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Abstract

Successful tissue regeneration strategies focus on the use of novel biomaterials, structures, and a 

variety of cues to control cell behavior and promote regeneration. Studies discovered how 

biomaterial/ structure cues in the form of biomaterial chemistry, material stiffness, surface 

topography, pore, and degradation properties play an important role in controlling cellular events 

in the contest of in vitro and in vivo tissue regeneration. Advanced biomaterials structures and 

strategies are developed to focus on the delivery of bioactive factors, such as proteins, peptides, 

and even small molecules to influence cell behavior and regeneration. The present article is an 

effort to summarize important findings and further discuss biomaterial strategies to influence and 

control cell behavior directly via physical and chemical cues. This article also touches on various 

modern methods in biomaterials processing to include bioactive factors as signaling cues to 

program cell behavior for tissue engineering and regenerative medicine.
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Biomaterial cues to induce cell programming. Through physical, chemical, and biological cues, a 

biomaterial can be tailored for regeneration of specific tissues by promoting cell migration, 

proliferation, and differentiation.
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1. Introduction

In tissue engineering, cell behavior is often directed by signaling molecules, which include 

bioactive factors such as proteins, peptides and small molecules. These are expected to 

provide the signaling needed to enhance proliferation and differentiation of progenitor cells 

surrounding the defect area. Also in specific cases, these factors can serve as chemo-

attractants by recruiting the needed progenitor cell population that will participate in de novo 
tissue formation. Growth factors, such as BMP-2 and BMP-7 have received wider attention 

and are being utilized as part of the commercially available products for bone defect repair 

and regeneration (1). Angiogenic factors, which include platelet derived growth factors 

(PGDF) and vascular endothelial growth factors (VEGF) are applied in tissue engineering 

strategies to introduce angiogenesis and vascularized tissue formation (2,3). A similar 

approach has been adopted in developing regenerative strategies for a number of other 

tissues including skin, nerve and musculoskeletal tissues (4, 5).

In tissue engineering and regenerative medicine strategies, high concentrations of growth 

factors are needed to achieve proper regeneration in order to maintain therapeutic levels for a 

sustained period of time (4). Also, the degradation of growth factors occur quickly in vivo 
through a variety of pathways including denaturation and proteolysis, with some growth 

factors such as BMP-2 and VEGF presenting a half-life of less than 30 minutes (1,5). Yet, 
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the excessive use of growth factors lead to high costs related to production of the factors and 

the tissue engineering strategy as well as safety risks that are associated, with ectopic tissue 

regeneration and cancer being some of the side effects (6,7). The methods of growth factor 

delivery are also often inadequate, presenting burst delivery mechanics and failing to 

maintain steady therapeutic levels of the bioactive factors. This results in limited or 

incomplete tissue repair or regeneration (8,9).

Therefore, rather than relying so heavily on the therapeutic effects of the delivered growth 

factors, the modification of biomaterial scaffold’s properties are now at the forefront of 

tissue engineering research efforts. Although modifications of biomaterial properties have 

been researched in the past, the wealth of knowledge and biomaterial fabrication techniques 

now available make the modifications much more precise and tissue specific. The influence 

of a biomaterial’s physical properties on the defect site and surrounding cells are now well 

established, and when combined with newly developed scaffold design and fabrication 

methods, these properties can now be tailored to the tissue and defect types (10–13). It is 

widely established that biomaterial’s chemical cues, such as charge, functional group and 

surface chemistry also effect cell behavior and there are now established methods to achieve 

controlled surface chemical modification (14–16). In addition, the way in which the 

biomaterial interacts with the growth factors and other biologically active molecules that are 

being developed have also been further enhanced (17–19). Therefore, the motivation of this 

article stems from the need to develop biomaterial-based strategies to influence cell behavior 

and to achieve the required tissue regeneration. This article will summarize the recent 

advancements in modifying a biomaterial’s physical and chemical properties, as well as its 

ability to interact with bioactive factors, and the ways a biomaterial’s properties can 

influence and drive cell behavior.

2. Physical Cues

Studies have shown that biomaterial physical cues, such as topography, pore size and 

volume, scaffold architecture, and mechanical stiffness play roles in biomaterial-cell 

interactions and cell behavior (20). With the advent of advanced fabrication methods such as 

3D printing, researchers are now able to design and develop biomaterials with desired nano/

micro topography and scaffold architecture. Also, the availability of a number of natural and 

synthetic biomaterials makes it possible to form three-dimensional and porous structures 

with tunable mechanical stiffness. This section will review some of the recent developments 

in terms of how physical cues direct cell behavior and tissue regeneration.

2.1. Surface Texture

The physical design of a biomaterial’s surface with regards to its roughness and patterning 

can be tailored to aid in cell spreading/adhesion, proliferation, and/or differentiation. For 

osteoblasts and bone tissue engineering in general, the roughness of a biomaterial’s surface 

is known to promote attachment and differentiation by supporting focal adhesion complex 

formation and extracellular matrix (ECM) accumulation (21–26). Briefly, attachment of 

osteoblasts and other cells undergo indirect attachment to the biomaterial’s surface via 

attachment to ECM proteins adsorbed on the surface of the biomaterial, such as vitronectin, 
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fibronectin, and collagen (23). The adsorbed proteins then bind with integrins on the surface 

of osteoblasts, which can further trigger downstream signaling pathways that lead to 

proliferation and differentiation (22). Several studies have shown that surface roughness at 

nanoscale increases ECM protein adsorption, which promotes osteoblast attachment (21,26). 

