
surfaces. Some local cases whose sources of infection are not clear
might have been infected in places visited by imported cases. By knowing
the built environment characteristics associated with the relative risk of
imported cases, the government can implement preemptive sanitizing
and deep-cleaningmeasures in those places in order to prevent transmis-
sion at those high-risk places. Moreover, the government can also man-
date strict social distancing measures (e.g., installation of plexiglass) at
places associated with a high risk of imported cases to minimize the risk
of imported cases unconsciously infecting others. A total of 95 visits in
Clusters 2, 3, 6, 8 and 9 involving 159 LSBGs were located on Hong
Kong Island. These places have high commercial densities and received
visits from confirmed cased at a public hospital, a private clinic and sev-
eral entertainment venues. 70 visits in Clusters 1, 4, 5 involving 86
LSBGs were located in Kowloon. In the New Territories, there were 10
clusters (Clusters 7, 10–18) with 31 LSBGs and 36 visits. It can be seen
that clusters in the New Territories are large in number, small in size
and sparse in distribution but have a high relative risk. This is because
the population and building densities in the New Territories are lower
than those on Hong Kong Island and in Kowloon, which makes the ex-
pected number of visits by confirmed cases relatively low. As a result,
the relative risks of the detected clusters would be higher compared
with areas with a higher population or building densities.

3.2. Association between demographic features, built environment features
and the relative risk of COVID-19

We use both quartile and correlation analysis to explore the associ-
ation between the relative risk of COVID-19 transmission and relevant
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demographic and built environment features. The demographic charac-
teristics of an LSBG included in this analysis are median household
income and population density. Built-environment features include
nodal accessibility, building density, building height, green spaces
(derived using the NDVI), the sky view factor, private residential land
density, public residential land density, commercial land density, open
spaces and recreation land density and the land-use mix index
(LUMI). The results of the quartile analysis are shown in Fig. 7. In each
graph in the figure, each line represents the trend of relative risk (RR)
with the increase of quartiles of each feature of the clustered LSBGs
(there are four types of clusters: IR. IV, LR and LV). We also include
the quartile distribution of each feature of all LSBGs as a reference to re-
flect the distribution of each feature of the clustered LSBGs. Using this
figure, we can investigate the demographic and built-environment fea-
tures associated with both the occurrence of clusters and a higher rela-
tive risk of LSBGs within the clusters.

The figure shows that the clustered LSBGs have higher median
household income, most of which exceed the median household in-
come of HKD 25,000 for Hong Kong in 2016 (HKCSD, 2016). Especially,
the median household income of the LSBGs in IR clusters is higher com-
paredwith that of all LSBGs and it far exceeds those of the LSBGs of other
types of clusters. It indicates that the imported cases have higher in-
come levels and median household income can characterize the occur-
rence of the IR clusters. This is probably because most of the imported
cases are people working or studying overseas, who may have higher
socioeconomic status than the average person. It can also be observed
in the figure that the population density of the LSBGs in IR clusters
and LR clusters is lower compared with that of all LSBGs, and lower
than LV clusters and IV clusters. This is perhaps due to the similar fact
indicated by the distribution of median household income: that is, the
imported cases with higher socioeconomic status also tend to live in
areas with lower population density.

In terms of built-environment features, Fig. 7 shows that com-
pared with all LSBGs, IR and LR clusters are associated with lower
building density, lower building height, fewer green spaces, higher
private residential land density, lower public residential density
and lower open and recreation land density. IR clusters also have
less sky view compared with that of all LSBGs. There is no obvious
difference between LR and IR clusters and that of all LSBGs. The rea-
son for less sky view and fewer green spaces in IR and LR clusters
than that in all LSBGs might be because there are many areas in the
countryside (e.g., country parks) with more green spaces and better
sky views in Hong Kong. Not many people live in those areas and the
number of cases in those areas is too low to form a cluster. However,
Fig. 7 also shows that the higher relative risk of LR and IR clusters is
associated with more green spaces, which is probably because the



Fig. 7. Change in relative risk with respect to interquartile range increase of different factors in each group.

Table 3
Space-time clusters of local COVID-19 cases (LR) in Hong Kong after March 2020.

