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Abstract

We combine linear viscoelastic measurements and modelling in order to explore the dynamics of 

blends of the same-molecular-weight ring and linear polymers in the regime of the low volume 

fraction (0.3 or lower) of the ring component. The stress relaxation modulus is affected by the 

constraint release (CR) of both rings and linear components due to the motion of linear chains. We 

develop a CR-based model of ring-linear blends that predicts the stress relaxation function in the 

low fraction regime of ring component in excellent agreement with experiments. Rings trapped by 

their entanglements with linear chains can only relax by linear-chain-induced constraint release, 

resulting in much slower relaxation of rings than of linear chains. The relative viscosity η ϕR* /ηL

of the blend with respect to the linear melt viscosity ηL at ring overlap volume fraction ϕR*

increases proportionally to the square root of ring molecular weight Mw, R. Our experimental 

results clearly demonstrate that it is possible to enhance the viscosity and simultaneously the 

structural relaxation time of linear polymer melts by adding a small fraction of ring polymers. 

These results not only provide fundamental insights into the physics of the CR process but also 

suggest ways to fine-tune the flow properties of linear polymers by means of adding rings.

I. INTRODUCTION

The importance of constraint release (CR) processes in the dynamics of polymer melts has 

been the subject of extensive investigations over the years and several models have been 
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proposed.1–12 The idea of CR was first introduced by Daoud and de Gennes,10 assuming a 

Rouse-like motion of the tube within which the generic chain in an entangled polymer melt 

is confined. Subsequently, Rubinstein and Colby7 accounted for tube length fluctuations and 

refined the previous model by considering the generic tube as a Rouse chain with a 

distribution of bead mobilities, therefore having a constraint release rate distribution. The 

prediction of such a self-consistent model resulted in a good agreement with experiments on 

binary blends.7 By using the ideas put forward by Rubinstein and Colby,7 des Cloizeaux13 

and Tsenoglou14 simplified their original model and introduced the concept of double 

reptation which proved simpler to apply for modelling the stress relaxation dynamics of 

polydisperse melts of linear polymers.

It was shown theoretically15 and confirmed experimentally16 that the diffusion of long linear 

polymers in a matrix of shorter homopolymers is qualitatively affected by CR only when the 

size asymmetry of chains of such a bidisperse mixture is large. In principle, the effect of 

constraint release on the stress relaxation is present even in monodisperse systems (although 

it is weaker than the similar effect in polydisperse polymers).15

While the effect of polydispersity on CR has been extensively investigated in simple linear 

polymer melts, the effect of different polymer architectures remains an outstanding problem.
1,17 One of the most intriguing blend systems involves linear and cyclic (ring) 

homopolymers in molten state.18–24 There are two limits in such a blend: high and low 

fractions of the cyclic polymer. The former case, especially the “almost pure” ring melt, 

corresponds to the so-called contamination regime by linear chains, which is unavoidable 

during the synthesis of ring polymers when some linear chains remain unlinked. The issue of 

linear chain contamination was a hot topic in the past three decades as well as one of the 

main causes of several discrepancies between experiments, theory, and simulations.25–29 

Only with the advent of advanced purification methods (liquid chromatography at the 

critical condition),30 sufficiently pure ring polymers were obtained. Kapnistos et al.31 have 

reported an experimental investigation of the rheological behavior of experimentally pure 

entangled polystyrene ring polymers and their blends with controlled linear polymer 

fraction. They found a power-law stress relaxation for the pure ring polymer (no 

entanglement plateau), the extreme sensitivity of linear viscoelastic response to the presence 

of traces of linear chains, and confirming earlier findings a non-monotonic dependence of 

blend viscosity on the fraction of linear chains.18,32 In particular, adding small amounts of 

rings to linear matrices resulted in an increase of viscosity above that of the matrix,18,32–32. 

The increase of the blend viscosity above pure linear and ring homopolymer melts is 

intriguing for two reasons: first, it is a challenge to fundamental understanding for a blend 

without specific interactions other than topological (entropic). Second, it can be used as a 

way to tailor the flow of polymers since adding a few rings substantially increases the 

viscosity of a linear matrix. However, most experimental and simulation investigations on 

ring-linear blends so far have focused on the other extreme of large ring fractions, associated 

with the problem of linear contamination.23,28,31,33 Very recently, mixtures of ring and 

supercoiled DNA chains were investigated in water at the dilute-to-semidilute crossover by 

means of microrheology.34 It was reported that they exhibited signatures of entanglement 

dynamics. Zhou et al.35 used single-molecule techniques to probe the deformation of DNA 

rings in semidilute linear polymer solutions in a cross-slot device. An important outcome of 
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that work is the observation of large conformational fluctuations of the rings even in dilute 

linear polymer solutions, a phenomenon attributed to the threading of rings by linear chains.