Investigations also show that nano/micro scale surface features promote MSC osteogenic 

differentiation when compared to a smooth surface (24). The exact mechanism of how 

surface roughness can modulate MSC osteogenic differentiation is not well understood, but 

it has been linked with downstream pathways of integrin signaling and the resulting 

expression of osteogenic factors such as transforming growth factor-β1 (TGF-β1) and 

prostaglandins (25).

Beyond just tuning the surface roughness of the biomaterial, specific topographical patterns 

on the surface of a biomaterial have been shown to also direct cell behavior towards tissue 

regeneration. Several different patterns can be made in the micro- and nanoscale, with 

grooves, pits, and pillars being the most commonly created and studied. The type and scale 

of which surface pattern benefits a certain tissue type depends strongly on the tissue and cell 

type being used. For instance, in cardiac tissue engineering, with its highly organized native 

ECM and cellular arrangement, tissue engineering materials require the proper orientation of 

seeded cells and produced ECM. Various studies have demonstrated the efficacies of surface 

patterning in developing biomaterials for muscular and cardiovascular regeneration. 

Specifically, a 3D-printed gelatin hydrogel containing microchannels was shown to promote 

human MSC alignment and differentiation into cardiomyocytes, along with spontaneous and 

synchronized contractions (12). In particular, microchannels caused increased sarcomere 

development in cardiomyocytes, and when combined with a conductive poly(pyrrole) 

showed evidence of cell-to-cell electrical coupling (27). In terms of vascular tissue 

engineering, varying responses were observed based on the type of surface pattern and the 

progenitor cell type used. Cellular alignment was only seen in substrates with grating 

patterns, and stem cell-derived endothelial cells displayed greater phenotypic maturation 

than either the arterial or venous endothelial cells. Further differential responses of the 

arterial endothelial cells and venous endothelial cells to surface patterning suggests that cell 

source and type must be considered for design of a biomaterial’s topography (28).

In neural tissue engineering, the viability of neural cells and development of neurites were 

shown to be strongly affected by nanopatterns of ridges and grooves. In a recent study, it was 

observed that the substrates with topographical cues assisted neural development more than 

a flat substrate coated with laminin as a biochemical cue (29). Yang et al. demonstrated that 

a combination of nanopores and microgrooves were able to induce differentiation of neural 

stem cells into neurons, and noted that inhibition of focal adhesion proteins eliminated the 

beneficial effects of topological cues (10). The height of nanofeatures was also shown to be 

relevant in inducing neural cell differentiation, with Song et al. reporting increased 

differentiation of human induced pluripotent stem cells (hiPSCs) into neurons for 560 nm 

tall ridges and a correlation between feature height, Yes-associated protein, and neural 

differentiation (30).
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2.2. Architecture

Along with biomaterial surface geometry and characteristics, the biomaterial’s overall 

design and architecture can influence cell behavior and tissue regeneration. The pore 

structure of a scaffold can be a limiting factor in nutrient transport and overall 

cellularization. Engineered scaffolds with inadequate pore structure exhibit limited nutrient 

flow, waste removal, and acid build-up due to diffusion limitations. These conditions do not 

allow cell survival within the scaffold, which results in surface-level cellularization of the 

implanted scaffolds (11). Specifically, for bone tissue engineering, previous studies have 

shown a relationship between cell migration and differentiation with respect to overall pore 

size and diameter. Although cell infiltration was seen in pores as small as 40 μm in diameter, 

the optimal cell number and infiltration was seen in pores with diameters of 100–150 μm, 

both in vitro and in vivo (31). However, Murphy et al. found that the optimal pore size that 

promoted new bone formation was larger, 325 μm in diameter, due to even distribution of 

cells throughout the scaffold and less accumulation of cells on the periphery of the 

biomaterial (31).

Our own laboratory was able to fabricate an oxygen tension controlled (OTC) PLGA 

scaffold capable of maintaining optimal oxygen and pH levels throughout the graft (Figure 

1) (11,32). The OTC scaffold was fabricated via “Thermal sintering and porogen leaching” 

technique, with overall porosity control. The developed OTC scaffolds with 100–500 μm 

pore size variation (Figure 1A) showed greater levels of cell survival and proliferation 

throughout the pore structure of the scaffold (Figure 1B). The enhanced cellularization seen 

in the interior of the scaffolds was attributed to the open pore structure, which enabled high 

levels of oxygen tension and physiological pH levels throughout the graft (Figure 1C). The 

in vivo evaluation of the OTC grafts also showed promising results, with increased de novo 
bone formation (Figure 1D, E) and evidence of increased angiogenesis (Figure 1E). These 

studies demonstrate the beneficial effects of tailoring a scaffold’s pore structure on cell 

survival to angiogenesis, and large-area bone tissue formation. In a separate study, 

researchers were able to take into account the degradation of the biomaterial and the amount 

of new tissue formed to model the optimal pore structure that will prevent mechanical failure 

as the structure degrades (33). Together, these studies developed a tissue engineering 

approach for large-area bone regeneration, and this strategy could be potentially used to treat 

non-union and critical-sized bone defects.