Cluster Duration Observed Expected Relative risk p-Value No. of LSBG

1 Mar 22–Apr 04 34 0.67 55.5 <0.001 39
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lower population density in the LR and IR clustered LSBGs leads to
higher relative risk levels.

Fig. 7 shows that the building height of IV and LV clusters are also
lower than that for all LSBGs. Private residential land density of IV and
LV clusters are higher compared with that of all LSBGs. But within the
IV clusters, a higher risk is associated with lower building height,
lower private residential land density and more sky view. The LV clus-
ters with a higher building density, higher building height and less sky
view tend to have a higher risk level. It can also be observed that the
Table 2
Space-time clusters of COVID-19 in Hong Kong before March 2020.

Cluster Duration Observed Expected Relative risk p-Value No. of LSBG

IR1 Jan 29–Jan 30 3 0.0023 >500 <0.001 1
LR1 Feb 9–Feb 10 4 0.25 164.1 0.007 8
LR2 Feb 16–Feb 17 3 0.0056 500.0 0.012 1
LR3 Feb 9–Feb 10 3 0.0043 >500 0.006 1
LR4 Feb 4–Feb 5 3 0.003 >500 0.002 1
LV1 Feb 16–Feb 27 17 0.21 81.4 <0.001 29
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building density in the high-risk areas visited by the confirmed cases
(LV and IV) is higher than that in high-risk residence areas (IR and
LR). There is no obvious association between the relative risk of all
2 Mar 18–Mar 30 22 0.39 59.9 <0.001 19
3 Mar 20–Apr 02 11 0.12 91.1 <0.001 6
4 Apr 01–Apr 09 6 0.01 450.4 <0.001 1
5 Mar 27–Mar 28 4 <0.01 >500 <0.001 1
6 Mar 19–Apr 01 12 0.63 19.7 <0.001 32
7 Mar 21–Apr 01 10 0.38 26.6 <0.001 2
8 Mar 19–Mar 24 4 0.01 500.0 <0.001 1
9 Apr 07–Apr 08 3 <0.01 >500 0.002 1
10 Mar 26–Mar 27 3 <0.01 >500 0.002 1
11 Mar 18–Mar 23 6 0.13 47.0 0.004 7
12 Mar 23–Apr 03 4 0.03 127.7 0.02 2
13 Mar 20–Mar 21 4 0.04 100.0 0.043 1



Table 4
Space-time clusters of imported COVID-19 cases (IR) in Hong Kong after March 2020.

Cluster Duration Observed Expected Relative risk p-Value No. of LSBG

1 Mar 18–Apr 08 44 1.26 38.2 <0.001 30
2 Mar 18–Apr 06 23 1.08 22.3 <0.001 30
3 Mar 16–Apr 05 19 1.22 16.2 <0.001 32
4 Mar 17–Apr 08 16 0.90 18.3 <0.001 27
5 Mar 20–Apr 08 15 0.79 19.6 <0.001 21
6 Mar 19–Mar 20 5 0.01 450.1 <0.001 4
7 Mar 16–Apr 03 9 0.20 45.0 <0.001 4
8 Mar 22–Apr 10 9 0.21 44.4 <0.001 2
9 Mar 20–Apr 10 14 0.98 14.71 <0.001 26
10 Mar 22–Mar 23 4 0.01 >500 <0.001 1
11 Mar 08–Mar 27 9 0.36 25.4 <0.001 4
12 Mar 20–Mar 23 6 0.09 66.5 <0.001 9
13 Apr 04–Apr 05 3 <0.01 >500 0.001 1
14 Mar 11–Mar 13 4 0.02 186.8 0.004 1
15 Mar 15–Apr 05 6 0.16 36.8 0.012 5
16 Mar 18–Mar 22 3 0.01 396.5 0.021 1
17 Mar 22–Mar 30 4 0.04 103.3 0.032 1
18 Mar 18–Apr 10 7 0.35 20.1 0.045 4

Table 6
Space-time clusters of visited buildings of imported COVID-19 cases (IV) in Hong Kong af-
ter March 2020.

