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CONTRIBUTION

What are the novel findings of this work?
Computerized ultrasound image analysis using deep
neural networks (DNNs) can discriminate between benign
and malignant ovarian lesions with a diagnostic accuracy
comparable to that of a human expert examiner.

What are the clinical implications of this work?
There is a shortage of expert ultrasound examiners,
resulting in suboptimal diagnostic accuracy. DNN models
may have a role in the triage of women with an
ovarian tumor, by supporting clinical decision-making
by less experienced examiners, and potentially reducing
morbidity and optimizing the use of healthcare resources.

ABSTRACT

Objectives To develop and test the performance of
computerized ultrasound image analysis using deep neural
networks (DNNs) in discriminating between benign and
malignant ovarian tumors and to compare its diagnostic
accuracy with that of subjective assessment (SA) by an
ultrasound expert.

Methods We included 3077 (grayscale, n = 1927; power
Doppler, n = 1150) ultrasound images from 758 women
with ovarian tumors, who were classified prospectively
by expert ultrasound examiners according to IOTA
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(International Ovarian Tumor Analysis) terms and
definitions. Histological outcome from surgery (n = 634)
or long-term (≥ 3 years) follow-up (n = 124) served as the
gold standard. The dataset was split into a training set
(n = 508; 314 benign and 194 malignant), a validation
set (n = 100; 60 benign and 40 malignant) and a test
set (n = 150; 75 benign and 75 malignant). We used
transfer learning on three pre-trained DNNs: VGG16,
ResNet50 and MobileNet. Each model was trained,
and the outputs calibrated, using temperature scaling.
An ensemble of the three models was then used to
estimate the probability of malignancy based on all images
from a given case. The DNN ensemble classified the
tumors as benign or malignant (Ovry-Dx1 model); or
as benign, inconclusive or malignant (Ovry-Dx2 model).
The diagnostic performance of the DNN models, in terms
of sensitivity and specificity, was compared to that of SA
for classifying ovarian tumors in the test set.

Results At a sensitivity of 96.0%, Ovry-Dx1 had a
specificity similar to that of SA (86.7% vs 88.0%; P = 1.0).
Ovry-Dx2 had a sensitivity of 97.1% and a specificity
of 93.7%, when designating 12.7% of the lesions as
inconclusive. By complimenting Ovry-Dx2 with SA in
inconclusive cases, the overall sensitivity (96.0%) and
specificity (89.3%) were not significantly different from
using SA in all cases (P = 1.0).

Conclusion Ultrasound image analysis using DNNs can
predict ovarian malignancy with a diagnostic accuracy
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comparable to that of human expert examiners, indicating
that these models may have a role in the triage of women
with an ovarian tumor. © 2020 The Authors. Ultrasound
in Obstetrics & Gynecology published by John Wiley &
Sons Ltd on behalf of International Society of Ultrasound
in Obstetrics and Gynecology.

INTRODUCTION

Ovarian cancer is the most lethal gynecological malig-
nancy, with a global 5-year survival of 45%1. Almost
10% of asymptomatic postmenopausal women have an
ovarian lesion, often detected incidentally, of which only
1% are malignant2. Over 50% of ovarian tumors occur in
fertile women3, in whom unnecessary or extensive surgery
may cause fertility loss. Thus, there is a need to deter-
mine precisely the risk of malignancy to individualize and
optimize treatment. Benign masses can be managed con-
servatively with ultrasound follow-up or minimal invasive
laparoscopy, while preserving fertility3. Women with sus-
pected ovarian cancer should be referred directly to a
gyneoncology treatment center, as surgical treatment of
such patients by gynecological oncologists is associated
with higher likelihood of complete tumor removal and
improved survival rate4.

Expert ultrasound examination has become the main
imaging technique for assessing ovarian lesions5. The
diagnostic accuracy of ultrasound is better in the hands
of experts than in the hands of less experienced doctors6,
however, there is a shortage of expert examiners.
Recent advances in computerized diagnostics have
been powered by deep neural networks (DNNs), a
class of machine-learning algorithms that can learn
complex representations of data from compositions
of many simple non-linear units. This approach is a
paradigm shift, in which the input to the model is not
hand-designed, as in the past, but raw data7. DNNs have
been shown to be able to discriminate between benign and
malignant tumors in other domains, such as computed
tomography (lung cancer)8, photographic imagery (skin
cancer)9 and mammography (breast cancer)10, with
performance on a par with that of expert radiologists.
Using ultrasound images, DNNs have shown promising
results in diagnosing breast and thyroid tumors11–13,
although the field is still unexplored when it comes to
ovarian tumors. Training DNNs requires large volumes
of labelled data, which is often a scarce resource in
the medical field. To overcome this limitation, transfer
learning from ImageNet14, a large labelled dataset of
roughly 1 million natural images, has become a standard
practice for deep learning in medical applications15.