Besides bone tissue engineering, pore size and architecture play a critical role in the 

regeneration of other tissue types as well. In neural tissue engineering, nerve guide conduits 

(NGC), which are used to regenerate neural tissue in between two severed nerves, should 

present enough porosity to provide nutrient transport while preventing the invasion of 

external macrophages and fibroblasts. This in turn requires a graft with more than 50% 

porosity while maintaining flexibility and elastic modulus of 8–16 MPa, similar to human 

nerves. To satisfy these requirements, several studies designed highly porous systems that 

are mechanically compatible with pore characteristics suitable to prevent external cell 

infiltration and were assessed for their in vitro and in vivo performance (34,35).

Interfacial tissue engineering, such as osteochondral tissue, also requires specific pore 

structures to accommodate the regeneration of two different tissue types while maintaining 
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structural integrity between the two layers. The difference in tissue types are especially 

apparent for osteochondral tissue, where the scaffold structures will have to facilitate the 

development of hard bone tissue, soft cartilage tissue, and their interface. This problem has 

been approached with the design of monophasic, bi-phasic, and tri-phasic scaffolds (36). But 

recently, osteochondral scaffolds with porosity and/or composition gradients have been 

developed to promote the regeneration of bone-cartilage tissue along with an interface in a 

single scaffold system (37–39). In one of the designs, a scaffold system with polymer and 

gel phases co-exist in an inverse gradient fashion, where the polymeric phase supports the 

osseous phase and the gel phase promotes the cartilaginous phase. The osseous phase is 

denser to allow differentiation of mesenchymal stem cells into osteoblasts by interacting 

with the stiffer template biomaterial. Meanwhile, the cartilaginous phase is designed to be 

more open with larger pores, which allows the use of a softer secondary phase that drives 

more chondrogenesis than the stiff template phase.

2.3. Mechanical Stiffness

Much like how surface topography can influence cell behavior via integrin binding, stiffness 

of the substrate can also drive cell behavior through a similar pathway. The cell traction 

force (CTF) that arises while cells migrate along a substrate serves as the initial stimulus for 

cell mechanotransduction (40). The generated force is then transmitted by integrins to 

initiate downstream pathways that lead to specific cellular behaviors (41). There is also 

evidence that the cell cytoskeleton, along with integrins, aids in conversion of mechanical 

stimuli to biochemical responses by the cell (42). After transmission of mechanical stiffness 

by the integrins and cytoskeleton, the downstream pathways differ greatly depending on the 

stiffness of the substrate, lineage of the cell, and pluripotency of the cell (43–45). However, 

the general consensus is that substrates that match the physiological stiffness of the target 

tissue will result in differentiation into said tissue type. For example, soft substrates (<1 kPa) 

lead to differentiation of neurocytes or brain cells, substrates with medium stiffness (1–25 

kPa) cause myogenic differentiation, while stiffer substrates (25–40 kPa) can lead to 

osteogenic differentiation.

Mechanisms that direct osteogenic commitment by MSCs cultured on stiff substrates 

explored recently show that several signal transduction pathways may exist. It has been 

shown that adipose-derived MSCs cultured on stiff substrates (53.6–134 kPa) resulted in 

increased osteogenic differentiation and expression levels of RhoA and ROCK-2, proteins 

that respond to cytoskeletal rearrangement and tension (46). The studies also observed an 

increase in β-catenin expression by cells cultured on stiff substrates, and when combined 

with previously reported relation between the Rho/ROCK signaling system and the 

canonical Wnt pathway, these observations suggest that the β-catenin/Wnt pathway may be 

part of the mechanotransduction of MSCs towards an osteogenic response. Other signaling 

pathways include an increase in macrophage migration inhibitory factor (MIF) in MSCs 

cultured on stiff substrates, and the corresponding modulation of protein kinase B (AKT) 

and yes-associated protein (YAP) (47). This suggests that the MIF, in addition to various 

other functions controlling cell behavior, also promotes AKT/YAP signaling that in turn 

promotes RUNX-2 expression and osteogenesis in MSCs. Also, a recent study demonstrated 

that YAP promotes β-catenin levels within the nucleus, which in turn promotes osteogenic 
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differentiation, further linking the β-catenin/Wnt pathway with osteogenic differentiation 

(48). However, further studies are required to fully understand the role of the Wnt pathway 

in mechanotransduction of substrate stiffness and osteogenesis since there are conflicting 

results in terms of the Wnt pathway and osteogenic differentiation (49,50).

For soft tissue regeneration, hydrogels are often employed as biomaterials with tailored 

stiffness. For example, cartilage tissue engineering has seen success in developing hydrogels 

with mechanical stiffness that can promote chondrogenesis of MSCs. The optimal stiffness 

for chondrogenesis varies depending on the material used and other factors that are 

incorporated into the gel, but overall, chondrogenesis tends to occur best in relatively stiff 

hydrogels. However, there does seem to be a limit to hydrogel stiffness that promotes 

chondrogenesis, approximately 50–100 kPa (13). Beyond 100 kPa, the seeded MSCs display 

hypertrophic cartilage characteristics, and evidence of the osteogenic YAP/Wnt pathway, 

discussed previously. On the other hand, much softer hydrogels are utilized in neural tissue 

engineering, often in the range of 0.1–1 kPa. In fact, studies have shown that hydrogel 

stiffness was more important than presence of Arg-Gly-Asp (RGD) peptides in guiding 

neural cell attachment, morphology, and functionalization (51). Investigations have also 

demonstrated the relationship between hydrogel stiffness and migration of cells within them 

(52). In addition to movement of cells within a homogeneous hydrogel, several studies have 

highlighted the movement of cells along a stiffness gradient, or durotaxis. Specifically, 

Hadden et al. utilized hydrogels with various gradients in stiffness to determine that human 

adipose-derived stem cells tend to migrate towards the stiffer end of the hydrogel when 

cultured in steeper gradients (8.2 kPa/mm) (53). Therefore, these results suggest that 

stiffness gradients in hydrogels can be utilized to promote migration of cells into the 

innermost parts of the hydrogel both in vitro and in vivo.