Cluster Duration Observed Expected Relative risk p-Value No. of LSBG

1 Mar 17–Apr 09 46 0.62 88.2 <0.001 40
2 Mar 14–Apr 05 43 0.82 61.5 <0.001 46
3 Mar 18–Apr 10 28 0.80 38.8 <0.001 47
4 Mar 11–Apr 01 12 0.26 48.3 <0.001 20
5 Mar 11–Apr 03 12 0.26 48.1 <0.001 26
6 Mar 22–Apr 09 11 0.38 29.7 <0.001 55
7 Mar 25–Apr 09 5 0.01 503.8 <0.001 1
8 Mar 04–Mar 12 8 0.15 54.3 <0.001 10
9 Mar 22–Mar 30 5 0.02 245.0 <0.001 1
10 Mar 10–Mar 11 4 0.01 466.0 <0.001 10
11 Mar 28–Apr 08 3 0.00 >1000 <0.001 1
12 Mar 10–Mar 11 4 0.01 273.3 <0.001 3
13 Mar 16–Mar 17 4 0.02 253.2 0.001 11
14 Mar 15–Mar 22 3 0.00 967.4 0.002 1
15 Mar 09–Mar 10 4 0.02 199.5 0.002 1
16 Mar 06–Mar 11 5 0.08 66.1 0.007 1
17 Mar 09–Mar 10 2 0.00 >1000 0.012 1
18 Mar 19–Mar 20 2 <0.01 >1000 0.03 1
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types of clusters and public residential land density and open spaces and
recreation land density. In comparison, an increase in commercial land
density is associated with an increase in the relative risk of IV clusters
and LV clusters. The figure shows that the relative risk for LSBGs in LV,
LR and IR clusters tends to increase with an increase in green spaces
(NDVI). This may be due to that the locations with a higher COVID-19
risk tend to bewealthier places withmore green spaces resided by con-
firmed cases. Similarly, an increase in land-use mix is also associated
with an increase in relative risk for LV, IV and IR clusters. It indicates
that commercial land density and land-use mix are important factors
that influence the relative risk assessed by both the number of con-
firmed cases and the number of venues visited by confirmed cases.

Fig. 8 further visualizes the correlation between the relative risk of
the LSBGs in different types of clusters and different demographic and
built environment features. It also shows the significant contributing
factors of the relative risk assessed by the number of confirmed cases
or the number of places visited by confirmed cases. In general, the cor-
relation between the relative risk of LSBGs and different features con-
firms the association trends in Fig. 7. When relative risk is assessed by
the number of local confirmed cases (LR), areas with a higher risk of
COVID-19 have higher median household income, more green spaces,
lower building density and lower commercial land density. When
Table 5
Space-time clusters of buildings or venues visited by local COVID-19 cases (LV) in Hong
Kong after March 2020.

Cluster Duration Observed Expected Relative risk P-value No. of LSBG

1 Mar 18–Apr 08 162 1.56 140.1 <0.001 32
2 Mar 25–Apr 02 70 0.16 500.0 <0.001 9
3 Mar 16–Apr 07 35 1.29 28.7 <0.001 45
4 Mar 18–Mar 31 25 1.02 25.4 <0.001 121
5 Mar 20–Mar 31 12 0.15 80.8 <0.001 4
6 Mar 17–Apr 02 10 0.08 124.2 <0.001 1
7 Mar 23–Apr 08 12 0.31 39.0 <0.001 19
8 Mar 18–Apr 01 13 0.60 22.2 <0.001 47
9 Mar 18–Mar 31 13 0.75 17.6 <0.001 50
10 Mar 20–Mar 27 10 0.41 25.0 <0.001 16
11 Mar 18–Apr 04 14 1.28 11.2 <0.001 45
12 Mar 29–Apr 02 5 0.03 166.9 <0.001 1
13 Mar 18–Mar 29 6 0.08 75.1 <0.001 7
14 Mar 20–Apr 03 8 0.30 27.1 <0.001 17
15 Mar 22–Mar 27 5 0.05 101.6 0.001 13
16 Apr 01–Apr 03 5 0.06 88.9 0.002 12
17 Mar 24–Mar 25 3 <0.01 >500 0.003 2
18 Mar 27–Mar 28 3 0.01 >500 0.008 2
19 Mar 27–Apr 01 4 0.03 139.4 0.011 5
20 Mar 18–Mar 21 5 0.08 62.3 0.011 1
21 Mar 28–Apr 06 3 0.01 390.4 0.018 1