The aims of this study were to develop and test
a DNN-based computerized ultrasound image analysis
model for discriminating between benign and malignant
ovarian tumors and to compare its diagnostic accuracy
with that of expert subjective assessment (SA)16 and IOTA
(International Ovarian Tumor Analysis) simple rules17,18

and simple-rules risk19.

METHODS

Dataset

We included retrospectively 3077 (grayscale, n = 1927;
power Doppler, n = 1150) ultrasound images from 758
women with ovarian lesions. All women had undergone
structured expert ultrasound assessment prior to surgery,
at the gynecological ultrasound departments of the
Karolinska University Hospital (tertiary referral center)
and Södersjukhuset (secondary/tertiary referral center)
in Stockholm, Sweden, between 2010 and 2019. The
examinations were performed by one of six examiners
with substantial experience (7–23 years) in the assessment
of adnexal lesions. All examiners were certified (having
undergone both theoretical and practical assessment)
as second-opinion expert sonographers, i.e. expert
examiners, by the Swedish Society of Obstetrics and
Gynecology (SFOG). Every case was assessed by a single
examiner. Ethical approval was obtained by the local
ethics committee (DNR 2010/145, 2011/343).

Eligible criteria were surgery within 120 days after
the ultrasound examination (n = 634) or ultrasound
follow-up for a minimum of 3 years or until resolution
of the lesion (n = 124). None of the women undergoing
follow-up was diagnosed with a malignant lesion, and
thus, they were presumed to have a benign diagnosis.
At the time of examination, a standardized protocol was
filled out, in which the tumors were classified as benign or
malignant using expert SA, the perceived certainty in the
assessment was reported (uncertain vs certainly/probably
benign/malignant), and the tumors were classified
according to the IOTA simple rules. The IOTA simple
rules include five benign and five malignant criteria. A
lesion is considered as benign or malignant if only benign
or malignant features, respectively, are present, and is
classified as inconclusive if both benign and malignant
features are present or none of the features is observed.
Inconclusive lesions (approximately one in four cases)
require a second-stage test, usually SA by an expert exam-
iner. If SA is not available, these lesions are considered
potentially malignant17,18. In order to be able to classify
all lesions based on the simple-rules assessment, we
applied retrospectively the IOTA logistic regression model
simple-rules risk (SRR) to obtain a risk score for every
case19. We used a cut-off of 0.2 for SRR to define women
with suspected malignancy, based on the original study19.

All examinations were performed using high-end
ultrasound systems, namely GE Voluson E8 or E10 with
a 5–9- or 6–12-MHz transducer (GE Healthcare, Zipf,
Austria) or Philips IU22 or EPIQ with a 3–10-MHz
transducer (Philips Medical Systems, Bothell, WA, USA).
Eligible cases were selected randomly from our ovarian
tumor database. Benign and malignant cases were selected
separately, to obtain a case-mix with at least 40%
malignant cases (as the clinical incidence of malignancy
among women undergoing expert ultrasound assessment
prior to surgery was 40% at Södersjukhuset and 49% at
Karolinska University Hospital during the study period).
In the selected cases, representative grayscale and power
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Doppler ultrasound images (median, 3 (interquartile
range, 3–5) images per case), in which the whole lesion
was adequately shown, were selected and downloaded in
jpeg format from the hospital image database systems.
The images were deidentified and then cropped manually
by the reviewer to the region of interest (ROI), which
in the vast majority of images involved removing
merely the outer borders and occasionally also excluding
surrounding structures, such as the uterus (Figure S1).

Following standard practice, our dataset was split into
a training set (n = 508; 314 benign and 194 malignant),
a validation set (n = 100; 60 benign and 40 malignant)
and a test set (n = 150; 75 benign and 75 malignant,
with three images per case). The training set was used to
learn the parameters of the models; the validation set was
used to estimate the prediction error for hyperparameter
tuning and model selection; and the test set was used to
assess independently the generalization error for the final
chosen models, preventing possible overfit to the training
data. To ensure accurate results, only patients with a
histological diagnosis obtained by surgery were included
in the test set. The histological outcome for all women
who underwent surgery, and separately for those who
were included in the test set, is shown in Table 1.