Extensive investigations in the field have demonstrated that biomaterial physical cues in the 

form of surface texture, architecture, and mechanical stiffness play critical roles in dictating 

cell behavior and performance. These cues and their effects on cell behavior are illustrated 

and summarized in Figure 2. Studies so far established the benefit of these cues in 

controlling cell adhesion, growth, and differentiation, and key studies are summarized in 

Table 1. However, further optimization of the mentioned parameters is required to promote 

the desired phenotype, and biomaterial designs that utilize the above stated parameters have 

seldom been explored.

3. Chemical Cues

In addition to physical design, the chemical properties of biomaterials can have a large 

impact on its ability to regenerate the target tissue. Chemical properties of a biomaterial 

range from surface moieties and charges to degradation by-products that influence cell 

recruitment, proliferation, and differentiation. The goal of the research community is to 

design and develop biomaterials with chemical cues to impart cytocompatibility, minimal 

immunogenic response, and flexibility to tailor them for the desired tissue type. While there 

are numerous chemical cues that play a role, this section will be limited to biomaterial 

surface chemistry and degradation aspects and how these specific chemical cues influence 

cell behavior and tissue regeneration.
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3.1. Surface Chemistry

By optimizing the surface chemistry of biomaterials, events starting from initial protein and 

cell adhesion, immune response, and cell behavior can be controlled (Figure 3). The most 

basic surface chemistry that influences how the biomaterial behaves is surface wettability. 

The hydrophilicity/hydrophobicity of the biomaterial’s surface interacts with serum proteins 

by either promoting or inhibiting their adsorption and denaturation. Studies have shown that 

hydrophobic surfaces tend to accumulate more serum proteins, such as fibrinogen and IgG, 

than hydrophilic surfaces by causing conformational changes that expose hydrophobic 

interiors of these proteins, which may reveal their immunogenic sites (54). A recent study 

showed that macrophages exposed to a hydrophobic surface expressed pro-inflammatory 

markers while exposure to a hydrophilic surface elevated anti-inflammatory markers (55). 

The beneficial programming of macrophages by hydrophilic surfaces led to faster resolution 

of an inflammatory response and MSC recruitment (56). However, in terms of direct 

adhesion of cells, conflicting results have been reported, which may indicate the 

confounding effects of surface charge and functional groups, as well as the type of cell being 

used.

In general, recent studies utilizing several cell types and materials have shown that positively 

charged surfaces promote greater amounts of cell adhesion and proliferation. Cernochova et 

al. utilized a polymerized cyclopropylamine with additional amino groups to increase its 

positive charge and saw a high degree of cell adhesion for fibroblasts, keratinocytes, and 

smooth muscle cells (57). The increase in cell adhesion on positively charged surfaces has 

been attributed to the amount of protein adhesion and denaturation prior to cell adhesion by 

others. Ishihara et al. observed an increase in fibronectin adsorption and denaturation in 

positively charged surfaces that correlated to adhesion of HeLa cells, indicating that the 

amount and degree of denaturation of fibronectin is related to cell adhesion (58). 

Meanwhile, it was found that positively charged surfaces attracted more α-helices to its 

surface, suggesting that the amount of α-helix adsorbed on the surface of biomaterials may 

be related to cell adhesion in addition to fibronectin, which is primarily composed of β-

sheets (59). Aside from positively charged surfaces, negatively charged surfaces have been 

shown to be effective in adhesion of other cell types as well. Ribeiro et al. utilized 

poly(vinylidene fluoride) to create films with positive, negative, and neutral charges for 

myogenic cultures, and observed increased myogenic differentiation for the positively and 

negatively charged polymers; they postulated that electrostatic charges of the polymer are 

apt for differentiating electrically active myocytes, regardless of the charge (60). In addition, 

negatively charged substrates were shown to facilitate fibroblast attachment and growth 

while also inhibiting bacterial growth, which could aid in reducing inflammatory responses 

and facilitating regeneration (61).

In terms of functional groups on substrate surfaces, the simplest groups commonly used are 

amino (−NH2), hydroxyl (−OH), carboxyl (−COOH), and methyl groups (−CH3). These 

groups impart hydrophilic/hydrophobic and electrostatic properties to the biomaterial’s 

surface, but they have also been shown to have distinct effects on cellular behavior (Figure 

3). In general, hydroxyl groups have shown high levels of cell adhesion and osteogenic 

response, followed by amino and carboxyl groups (62). On the other hand, amino and 
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carboxyl groups on substrate surfaces resulted in larger reductions in inflammatory 

responses, with carboxylic groups inhibiting fibrous capsule formation the most in vivo 
(63,64). Carbon nanotubes functionalized with these groups showed in vitro and in vivo 
biocompatibility, when composited with biodegradable poly(lactic-co-glycolic acid) (PLGA) 