9

relative risk is assessed by the number of imported confirmed cases
(IR), areaswith higher COVID-19 risk have highermedianhousehold in-
come, higher land-use mix, more green spaces and lower commercial
land density. In comparison, when relative risk is assessed by the num-
ber of venues visited by the local confirmed cases (LV), areaswith a high
risk of COVID-19 have higher median household income, higher nodal
accessibility, higher building density, higher building height, more
green spaces, less sky view, lower public residential land density and
higher land-usemix. It indicates that the places with higher transporta-
tion accessibility, denser andmore high-rise buildings, and less sky view
tend to attract people to visit and conduct activities and thus increase
the risk of COVID-19 transmission. Those areas usually have a high den-
sity of commercial and entertainment venues as shown in Fig. 6a.When
relative risk is assessed by the number of venues visited by the imported
cases (IV), areas with higher relative risk have lowermedian household
income, lower population density, higher nodal accessibility, lower
building height, more sky view, lower private residential land density,
higher commercial land density and higher land-usemix. This indicates
that a higher commercial land use density and a higher land-use mix
potentially increase the relative risk due to more visits and social activ-
ities of confirmed cases.

4. Discussion

This study explored the areaswith high COVID-19 risk in Hong Kong
and the associated built environment and demographic characteristics.
Temporal and spatial clustering is usually present in the distribution
of both communicable and chronic diseases. Clusters of a communicable
disease in certain places indicate a higher risk of disease transmission.
The clustering patterns of a communicable disease are related to certain
built environment and socioeconomic characteristics. For instance, a
communicable disease like COVID-19 spreads mainly through close
contact between carriers and other people and people's contact with
surfaces of objects with the virus (Ong et al., 2020; Razzini et al.,
2020; Santarpia et al., 2020). Thus, excessive transmission risk may be
a result of certain built-environment features (e.g., the density of
high-risk venues like pubs and restaurants as well as transport facilities
like public transit stations) that attract more people to visit, conduct
their daily activities or engage in social interactions (as observed in
Huang et al. (2020) concerning the COVID-19 pandemic in Hong
Kong).

The space-time clustering results in Section 3.1 highlights the time
periods and spatial locations with high transmission risk in Hong Kong
during the first twowaves of the COVID-19 pandemic in the city. By cat-
egorizing case-related locations into four different types— residences of



Fig. 8. Correlation of the relative risk with the demographic and built-environment features (*: p < 0.1; **: p < 0.05). MI: median household income; PD: population density; NA: nodal
accessibility; BD: building density; BH: building height; GS: green spaces; SV: sky view; Pr: private residential land density; Pu: public residential land density; Cm: commercial land
density; OR: open spaces and recreation land density; LUM: land-use mix.
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imported cases (IR), residences of local cases (LR), buildings/venues vis-
ited by imported cases (IV) and buildings/venues visited by local cases
(LV) — the study generated more detailed knowledge on the space-
time patterns of COVID-19 risk in Hong Kong. In this study, a cluster of
residences or a cluster of locations or venues visited by infected persons
means the clustering pattern of the locations are associatedwith certain
risk factors rather than just because there are more population or
venues than other places. Note that we also evaluated the relative risk
of each cluster and each LSBG in a cluster by taking into account the
number of expected cases in them. The clusters with a higher relative
risk can thus be considered as having a higher risk than the normal. A
cluster of residential places indicates that there is a higher risk of disease
incidence in the cluster, and people living there are also at a higher risk
of being infected. A cluster of visited places indicates a higher intensity
of social interactions between humans associated with high-risk places
and venues like bars and pubs, which also increase the risk of disease
transmission. It is possible that a cluster in a residential area is caused
by cases from the same family. However, it will lead to a higher risk of
disease incidence and people living in the area are also at a higher risk
of being infected than people living at other locations.