Data processing

Images with a shape of (224, 224, 3), i.e. square
images measuring 224 by 224 pixels with three color
channels (RGB), were used as input to the DNN models.
Therefore, the images were downsampled and resized
accordingly, using nearest-neighbor interpolation. Since
the images were not at a uniform scale, the resulting
physical resolution varied. Furthermore, the pixel values
were standardized channel-wise to have zero mean and
unit variance over the training dataset. The same values
were also used to standardize the validation and test sets.

Table 1 Histological outcome of all women with ovarian lesions
who underwent surgery and separately for subset included in test
set

Histological outcome
All cases
(n = 634)

Test set
(n = 150)

Benign 325 (51.3) 75 (50.0)
Endometrioma 46 (7.3) 10 (6.7)
Dermoid 74 (11.7) 26 (17.3)
Simple/functional cyst 31 (4.9) 3 (2.0)
Paraovarian cyst 12 (1.9) —
Rare benign 9 (1.4) 1 (0.7)
(Hydro-)pyosalpinx 14 (2.2) 3 (2.0)
Fibroma/myoma 25 (3.9) 5 (3.3)
Cystadenoma/cystadenofibroma 108 (17.0) 25 (16.7)
Peritoneal/inclusion cyst 6 (0.9) 2 (1.3)

Borderline 55 (8.7) 15 (10.0)
Serous 35 (5.5) 8 (5.3)
Mucinous 20 (3.2) 7 (4.7)

Malignant 254 (40.1) 60 (40.0)
Epithelial ovarian cancer 169 (26.7) 38 (25.3)
Non-epithelial ovarian cancer 28 (4.4) 10 (6.7)
Metastatic ovarian tumor 57 (9.0) 12 (8.0)

Data are presented as n (%).

Data augmentation was performed during training for
model generalization by expanding the available training
data and mimicking shifts in image properties in unseen
domains. The transformations used in the augmentation
process can be divided into three main categories20,
based on the aspect of the image that is altered: image
quality, spatiality and appearance. Low image quality
is characterized mainly by blurriness and low resolution,
caused by scanner motion, low scanner resolution or lossy
image compression. We tried to imitate this by adding
Gaussian noise (std, 0.02), jpeg compression (0–20%)
and shift in sharpness (± 20%). Transformations related
to the spatial shape of the images comprised horizontal
and vertical flips, rotation (multiples of 90◦) and cropping
(0–10%). These transformations served the purpose of
simulating the variability in the shape and position of
organs, the size of patients and ROI-related cropping.
The appearance-related transformations were shifts in
brightness (± 20%), contrast (± 20%) and color (± 10%),
which mimicked the differences between ultrasound
systems and settings.

Model building

We used a transfer-learning approach on ImageNet14

pre-trained deep-learning models VGG1621, ResNet5022

and MobileNet23. Each model was fine-tuned on
the dataset of transvaginal ultrasound images of
ovarian tumors. The output probabilities were then
calibrated independently using temperature scaling24,
a post-processing technique used to better align the
confidence scores with the underlying class probabilities
(Figure S2). The three models were then combined into
an ensemble, using a soft voting scheme of averaging the
probabilities from the models, to improve performance
over the individual models. Temperature scaling ensured
more reliable estimates of the probability of malignancy
for each model, which is desirable when building an
ensemble, as it reduces the problem of difference in
(over-) confidence between the models. The ensemble
was then used to estimate the probability of malignancy
of a given case, by averaging the predictions from all
representative images from that case. Using the prediction
from the ensemble, tumors were classified as benign
or malignant (Ovry-Dx1) or as benign, inconclusive
or malignant (Ovry-Dx2), by setting thresholds on the
predicted probability of malignancy. The performance
of the DNN models was compared to that of SA, based
on their sensitivity and specificity in discriminating
between benign and malignant lesions in the test set. The
probability threshold for Ovry-Dx1 was intended to be
set so as to give an optimal balance between sensitivity
and specificity, with a sensitivity close to that of SA.
Since this value was near 0.5 and its uncertainty large,
the threshold was simply set to 0.5, with cases above
this threshold classified as malignant. For Ovry-Dx2, the
probability thresholds were set to 0.4 and 0.6 (i.e. cases
with a predicted probability of malignancy between 0.4
and 0.6 were classified as inconclusive), which was shown
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to result in a reasonable balance between performance
and fraction of excluded cases in the validation set.