(65,66). These composite scaffolds also demonstrated increased compressive modulus and 

strength via reinforcement from the ultra-strong carbon nanotubes. In addition to chemical 

functional groups, surface modifications with peptide sequences have also been explored to 

increase biomaterial-cell interactions, with RGD sequences being the most commonly used 

motif for cell adhesion. However, recent developments have improved upon the commonly 

used chemical and biological motifs to better facilitate tissue engineering. Surface functional 

groups have been used to graft other polymers, peptides, and compounds to increase 

biomaterial-cell interactions as well as impart other bioactive properties (Figure 3). For 

example, Jaidev et al. modified the surface of polylactic aid (PLA) with citric acid and 

polyethyleneimine to increase the biomaterial’s ability to precipitate calcium phosphates 

from media, which in turn was used to enhance cellular proliferation and osteogenic 

responses (16). Similarly, biomaterial surfaces are modified with ECM proteins (collagen, 

gelatin, elastin, fibronectin, etc.) and synthetic moieties (calcium phosphates, ethoxysilane, 

polypyrrole, etc.) to improve biomaterial/construct performance in terms of biocompatibility, 

immune response, and in some cases even to impart electrical conductivity.

3.2. Degradation

The in vivo degradation of a biomaterial is pivotal in the design of a potential tissue 

engineering strategy, and involves the replacement of the implant with the host tissue. 

Advances in biodegradable biomaterials have explored the timing of the biomaterial’s 

degradation and how its degradation byproducts can react with its surroundings to aid in 

tissue regeneration. One of the most common biodegradable materials used for tissue 

engineering is PLGA, which hydrolytically degrades into lactic and glycolic acid when 

exposed to an aqueous environment. However, its degradation byproducts often lower the 

surrounding pH, and may cause cell death and tissue necrosis, so several recent studies have 

looked into a modified PLGA scaffold to self-neutralize its degradation byproducts (14,67). 

One of the developed strategies utilized basic degradation byproducts of magnesium-based 

biomaterials by compositing it with the PLGA to counteract its acidic byproducts (Figure 4) 

(14). The Mg:PLGA composite was developed by incorporating pure magnesium 

microparticles into PLGA during the solvent-casting method. The developed film was 

capable of maintaining near physiological pH levels while degrading, while the pure PLGA 

films resulted in sudden decreases in pH, as expected by its acidic degradation byproducts 

(Figure 1A). The inclusion of Mg also enhanced the bioactivity of the composite, as 

evidenced by high amounts of calcium apatite deposition when immersed in simulated body 

fluid (SBF) for 14 days (Figure 4B). These calcium apatite deposits were co-localized with 

the Mg atoms present in the scaffold, demonstrating the involvement of Mg in the 

precipitation of calcium apatite (Figure 4C). The in vitro assessment of the Mg:PLGA 

composites also confirmed its bioactivity as it resulted in significantly higher levels of cell 

induced mineralization, assessed through alizarin red quantification (Figure 4D). Therefore, 

novel biodegradable polymer - biodegradable metal (PLGA-MG) composite biomaterials, 

which demonstrated a neutral degradation profile while also taking advantage of Mg’s bone 
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compatible mechanical and osteogenic properties. In addition to Mg, inorganic molecules 

such as calcium phosphates are also commonly used alone or in combination with other 

biomaterials and they degrade in vivo via a variety of mechanisms including dissolution of 

constituent ions and resorption by osteoclasts. The release of ions such as Ca2+ and PO4
2− 

into the surrounding environment during its degradation has shown to promote osteogenic 

activity, leading to frequent use as a bone tissue engineering material (68,69).

Another mechanism of degradation for biomaterials is enzymatic degradation, where the 

biomaterial is degraded by enzymes that are already present in the body. With recent 

advancements in polymer and hydrogel engineering, new enzymatically degradable 

biomaterials have been developed that can utilize enzymatic degradation for a variety of 

purposes. Many enzymatically degradable biomaterials allow greater control over their 

degradation rate by controlling the amount of cleavage sites. For example, Pereira et al. 

tuned the degradation rate by varying the amount of matrix metalloproteinase (MMP) 

cleavage sites that were used to crosslink the gel (15). Enzymatic degradation could also be 

used to impart degradability to typically non-degradable materials. For example, an alginate-

based hydrogel, which is typically nondegradable in a mammalian system due to lack of 

enzymes capable of digesting alginate, was developed with peptide crosslinkers that could 

be cleaved by MMPs and allowed tunable degradation rates (70). The in vivo testing of the 

alginate-peptide hydrogel also showed an increase in host tissue infiltration versus the non-

degradable alginate gel, which suggests that the hydrogel would degrade with cellular 

activity and allow more tissue infill with time. Madl et al. have developed an enzymatically 

degradable structure that would also aid in cell infiltration, spreading, and growth by 

designing cleavable peptide crosslinks that would result in the release of degraded fragments 

(71). This allowed more room in the hydrogel as it degraded, thereby allowing greater cell 

growth and infiltration.

Biomaterial/scaffold chemical cues, such as surface chemistry and degradation play an 

important role in the tissue regeneration process. Functional groups present on a biomaterial/

scaffold surface control hydrophilicity/hydrophobicity and protein adsorption, which dictate 

cell adhesion and growth characteristics. Biomaterial degradation offers the space required 

for new tissue formation in a progressive manner while providing cell recruitment and 

induction cues through degradation products. Advances in biomaterial chemical cues have 

resulted in surfaces with varied types and levels of functional groups and degradability 

(Table 1). However, further characterization of tissue-specific responses to surface chemistry 

and degradation are needed to design biomaterial implants that can be precisely tailored for 

specific tissue engineering applications.