Since the first COVID-19 casewas imported fromMainland China on
January 23, 2020, the Hong Kong Government took a series of measures
to mitigate COVID-19 transmission, including closing all but two border
checkpoints with Mainland China and essentially denying all but Hong
Kong residents' entry into Hong Kong, and closing certain venues such
as schools and social distancing. The situation of the COVID-19 pan-
demic in Hong Kong before March 2020 was stable: the number of con-
firmed cases remained low, especially for local cases. However, as the
COVID-19 pandemic overseas became more serious in early March,
many Hong Kong citizens and students residing overseas began to re-
turn to Hong Kong. The increasing number of imported cases led to an
increasing number of local cases, which is confirmed by that the emer-
gence of the clusters of local cases lagged behind that of the imported
cases in Fig. 3. In terms of the spatial patterns of the high-risk areas,
Figs. 4–6 show that there are significant differences between different
types of clusters. As indicated by the residences of the imported and
local cases, the local cases and imported cases seemed to involve differ-
ent population groups as people who work or study overseas may have
higher socioeconomic status when compared to those of the local cases,
which may result in different patterns of high-risk areas between local
and imported cases. For instance, Fig. 5 shows that local cases are
more likely to reside in high-density areas on Hong Kong Island and
Kowloon, while the residences of the imported cases distribute more
widely, including very affluent areas like Mid-Levels.

According to the contact tracing information available via the govern-
ment webpage on COVID-19, many of the high-risk residential buildings
are due to family members being cross-infected in short order. These
cases of family-related outbreaks were usually caused by one or more
family members who were infected when visiting certain places or
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venues. By focusing on specific case-related locations (i.e., residences
and places visited), high-risk areas of COVID-19 transmission as well as
high-risk activities are revealed in this study. The high-risk areas in
Fig. 6 indicate that pubs, fitness centers, and restaurants on Hong Kong
Island and in Kowloon are high-risk places, which are likely to be visited
by local cases.

The analysis of the association and correlation between demographic
and built environment features and relative risks further indicates the
key factors shaping the COVID-19 landscape in Hong Kong. In the cluster
detection, the null hypothesis is that the expected number of COVID-19
cases is proportional to the population in each LSBG. A clustermeans that
there is excessive risk of COVID-19 instead of the occurrence of the dis-
ease. Therefore, we explored the demographic and built-environment
features associated with higher risks of COVID-19 based on detecting
the space-time clusters. Figs. 7 and 8 also indicate that the factors linked
to higher risks of different types of clusters (locations of residence and
visited places) are different. First, median household income has a posi-
tive correlationwith the relative risk of residential locations of both local
and imported cases. This means that areas with higher household in-
come tend to have a higher COVID-19 risk, which is contrary to what
was reported in much of the literature: many studies in other countries
or cities reported negative correlations between economic factors (in-
come level or GDP) and the transmission risk of infectious diseases
where people with higher income tend to have healthier lifestyles and
better access to healthy residential environmental and healthcare re-
sources (National Academies of Sciences, 2018). For instance, in the
United States, 40% of low-incomepeoplewere identified to have a higher
risk of infecting COVID-19, compared to 24% of higher-income people
(Raifman and Raifman, 2020). Actually, there are few reported cases in
poor neighborhoods in Hong Kong during the time period of this
study. As the activity spaces of low-income people are more confined
than those of the high-income people in Hong Kong (Tao et al., 2020),
and the activity spaces of these two population groups may not overlap
significantly (Wang and Li, 2016), low-income people may have lower
possibilities of visiting the high-risk locations and thus are exposed to
lower infection risk.