Training process

First, in each model, the original classifier for the
ImageNet classes was replaced by a binary classifier,
consisting of a fully connected layer of 1024 hidden
nodes (512 for MobileNet), followed by ReLU-activation,
dropout of 0.5 (0.2 for VGG16) and a final fully con-
nected softmax layer with two nodes representing the
benign and malignant outputs. In the first training step,
the weights of the convolutional base of the original
models were frozen, thereby training only the new binary
classifier, using an initial learning rate of 0.02 (0.002
for VGG16). Then, the layers of the convolutional base
were unfrozen and fine-tuned one by one, until no more
improvement could be seen. An initial learning rate of
2 × 10− 4 was used in this step. All models were trained
using backpropagation25 by stochastic gradient descent,
with Nesterov momentum26 of 0.9 and a batch size of
32 images, on an NVIDIA RTX 2080 graphics card.
Imbalance in the number of grayscale and power Doppler
images, from benign and malignant cases, was addressed
by training with weighted binary cross-entropy loss. We
used a learning-rate decay of 0.5 after every four consecu-
tive epochs of no improvement in validation accuracy. In
both steps of training, we used early stopping to monitor
the performance of the model on the validation set and
select the optimal point to stop training (Figure S3). This
is the point at which the model performance on the val-
idation set stops improving, and any additional training
overfits the training data at the expense of increased gener-
alization error. The hyperparameters, such as the learning
rate, dropout rate and the number of hidden nodes, were
chosen to maximize performance on the validation set.

Similar to most modern deep-learning architectures,
ResNet50 and MobileNet use batch normalization27 to
improve training performance and stability. When using
transfer learning on a model with batch normalization
layers, the difference between the source domain (natural
images) and target domain (ultrasound images) must
be addressed. If the parameters of these layers are
frozen during training of the new classifier, the model
will be using the exponential moving average (EMA)
statistics from the source domain for normalization at
test time. These statistics will differ significantly from
the statistics of the batches during training of the new
classifier in the target domain, leading potentially to
a large drop in performance. To align the training
and test behavior of the model, the EMA statistics of
the batch normalization layers were updated contin-
ually during fine-tuning of the models in the target
domain.

Evaluation of possible image bias

Caliper measurements were present in ∼80% of both
benign and malignant images in the dataset. To rule out

any potential bias introduced by the calipers, the final
ensemble model (Ovry-Dx1) was evaluated on images
with and without calipers. Since we were not interested in
the absolute, but rather the relative performance, we used
both the validation and test datasets to obtain a more
accurate measurement of the effect. Furthermore, only
the grayscale images were used, since very few power
Doppler images contained calipers. On the images with
and without calipers, the sensitivities (88.8% vs 89.6%)
and specificities (79.1% vs 82.4%) of Ovry-Dx1 were
similar, and the outputs of the network were statistically
indistinguishable (P = 0.86 and P = 0.50). This indicates
that the presence of caliper measurements does not play
a significant role in assisting the model in predicting
malignancy of ovarian tumors.

To rule out potential bias related to the use of power
Doppler images in addition to using only grayscale
images, the final ensemble model (Ovry-Dx1) was eval-
uated on the test set for each individual image alone. On
the power Doppler and grayscale images, the specificities
(85.7% vs 85.1%) were similar, while the sensitivity was
higher for power Doppler images compared to grayscale
images (88.2% vs 82.9%). Furthermore, the outputs of
the network on the benign images were statistically indis-
tinguishable (P = 0.61), while the outputs of the network
on the malignant images were statistically higher for
the power Doppler images (P = 0.03). Based on this, the
model’s response to benign images was similar for both
modalities. There does appear to be a slight difference
in the network’s response towards malignant images in
favor of the power Doppler modality, but the higher
sensitivity may be explained by the addition of blood
flow information. In practice, this means that cases with
power Doppler images, in addition to grayscale images,
will likely see an increase in sensitivity without a drop in
specificity.

Statistical analysis

To compare the performance of the DNN models to that
of SA in discriminating between benign and malignant
tumors in the test set, the sensitivity, specificity, accuracy
and area under the receiver-operating-characteristics
(ROC) curve (AUC), with their 95% CI, were calcu-
lated. The 95% CI for the sensitivity, specificity and
accuracy where estimated by the Jeffreys interval28,
while the 95% CI for the AUC and the fraction of
excluded cases were estimated by bootstrapping. Com-
parison of the sensitivity, specificity and accuracy of
the DNN models with that of SA, simple rules and
SRR was performed using McNemar’s test for paired
categorical data. Evaluation of possible image bias,
from caliper measurements and power Doppler images,
was based on the Mann–Whitney U-test for unpaired
non-parametric data. Statistical analysis was performed
using IBM SPSS Statistics for Windows, version 26.0
(IBM Corp., Armonk, NY, USA). All tests were two-sided
and P-values < 0.05 were considered statistically
significant.
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RESULTS