4. Biological Cues

Tissue engineering strategies often include biological factors as cues to promote and direct 

the desired tissue formation. These factors include protein growth factors as well as smaller 

signaling molecules that can either recruit cells or stimulate cell proliferation and 

differentiation. Therefore, there is a significant effort in tissue engineering to effectively 

utilize growth factors/signaling molecules in conjunction with biomaterials.

Kim et al. Page 10

Curr Opin Biomed Eng. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.1. Growth Factors and Small Molecule Delivery

Growth factors are signaling proteins typically produced by cells that serve a critical role in 

tissue development, repair, and regeneration. Several growth factors have been well 

characterized and commonly used in tissue engineering depending on the type of tissue 

being regenerated. Most growth factors are able to influence cell behavior in multiple stages 

of regeneration, such as recruitment, proliferation, and differentiation. On the other hand, 

small molecules are organic molecules that may or may not be naturally occurring and serve 

as ligands, cofactors, and/or inhibitors in cellular signaling to influence cell behavior. Unlike 

growth factors, small molecules are inexpensive and can withstand harsh biomaterial 

processing methods without losing biological activity. Biomaterials are specifically 

engineered to present biological cues in the mode required for specific tissue repair and 

regeneration types, such as burst release, sustained release, or their combination.

One of the current facets of biological factor delivery research is the sustained delivery of 

factors and extended maintenance of biological activity of the delivered factors. Since 

biological factors, specifically growth factors, rely heavily on their conformation for their 

bioactivity, the structure of these factors must be maintained; this can be a challenge 

considering the relatively short half-lives of many growth factors (1,5). As for the sustained 

release of the incorporated factors, a variety of strategies have been used, including 

enhancing electrostatic interactions with the loaded factor, covalent conjugation of the 

factor, and advanced fabrication techniques. Electrostatic interactions were used by Lin et al. 

to encapsulate vascular endothelial growth factor (VEGF) in functionally modified alginate 

with a variable carboxyl and amino group ratio, creating a tunable surface charge which 

allowed sustained delivery of VEGF (19). Mesoporous silica nanoparticles have also been 

used as a drug delivery vehicle since their nanoporous structure features high surface area, 

efficient drug loading, and physical diffusion barriers for controlled release (72). Several 

studies have also confirmed the sustained delivery and beneficial effects of covalent 

conjugation of biologic factors onto the biomaterial (73). However, this method of growth 

factor incorporation often results in loss of bioactivity, which needs to be accounted for 

while designing biomaterials/scaffolds with conjugated growth factors.

Multiple factor delivery has garnered attention as a way to present specific biological cues 

for certain events during the regeneration process or for regeneration of multiple tissue 

types/complex tissues. Multiple factor delivery strategies can be divided into three main 

categories. The first one is to deliver multiple factors at the same time to enhance the cellular 

response. Simultaneous delivery of BMP-2 and VEGF promoted osteogenesis and 

angiogenesis, which presents possible solutions for regeneration of vascularized bone tissue 

for larger sized defects (74). The second strategy is to deliver multiple factors sequentially to 

enhance the regenerative process. A sequential release of VEGF and FGF-2, followed by 

platelet derived growth factor (PDGF), stimulated the migration and proliferation of 

endothelial cells followed by maturation and vasculature development, leading to a more 

robust angiogenic response (75). Other temporally controlled factor delivery systems focus 

on sequential regeneration of multiple tissues, as shown by Yao et al., who utilized initial 

delivery of an angiogenic drug, deferoxamine (DFO), to prime vasculature formation before 

release of bone morphogenic protein-2 (BMP-2) for increased osteogenesis (18). The third 
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form of multiple factor delivery is spatially directed delivery, where factors are limited to 

different portions of the biomaterial so more than one tissue type can be formed in the same 

graft. These delivery systems have been mainly used in interfacial tissue engineering where 

the regeneration of various tissue types and their transitional areas are crucial for proper 

function. For instance, growth factor combination of TGF-β3/BMP-2 and TGF-β1/

osteogenic peptide were delivered in isolated locations along the scaffold (76,77) for 

osteochondral tissue, while BMP-4 and TGF-β3 were delivered in an isolated manner (78) 

for tendon-bone tissue-tissue constructs.

Release of factors based on external stimuli has also gained attention for possible uses in 

tissue engineering, drug delivery, and in vivo imaging by precisely targeting certain areas, 

conditions, and cells. A variety of strategies have been developed in accordance with 

multiple specific triggering stimuli, such as pH and enzyme activity. pH-specific release of 

drugs has mainly been developed for chemotherapy solutions to target acidic environments 

near tumors (79), but some pH-responsive delivery vehicles were also developed for oral 

medications that target the almost neutral intestinal mucosa pH while avoiding acidic pH of 

the stomach (80). These pH-responsive materials may be used in tissue engineering 

applications to deliver biological cues in response to changes in the pH brought on by tissue 

degeneration or abnormal events. Enzyme-activated delivery of factors utilizes the presence 

of certain enzymes to trigger the release of the incorporated factors. The exact design differs 

based on the enzymes that are present in the tissue, but enzyme-activated delivery systems 

have been designed to target hyaluronidase and MMP activities for cancer therapy (81,82). 

These designs may be useful for delivering matrix anabolic factors in response to an increase 

in matrix catabolic events and presence of the associated enzymes/proteins in the defect site.