In this work, we investigate the stress relaxation dynamics of blends of linear polystyrene 

polymer melts and experimentally pure ring homopolymers of the same molar mass. The 

ring polymer concentration was kept low, reaching at most 2.5 times the overlap ring volume 

fraction

ϕR* =
3Mw, R

4πNAρ
C∞

Mw, R
2

6

3 = 0.13

for rings with weight-average molar mass Mw,R=185 kg/mol and polystyrene melt density 

ρ=0.99 g/cm3 at 150 °C,36 where C∞=0.0047 nm2 mol g−1 is the Flory’s characteristic 

ratio37 and NA is the Avogadro number. This range or ring volume fractions, ϕR ≤ 0.3, was 

chosen to stay below the entanglement ring volume fraction ϕR,e, in order to avoid ring-ring 

topological interactions, so that conformations of rings in the blend remain ideal. We 

estimate the entanglement volume fraction for rings with the Kuhn degree of polymerization 

NR=257 and the dilution exponent α as ϕR,e=(NR,c/NR)1/α. Here NR,c is the Kuhn degrees of 

polymerization for the crossover between unentangled and entangled regimes of pure ring 

melts. Note that the Gaussian size of ring polymers is smaller than the size of linear 

polymers of the same molecular weight. Therefore, the crossover degree of polymerization 

for entanglements of ring polymers, NR,c, is expected to be larger than NL,c=2Ne for the 

crossover between unentangled and entangled regimes for linear polymer melts38. From 

computer simulations21 it is expected that NR,c=3Ne, where Ne=24 is the Kuhn degree of 

polymerization between entanglements for linear polystyrene melts. For the dilution 

exponent α=1, we estimate the entanglement volume fraction of rings with NR=257 to be 

ϕR,e =0.3, whereas for the dilution exponent α=4/3 we obtain slightly higher estimate ϕR,e 

=0.4. Therefore, the entanglement volume fraction ϕR,e of polystyrene rings with molar mass 

Mw,R=185 kg/mol in the linear-ring blend is expected to be in the range 0.3 – 0.4. Note that 

in the presentation of the results below we assume that Kuhn degree of polymerization 

between entanglements Ne is the same for linear chains and ring polymers in the linear-ring 

blend.

A model was developed in order to describe the relaxation modulus and viscosity of such 

symmetric homopolymer blends in the regime of low ring polymer volume fraction ϕ < ϕR,e. 

As the ring volume fraction is kept below the ring-ring entanglement volume fraction, the 

entanglements between rings and linear polymers can only relax through constraint release 

processes driven by the reptation motion of linear chains. This sets such blends as the best 

systems to investigate constraint release mechanisms of entangled polymer dynamics.
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II. MATERIALS AND METHODS

II.1. RING AND LINEAR POLYSTYRENES

The polystyrene (PS) ring sample was synthesized by ring-closure of telechelic polystyrene 

which was prepared in THF by anionic polymerization using potassium naphthalenide as an 

initiator. The details of the synthesis, purification, and characterization schemes are 

described elsewhere.39–41 The weight-average molar mass of both ring and its linear 

precursor was 185,000 g/mol and its polydispersity was 1.01. This is close to the highest-

molar-mass stable polystyrene ring that has been synthesized so far.39 The results of its 

purification are demonstrated in Fig.1. The peak width of the Size Exclusion 

Chromatography (SEC) spectrum is a contribution of polymer dispersity and the band-

broadening of SEC. The results suggest that we have experimentally pure nearly 

monodisperse rings.

Differential scanning calorimetry measurements indicated that the glass transition 

temperatures (Tg) of the present linear and ring polystyrenes are essentially the same with 

the average value of 103.5±1 °C (See Figures S1 and S2 in SI).

Blends were prepared by mixing defined amounts of rings and linear polymers in toluene in 

the dilute regime. Solutions were kept at room temperature for about two days to ensure 

complete dispersion. Gentle stirring was provided by hands over time. Finally, toluene was 

stripped out under vacuum conditions over 7 days, and the resulting blends were ready to be 

press-molded into disks.