The performance statistics on the test set of the three
DNN models (VGG16, ResNet50 and MobileNet) and
the ensemble of these models are shown in Figure 1
and the corresponding ROC curves in Figure 2. The
ensemble model was the overall best performing model,
achieving an AUC of 0.950 (95% CI, 0.906–0.985)
when all cases in the test set were classified as benign
or malignant (Ovry-Dx1), and an AUC of 0.958
(95% CI, 0.911–0.993) when excluding 12.7% (95% CI,
7.3–18.0%) of cases as inconclusive (Ovry-Dx2). In
Table 2, we present the diagnostic performance of SA,
simple rules, SRR and the DNN models (Ovry-Dx1
and Ovry-Dx2) for differentiating between benign and

malignant ovarian lesions in the test set. At a sensitivity
of 96.0%, Ovry-Dx1 had a specificity similar to that
of SA (86.7% vs 88.0%; P = 1.0). Ovry-Dx2 had a
sensitivity of 97.1% and a specificity of 93.7%, when
designating 12.7% (95% CI, 7.3–18.0%) of the lesions
as inconclusive. By complementing Ovry-Dx2 with SA
in inconclusive cases, the overall sensitivity (96.0%) and
specificity (89.3%) were not significantly different from
using SA in all cases (P = 1.0). Use of the simple rules
classified 27.3% of cases as inconclusive. At a sensitivity
of 96.0%, Ovry-Dx1 had a significantly higher specificity
(86.7% vs 66.7%; P = 0.003) and accuracy (91.3% vs
81.3%; P = 0.006) than the simple rules with inconclusive
cases classified as malignant (Table 2). At a cut-off of 0.2,
SRR had the same performance as the simple rules with
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Figure 1 Diagnostic performance for distinguishing between benign and malignant ovarian tumors of deep-learning models VGG16 ( ),
ResNet50 ( ), MobileNet ( ) and ensemble of the three models (Ovry-Dx1 in (a) and Ovry-Dx2 in (b); ( )), in all patients in test set (a) and
when excluding cases with predicted probability of malignancy between 0.4 and 0.6, corresponding to high uncertainty (b). Percentage of
cases excluded was 10.7% for VGG16, 22.7% for ResNet50, 14.0% for MobileNet and 12.7% for Ovry-Dx2. AUC, area under receiver-
operating-characteristics curve.
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Figure 2 Receiver-operating-characteristics (ROC) curves for distinguishing between benign and malignant ovarian tumors of deep-learning
models VGG16 ( ), ResNet50 ( ) and MobileNet ( ) and ensemble of the three models (Ovry-Dx1 in (a) and Ovry-Dx2 in (b);
( )), in all patients in test set (a) and when excluding inconclusive cases (predicted probability of malignancy between 0.4 and 0.6) (b). In
(a), ROC curve of IOTA simple-rules risk ( ) and operating point for expert subjective assessment ( ) are also shown.
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inconclusive cases classified as malignant (Table 2). The
cut-off of 0.2 was chosen based on the results of the orig-
inal study19, and furthermore, any cut-off between 0.153
and 0.325 would have resulted in the same performance,
since no case was given a prediction in this interval. SRR
achieved an AUC of 0.921 (95% CI, 0.876–0.958).

Table 3 shows the histological outcome of cases
classified as inconclusive by Ovry-Dx2 and simple rules
and cases that were difficult to classify by SA. Of the 19
cases classified as inconclusive by Ovry-Dx2, 10 were also
considered difficult to classify by SA (Table 2, Figure 3a,b).
Figure 3c,d shows the other nine cases that were classified
as inconclusive by Ovry-Dx2, of which two were also
considered inconclusive by simple rules. Figure 4 shows
the six cases that were misdiagnosed by Ovry-Dx2, two
of which were also misdiagnosed by SA.

DISCUSSION

We have shown that ultrasound image analysis using
DNNs can predict ovarian malignancy with a diagnostic
accuracy comparable to that of human expert examiners.
Furthermore, we found a substantial overlap between
lesions difficult to classify by SA and by Ovry-Dx2,
indicating that both the expert and the DNNs recognize
features (e.g. papillary projections, multilocular lesions
with > 10 loculi) known to signify diagnostic difficulties29.