4.2. Biologics Delivery for Cell Recruitment

In addition to aiding the proliferation and differentiation of progenitor cells, various factors 

have also been studied for their use in recruiting host cells to the implanted biomaterial. By 

utilizing endogenous cells, the implanted biomaterial can be cellularized without being 

cultured in vitro, thereby avoiding exogenous cell culture before implantation. Various 

factors have been identified to be chemotactic, with some attracting a wide range of 

progenitor cells while others attract tissue-specific cells. However, the use of chemotactic 

factors requires the establishment of a chemotactic gradient that the surrounding cells can 

sense and move towards. To that end, coordination between the loaded chemotactic factor 

and the biomaterial is required to provide sustained delivery of the factor for the requisite 

period to establish a gradient that recruits surrounding cells.

One method for establishing the chemotactic gradient is via steady release of the loaded 

chemotactic factor and relying on diffusion to form the gradient. A recent study adopted this 

approach to attract MSCs for articular cartilage repair using erythropoietin (EPO) 

incorporated into a hyaluronic acid hydrogel (83). This study demonstrated an initial burst 

followed by subsequent release of EPO, which was able to attract MSCs to the injury site. 

Similarly, Cipitria et al. utilized sustained release of stromal cell-derived factor-1α 
(SDF-1α), a commonly used chemoattractant for a variety of progenitor cells, to recruit 

MSCs for bone regeneration purposes (17). In this case, an alginate hydrogel with stiffness 
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tailored for bone tissue engineering, was loaded with SDF-1α and was able to continually 

release the factor after a period of burst release, which resulted in increased recruitment of 

endogenous MSCs and bone regeneration. Both studies report that the initial burst release of 

the factor quickly established the chemotactic gradient, while the following sustained release 

maintained the gradient throughout the cell recruitment phase. In both of these studies, the 

implanted biomaterial is able to recruit host cells by establishing a biological cue gradient in 

the environment. On the other hand, Xu et al. utilized a different approach by establishing a 

gradient of chemoattractant within the biomaterial itself (84). In this study, semaphorin 3A 

(Sema3A) was loaded onto polymerized Matrigel in a way that resulted in a concentration 

gradient. The established gradient of Sema3A, a neural progenitor cell attractant, was 

maintained for an extended period of time and was able to promote migration of neural 

progenitor cells deeper into the matrix. Therefore, by utilizing a variety of methods to 

establish a chemoattractant gradient and by utilizing the proper attractant, specific progenitor 

cells can be directed towards an acellular implant and allow for more complete regeneration.

Biological cues in the form of growth factors and small drug molecules control and direct 

cell behavior for the purpose of tissue repair and regeneration. However, the delivery of 

biological factors rely heavily on the relationship between the biomaterial delivery vehicle 

and the loaded biological factor, and much thought has gone into the optimization of this 

relationship. Some of the developed methods include direct loading, covalent bonding, and 

surface functionalization (Table 1). By these methods, the recruitment and induction of cells 

have been demonstrated, but further research is required to understand the ideal dosage, rate 

of release, synergies, release conditions, and other variables.

5. Conclusions and Future Directions

Biomaterials have been established as principal components of tissue engineering along with 

cells and signaling molecules. Over the last decade, biomaterial research efforts have 

significantly expanded the ways to introduce physical, chemical, and biological cues. The 

physical cues – in the form of surface topography, porosity, and material stiffness – are 

proven to influence cell behavior in terms of adhesion and growth. Chemical cues also affect 

various aspects of cell behavior, while overall chemical composition of materials can impart 

degradability and bioactivity to help coordinate regeneration and replacement of the defect 

with de novo tissue. On the other hand, biomaterials/scaffolds are combined with signaling 

molecules in a number of ways to influence or control cell behaviors via growth factors or 

small drug molecules.

There has been significant progress in terms of developing methods/techniques to fabricate 

biomaterials with various physical, chemical and biological cues; however, efforts are mostly 

limited to introducing them and studying cell responses in isolation. It is critical that 

combinations of physical, chemical, and biological cues are studied to establish synergistic 

effects for tissue regeneration. Therefore, future research efforts may focus on the interplay 

between the various cues and their synergistic effects on various tissues. Further research 

may also utilize the cell/tissue-specific responses to these cues to develop more specialized 

biomaterials and biomaterial structures that are optimized for specific tissue/defect repair 

and regeneration. Also, in addition to cues delivered by the implanted biomaterials, recent 

Kim et al. Page 13

Curr Opin Biomed Eng. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



research has also highlighted the efficacy of external cues in the form of electrical or 

magnetic stimulation on the regeneration of tissues, which opens up another avenue for 

research and exploration.
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Figure 1. 
Engineering scaffold porosity to develop an oxygen tension controlled scaffold. (A) 

MicroCT reconstruction of available pore space in the PLGA microsphere scaffold with 20% 

NaCl porogen content showing variations in pore sizes ranging from 100–500 μm. (B) Live 

dead staining of the interior of the oxygen tension controlled scaffolds after 21 days in 

culture with MSCs. (C) Oxygen tension and pH levels in the interior of PLGA scaffolds 

made with varying concentrations of NaCl porogen after 21 days in culture with MSCs 

(Percentage indicates NaCl porogen content). (D–E) In vivo evaluation of oxygen tension 

controlled scaffold in a rabbit ulnar defect model. Von Kossa staining (D) and Goldner’s 

trichrome staining (E) of the defect 12 weeks after implantations shows newly formed 

mineral throughout the scaffold pore structure, demonstrating the ability to support large-
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area tissue regeneration. Parts A–C were reproduced from Ref # with permission from 

Springer, copyright 2014 (11). Parts D–E were reproduced from Ref # with permission from 

Mary Ann Liebert, copyright 2016 (32).
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Figure 2. 
Schematic of various physical cues a biomaterial can present to the nearby cells and their 

effects on tissue regeneration. Overall pore architecture drives cell migration throughout the 

scaffold by providing ample nutrient and waste transport while providing surface area for 

cell attachment and growth. The attachment of cells is further enhanced by specific surface 

textures that aid attachment of specific cells and help guide cell growth and differentiation. 