A higher population density is usually considered as an important
factor associated with a higher risk of infectious disease transmission
because high population density means higher chances of contact be-
tween people (Xu et al., 2019). However, for the COVID-19 pandemic
in Hong Kong, population density has only a weak negative correlation
with the locations visited by imported cases and does not have a signif-
icant correlationwith other types of locations. This is because some sub-
urban areas in the New Territories with low population density are
identified as high-risk clusters. The higher risk of these suburban
areas, with higher proportions of their areas being recreation spaces
like country parks, may be related to higher levels of certain kinds of
human activities (e.g., hiking and picnicking) after the COVID-19 out-
break as reported in the news.
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The correlation between the risks of different location types and
built environment features would further characterize different types
of locations with high transmission risk of COVID-19. For the locations
visited by confirmed cases (IV and LV), the high-risk locations visited
by imported cases have higher transportation accessibility, lower build-
ing height, better sky view, higher proportions of commercial land and
higher land-usemix.While the high-risk locations visited by local cases
are places with higher transportation accessibility, denser and more
high-rise buildings, less sky view, higher commercial land density and
higher land-use mix. Figs. 7 and 8 indicate that visited places with
higher COVID-19 risk have both high transportation accessibility and
land-use diversity. Surprisingly, green space is found to have a positive
correlation with the COVID-19 risk of both residential and visited loca-
tions. This is perhaps because the locations with a higher risk tend to be
wealthier places during the study period, and those places usually have
higher proportions of green spaces. Also, suburban areas with country
parks tend to attract more visits during the pandemic (e.g., several
bank employees were found hiking in a country park while they were
supposed to be working at home) and thus also tend to have a higher
COVID-19 risk. The correlation analysis between relative COVID-19
risk and demographic/built-environment features in this study gener-
ates knowledge on how different features of places affect the transmis-
sion risk of COVID-19. The patterns of risky areas associated with the
confirmed cases (especially for the local cases)may provide a useful ref-
erence for understanding the transmission risk of other infectious dis-
eases with a similar transmission mechanism as COVID-19. It can also
provide evidence that helps target interventions to the places with
high COVID-19 risk and places where the residents tend to have a
higher risk of being infected.

This study contributes to advancing knowledge and policy-making
in important ways. First, our knowledge about the impact of the built
and social environments on the spread of COVID-19 is still highly lim-
ited to date. This study contributes to the literature by analyzing the
space-time dynamics of areas with high COVID-19 transmission risk
and the associated built environment and demographic features in
Hong Kong using individual COVID-19 case data. It is the first study to
distinguish space-time clusters of COVID-19 cases as imported and
local and COVID-19-related locations as residential and visited, which
provides more refined and meaningful findings about areas with high
COVID-19 transmission risk and better inform the development of
more effective control measures.

With regard to policy implications, the results of our study can in-
form policymakers to enhance the effectiveness of interventionmea-
sures by developing more targeted strategies to reduce people's
exposure to the risk factors of COVID-19 transmission. On one
hand, the locations of high transmission risk (e.g., pubs, karaoke
venues and restaurants) identified in the study can inform the for-
mulation and implementation of stricter mitigation measures such
as banning indoor activities in those places. On the other hand, the
identified areas with high transmission risk and areas with certain
built environment features associated with a higher COVID-19 trans-
mission risk can be used to inform people to avoid conducting high-
risk activities and visiting these high-risk places. Further, certain fea-
tures of the built environment can be modified or dynamically man-
aged in order to promote healthy behaviors and reduce the risk of
COVID-19 transmission.

In this study, both the residential and visited places of each con-
firmed case were obtained, which makes it possible to analyze the
case-related COVID-19 patterns and their relationships with various de-
mographic and built environment features. It may not be possible to
replicate the study in other countries and cities with large numbers of
confirmed cases every day, where it is less feasible for contact and activ-
ity tracing to generate the detailed individual data used in this study,
which is a limitation of this research. However, the results of this
study still provide a useful picture of the areas with a high COVID-19
risk in a high-density and socioeconomically segregated city like Hong
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Kong. Moreover, we aggregated individual confirmed cases at the
LSBG level so that statisticalmodeling can be used to test the underlying
reasons for the clustering of the cases. As aggregating individual data
into areal units may raise problems including the modifiable areal unit
problem and the instability of values for small population areas, further
studiesmay consider applying the kernel densitymethod to take the full
advantage of individual level information (Shi, 2009, 2010). Another
limitation of this study is that the dates of confirmation are used in
our analysis which tend to lag behind the exact time of being infected
and the dates of symptom onset.

5. Conclusion

This study identifies the high-risk areas of COVID-19 in Hong
Kong between January 23 and April 14, 2020, and examines the
characteristics of different types of high-risk locations by analyzing
the association between the relative risk and various demographic
and built environment features for each high-risk cluster. The re-
sults reveal much difference in the space-time patterns of high-
risk locations as well as the contributing factors, which provide
useful knowledge for better understanding the COVID-19 pan-
demic in Hong Kong and improving intervention strategies. Future
work includes further examining the activity patterns of different
population groups and their impact on the transmission of infec-
tious disease in different social contexts. The environmental fea-
tures associated with disease incidence will also be explored in
our future study.
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