While our work is unprecedented in applying deep
learning for classification of adnexal masses, a few
pilot studies with a limited number of cases have
explored the use of handcrafted image descriptors, in
combination with support vector machines (SVM), for
classification. Two studies30, 31 on 177 patients used local
binary patterns (LBP)32 and pixel intensity histograms as

Table 2 Diagnostic performance of expert subjective assessment (SA)16, IOTA simple rules (SR)17,18, IOTA simple-rules risk (SRR)19 and
deep neural network models Ovry-Dx1 and Ovry-Dx2, for discriminating between benign and malignant ovarian lesions in test set (n = 150)

Sensitivity Specificity Accuracy

Diagnostic model

Percent that
could be
classified n/N % (95% CI) P n/N % (95% CI) P n/N % (95% CI) P

SA in all cases 100 72/75 96.0 (89.7–98.9) N/A 66/75 88.0 (79.2–93.9) N/A 138/150 92.0 (86.8–95.6) N/A
Ovry-Dx1 in all cases 100 72/75 96.0 (89.7–98.9) 1.0‡ 65/75 86.7 (77.6–92.9) 1.0‡ 137/150 91.3 (86.0–95.1) 1.0‡
Ovry-Dx2 excluding

inconclusive cases
87.3 66/68 97.1 (90.9–99.4) N/A 59/63 93.7 (85.6–97.8) N/A 125/131 95.4 (90.8–98.1) N/A

Ovry-Dx2 + SA in
inconclusive cases

100 72/75 96.0 (89.7–98.9) 1.0‡ 67/75 89.3 (80.9–94.8) 1.0‡ 139/150 92.7 (87.7–96.0) 0.75‡

SR only 72.6 52/55 94.5 (86.2–98.4) N/A 50/54 92.6 (83.3–97.4) N/A 102/109 93.6 (87.8–97.1) N/A
SR with inconclusive

cases as malignant*
100 72/75 96.0 (89.7–98.9) 1.0§ 50/75 66.7 (55.5–76.5) 0.003§ 122/150 81.3 (74.5–86.9) 0.006§

SR + SA in
inconclusive cases

100 71/75 94.7 (87.8–98.2) 1.0§ 65/75 86.7 (77.6–92.9) 1.0§ 136/150 90.7 (85.2–94.5) 1.0§

SRR in all cases† 100 72/75 96.0 (89.7–98.9) 1.0§ 50/75 66.7 (55.5–76.5) 0.003§ 122/150 81.3 (74.5–86.9) 0.006§

*Cases in which SR yielded inconclusive result were classified as malignant. †Using cut-off of 0.2 to define women with suspected
malignancy. McNemar’s test used for comparison of: ‡Ovry-Dx1 and Ovry-Dx2 to SA; §Ovry-Dx1 to SR or SRR. N/A, not applicable.

Table 3 Histological outcome in ovarian lesions that were inconclusive by IOTA simple rules and deep neural network model Ovry-Dx2,
and difficult to classify by expert subjective assessment (SA)

Histological outcome
SA uncertain

(n = 27)

Simple rules
inconclusive

(n = 41)

Ovry-Dx2
inconclusive

(n = 19)

Overlapping inconclusive/
uncertain cases by

Ovry-Dx2 and SA (n = 10)

Benign
Endometrioma 1 2 1 —
Dermoid 5 3 4 2
Simple cyst — 1 — —
Paraovarian — — — —
Rare benign 1 — — —
(Hydro-)pyosalpinx — — — —
Fibroma/myoma 1 2 2 1
Cystadenoma/cystadenofibroma 9 13 5 3
Peritoneal/inclusion cyst 1 — — —

Borderline malignant
Serous 2 2 2 1
Mucinous 3 5 2 2

Invasive malignant
Epithelial ovarian cancer 3 7 3 1
Non-epithelial ovarian cancer 1 3 — —
Metastatic ovarian tumor — 3 — —

Data are given as n.

© 2020 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd Ultrasound Obstet Gynecol 2021; 57: 155–163.
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texture features; the first reported an accuracy of 76%,
while excluding 18.3% of the cases as inconclusive30,
and the second a sensitivity of 77% and specificity of
77%31, for classifying ovarian masses. A later study33

on the same dataset achieved an increased performance
(sensitivity 91%, specificity 83%, AUC of 0.874) using

Fourier transform-based feature descriptors and SVM for
classification. While the latter results are promising, these
studies all share the important limitation that they relied
on manual segmentation of tumors by an ultrasound
expert. The selection of a rectangular ROI in our own
work is of an entirely different nature, as it requires

Figure 3 (a,b) Ten ovarian lesions that were difficult to classify by both expert subjective assessment and deep neural network model
Ovry-Dx2; final histological diagnosis was malignant or borderline in four (a) and benign in six (b). (c,d) Further nine ovarian lesions
classified as inconclusive by Ovry-Dx2; final histological diagnosis was malignant or borderline in three (c) and benign in six (d). Images
marked with ( ) were also classified as inconclusive by IOTA simple rules.