The differentiation of attached cells can also be improved by tailoring the surface stiffness of 

the biomaterial to match that of the native tissue.
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Figure 3. 
Graphical representation of biomaterial surface chemistry and associated cellular 

interactions. The wettability and polarity of the biomaterial surface guides attachment of 

serum proteins which then can aid or hinder the attachment of inflammatory cells that can 

help dictate whether the biomaterial will be targeted for inflammation or cell recruitment for 

tissue regeneration. Specific functional groups that are present on the surface can also help 

guide tissue regeneration by aiding/preventing inflammation. The surface of the biomaterial 

can be further functionalized for more specific tissue types by presenting inorganic factors 

like calcium apatites (Cap), ECM proteins, and/or growth factors (GF) to guide cell 

migration, growth, and differentiation.
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Figure 4. 
PLGA-Mg composite biomaterial neutral degradation. (A) Degradation profile of PLGA and 

PLGA containing 5wt% of Mg. (B) SEM image of 5% Mg:PLGA after 14 days immersed in 

Simulated Body Fluid (SBF), insert clearly show apatite crystal growth. (C) EDAX spectra 

of calcium apatite deposits on 5% Mg:PLGA after immersion in SBF (D) Alizarin red 

quantification of PLGA and Mg:PLGA samples after culture with MC3T3-E1 cells. 

Reproduced from Ref # with permission of IOP Publishing, copyright 2018 (14).
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Table 1.

Summary of recent publications regarding biomaterial-induced programming of cell behavior.

Author Biomaterial Results Reference

Physical Cues

Tijore et al. Microchanneled gelatin Elongation and myocardial differentiation of seeded MSCs
Synchronized contraction of differentiated myoblasts

(12)

Lee et al. PEG hydrogels of varying 
stiffness (50–100 kPa)

Chondrogenic differentiation of MSCs in softer gels
Differentiation into hypertrophic chondrocyte in stiffer gels through 
activation of WNT pathway

(13)

Stukel et al. PEG hydrogel of varying stiffness 
and RGD concentration (0.1–7.9 
kPa; 1–2.5 mM)

Enhanced neural differentiation of iPSCs and neurite growth in soft gels 
(0.1–0.8 kPa)
iPSCs more responsive to gel stiffness than RGD concentration

(51)

Hadden et al. Polyacrylamide hydrogel with 
varying stiffness gradients (0.5–
8.2 kPa/mm)

Evidence of durotactic behavior of adipose-derived MSCs
Observed migration of adipose-derived MSCs to migrate towards stiffer 
ends of the gel when cultured in gels with steeper gradient (8.2 
kPa/mm)

(53)

Chemical Cues

Visalakshan et al. Tissue culture plates coated to 
modify hydrophilicity

Hydrophobic surfaces increased adsorption of immunoglobulins and 
induced pro-inflammatory response from macrophages
Hydrophilic surfaces increased albumin adsorption and promoted anti-
inflammatory responses

(55)

Xu et al. PLGA/Mg composite films Acidic degradation of PLGA neutralized by basic degradation of Mg
Increased osteogenic differentiation of MC3T3-E1 cells

(14)

Boffito et al. Polyurethane scaffold conjugated 
with laminin-1 or gelatin

Improved cardiac progenitor cell adhesion for both protein coatings
Improved proliferation and differentiation into cardiomyocytes for 
laminin conjugated scaffolds

(85)

Flora et al. Elastin-like recombinamer-based 
hydrogel

Utilized gels that degrade at different rates to direct cell infiltration (86)

Biological Cues

Bai et al. PLGA/PLA composite scaffold to 
induce sequential factor delivery

VEGF and FGF-2 encapsulated in PLGA experienced faster initial 
delivery
PDGF encapsulated in PLA experienced slower delivery
Sequential delivery of these factors allowed rapid formation of 
vasculature in vivo

(75)

Vaghasiya et al. Mesoporous silica nanoparticles 
(MSN) coated with collagen

Drug payload loaded onto MSN and then coated with collagen to form a 
“capping layer”
Collagen coating digested by MMPs in vivo, releasing drug payload, 
allowing on-demand delivery of drug based on physiological conditions

(82)

Xu et al. Matrigel hydrogel presenting 
chemoattractant gradient

Chemoattractant semaphoring 3A (Sema3A) loaded onto Matrigel and 
gradient was established
Established Sema3A gradient attracted nearby neural progenitor cells to 
the gel and promoted neurogenesis

(84)

Zhou et al. Collagen hydrogel with graphene 
oxide

TGF-β3 adhered tightly to graphene oxide, while maintaining active 
conformation
Encapsulated cells were exposed to TGF-β3 and displayed increased 
chondrogenic differentiation

(87)
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