Figure 4 Six cases misdiagnosed by deep neural network model Ovry-Dx2: (a,b) malignant cases classified as benign; (c–f) benign cases
classified as malignant. (a) Clear-cell carcinoma with 6-mm papillary projection; case was also misdiagnosed by expert subjective assessment.
(b) Mucinous intestinal borderline tumor. (c,d) Dermoid. (e) Fibroma; case was also misdiagnosed by expert subjective assessment. (f) Leydig
cell tumor.

© 2020 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd Ultrasound Obstet Gynecol 2021; 57: 155–163.
on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
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significantly less involvement and domain expertise by the
operator. While we identified other related papers34, we
have omitted these due to methodological shortcomings,
e.g. reporting classification performance on the same data
used for selection of image features. Finally, the key
to the success of DNNs is their ability to learn highly
representative features, on multiple scales and levels of
abstraction, directly from large datasets of raw images.
This leads to features of greater discriminative capacity
compared to conventional handcrafted descriptors35.

An advantage of our model is that it is simple to use,
as any center could upload a set of deidentified images
directly from the workstation or hospital computer, to a
cloud platform hosting the model, without the need to
first assess subjectively the images or provide additional
patient data. The greatest clinical benefit of a diagnostic
DNN model for classification of ovarian tumors would
be in the hands of non-expert examiners; however, it may
also be useful to experts as a second reader. Many centers
and private practitioners have limited access to a second
opinion by an ultrasound expert; therefore, they might use
simple rules, designating inconclusive cases as malignant,
or use SRR in order to reach an acceptable sensitivity
and be able to manage all patients. In this setting, the
specificity could potentially be improved by 20 percent-
age points (from 66.7% for both simple rules strategies, to
86.7%) by instead using Ovry-Dx1 in all cases (Table 2).
In addition to high sensitivity, a high specificity is also
of utmost importance, as many lesions are detected inci-
dentally in asymptomatic women. Unnecessary surgery
misuses the resources of the healthcare system and may
cause morbidity, and in some cases even fertility loss. In
a large randomized screening study for ovarian cancer36,
one-third of women with false-positive findings under-
went adnexal surgery. Of these, 15% experienced at least
one major complication, highlighting the importance of
minimizing false-positive diagnoses in an asymptomatic
population. By adjusting thresholds on the DNN predic-
tions, as we have done for Ovry-Dx2, it is possible to opti-
mize sensitivity, specificity and the fraction of inconclusive
cases, depending on the setting (i.e. low- or high-resource)
and the population (i.e. low or high risk of disease).

A strength of this study is that all cases were classified
prospectively by expert ultrasound examination prior
to surgery or long-term ultrasound follow-up, which
enabled us to compare the performance of the DNNs
to that of SA. The proportion of cases classified as
inconclusive by simple rules (27.3%) is slightly higher
than that reported in previous studies (22.5%17 and
24.0%18), indicating that the number of difficult cases
in our test set is similar to or higher than that in other
populations. While no direct comparison can be made,
the sensitivity (96.0%) and specificity (88.0%) of SA in
our test set, are comparable to the reported performance
in a large IOTA multicenter study including 1938 cases
(sensitivity 90.4%, specificity 92.7%)17.

We included a wide range of ovarian pathology with
high-quality images, optimizing DNN model develop-
ment. However, homogeneity of the image quality can

be seen as a weakness of this study, as the majority of
images were obtained by the same examiner using the GE
Voluson E8 or E10 systems. Thus, it remains to be shown
if the models perform equally well on images acquired
by other expert centers, less experienced examiners or
by examiners not using high-end equipment. Evaluating
cases based on batches of images led to better diagnostic
accuracy compared to using single images. A next step
could be to explore if the use of two-dimensional video-
clips or three-dimensional volumes could further improve
evaluation performance. Additional data, especially from
diagnoses with low prevalence, could allow training of a
DNN for multiclass diagnosis-specific classification.

In this study, images were cropped manually, mainly
by removing the outer borders; a task that would render
itself suitable for auto-cropping. As the selection of an
acceptable ROI requires only the ability to locate the
tumor in the recorded image, which is a requirement for
recording the image in the first place, this coarse cropping
does not depend on expertise beyond that which is already
inevitable for image acquisition. Still, despite the fact that
manual ROI selection is performed in most studies on deep
learning in the medical domain37, the necessity of man-
ual cropping and the potential benefit of auto-cropping
should be explored in future studies. Finally, our extensive
spatial data augmentation during training is further likely
to increase robustness and flexibility in the ROI selection.

We would like to emphasize the importance of external
validation of the Ovry-Dx1 and Ovry-Dx2 models on
images from other gynecological centers, in order to
evaluate the limitation in generalization and the potential
for multisite deployment. Thus, the next step is to validate
externally these models in a large multicenter setting,
which is already underway (ISRCTN51927471). It should
be stressed that automated image analysis should only be
used to assist in the triage of patients and not to make a
final diagnosis. Nevertheless, our results clearly indicate
that DNNs have the potential to be clinically useful in the
triage of women with an ovarian tumor.
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SUPPORTING INFORMATION ON THE INTERNET

The following supporting information may be found in the online version of this article:

Figure S1 Cropping of ultrasound images to standardized dimensions of 4:3 by selecting region of interest (ROI).

Figure S2 Reliability diagrams for VGG16-based model, before and after calibration, showing accuracy
plotted against confidence of the model. Confidence is the predicted probability for the most probable class
(benign or malignant). Since classification is binary, it will always be above 0.5. In an overconfident model,
confidence exceeds accuracy.

Figure S3 Model accuracy during training for VGG16, ResNet50 and MobileNet models. Dashed lines
indicate early stopping points used in final models.
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Anál is is de imágenes ecográficas uti l izando redes neurales profundas para dist inguir entre
tumores ovár icos benignos y malignos: comparaci ón con la evaluaci ón subjet iva de expertos

RESUMEN

Objetivo Desarrollar y probar el desempeño del análisis de imágenes ecográficas computarizadas utilizando redes
neurales profundas (RNP) para distinguir entre tumores ováricos benignos y malignos y comparar su precisión en el
diagnóstico con la de la evaluación subjetiva (ES) por especialistas expertos en ecografı́a.

Métodos Se incluyeron 3077 (escala de grises, n=1927; power Doppler, n=1150) imágenes de ultrasonido de 758
mujeres con tumores ováricos, que fueron clasificadas prospectivamente por examinadores especialistas en ecografı́a,
de acuerdo con los términos y definiciones de la IOTA (Análisis Internacional de Tumores Ováricos). El resultado
histológico de la cirugı́a (n=634) o el seguimiento a largo plazo (≥3 años) (n=124) sirvieron como el estándar de
referencia. El conjunto de datos se dividió en un subconjunto de formación (n=508; 314 benignos y 194 malignos),
un subconjunto de validación (n=100; 60 benignos y 40 malignos) y un subconjunto de pruebas (n=150; 75 benignos
y 75 malignos). Se utilizó el aprendizaje de transferencia en tres RNP pre-formadas: VGG16, ResNet50 y MobileNet.
Cada modelo fue formado primero mediante escalas de temperatura, al igual que los la calibración de los outputs.
A continuación, se utilizó una combinación de los tres modelos para estimar la probabilidad de que el tumor fuera
maligno con base en la totalidad de las imágenes de un caso determinado. La combinación de RNP permitió clasificar
los tumores como benignos o malignos (modelo Ovry-Dx1); o como benignos, no concluyentes o malignos (modelo
Ovry-Dx2). Se comparó el desempeño para el diagnóstico de los modelos de RNP, en términos de sensibilidad y de
especificidad, con el de la ES para la clasificación de los tumores ováricos en el subconjunto de formación.

Resultados Con una sensibilidad del 96,0%, Ovry-Dx1 tuvo una especificidad similar a la de la ES (86,7% frente a
88,0%; P=1,0). Ovry-Dx2 tuvo una sensibilidad del 97,1% y una especificidad del 93,7%, y designaron un 12,7%
de las lesiones como no concluyentes. Cuando se complementó Ovry-Dx2 con ES en los casos no concluyentes, la
sensibilidad general (96,0%) y la especificidad (89,3%) no fueron significativamente diferentes de la utilización de ES
en todos los casos (P=1,0).

Conclusiones El análisis de imágenes ecográficas mediante RNP puede predecir el cáncer de ovario con una precisión
en el diagnóstico igual a la de los especialistas expertos humanos, lo que indica que estos modelos pueden jugar un
papel en el triaje de mujeres con un tumor de ovario.
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