II.2. RHEOMETRY

Small amplitude oscillatory measurements were performed by means of a strain-controlled 

ARES rheometer (TA Instruments, USA), equipped with a force rebalance transducer 

(2KFRTN1). Stainless steel parallel plates (8 mm diameter, a gap of about 0.6 mm) were 

used and the temperature was controlled (to ±0.1⁰C) with the convection oven of the ARES 

rheometer (using nitrogen gas flow to reduce the risk of degradation). The temperature range 

of 130–170 °C was explored. Sample stability and linear response were ensured by 

performing dynamic time and strain sweep tests, respectively, as well as reproducibility 

tests.

III. RESULTS AND DISCUSSION

III.1. EXPERIMENTAL MEASUREMENTS

The master curves of storage and loss moduli (G’ and G”) as functions of frequency ω are 

shown in Figure 2A for the pure components, ring and linear polymers, and blends at 

different ring mass fractions (individual data of each blend composition, as well as the raw 

data at each temperature are presented in Figs. S3–S14 of the SI). The reference temperature 

for the master curves is 150 °C for both pure components and blends. This choice guarantees 

iso-friction conditions as no variation of the glass transition temperature was observed for 

the pure components. This is also confirmed by the fact that the data in the high-frequency 

region, which probes the segmental dynamics, superimpose well for all samples. The 
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horizontal (aT) and vertical (bT) shift factors of the master curves are reported in Figure 2B. 

All the investigated systems exhibited the same horizontal shift factors, and the values of the 

constants of the Williams-Landell-Ferry (WLF) equation42 are consistent with other 

experimental works on polystyrene melts43 and reported in the same figure. The vertical 

shift factor was calculated according to the following expression for the density variation of 

pure polystyrene with temperature: ρ(T) = 1.2503 − 6.05 × 10−4T[K] in g/cm3.36

III.2. MODEL FOR THE STRESS RELAXATION FUNCTION

We start by considering the mechanisms involved in the stress relaxation process of 

entangled melts of linear polymers. Established theories for linear dynamics of linear 

polymer melts7,11 are based on the tube model,44 topological constraint dynamics45–54 and 

Rouse modes.11,15

On a length scale smaller than the tube diameter,15 entanglements are not involved in the 

relaxation process and the dynamics resemble those of unentangled linear polymer chains 

well-described by the Rouse model.15 These fast Rouse relaxation modes can be expressed 

by equation (1), where τR is the Rouse time expressed as τR=τeZ2, and τe is the relaxation 

time of an entanglement strand containing Ne monomers, Z=N/Ne is the number of 

entanglement strands per chain, and Ge is the plateau modulus corresponding to τe.

GF , Rouse t = Ge
1
Z ∑

p = Z

N
exp − 2p2t

τR
(1)

The longitudinal stress relaxation modes (along the confining tube) can be described as 

Rouse modes (equation (2)). The latter contribution was addressed by Milner and 

McLeish55and originates from the fact that because different tube segments before 

deformation are oriented differently, they also stretch differently, hence, redistribution of 

monomers along the tube takes place after the deformation (see Figure 3B). It was shown11 

that these relaxation modes contribute to the relaxation of 1/5 of the total stress stored in the 

tube.

GLong t = Ge
1

5Z ∑
p = 1

Z − 1
exp − 2p2t

τR
(2)

Both “fast Rouse” (equation (1)) and longitudinal (equation (2)) modes are active for 

relaxation times up to the Rouse time of the chain (τR). Note that the glassy dynamics at 

high frequencies is not considered in the present model. At times longer than the Rouse time 

of an entanglement strand τe, a generic chain experiences the topological constraints exerted 

by the neighboring chains and relaxes stress primarily through reptation and contour length 

fluctuations (CLF)15,56,57 (see Figure 3C). CLF is the process of displacement of chain ends 

in and out of the tube at times faster than τR. This process accelerates the relaxation of Z1/2 

tube sections near tube ends. In addition, a multi-chain contribution to the stress relaxation is 

also present and can be expressed as the constraint release (CR).15 The origin of such an 

additional relaxation mechanism (see Figure 3C) is due to the fact that the constraints of a 
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particular chain are affected by the motion of the neighboring chains. The motion of the 

surrounding chains results in the release of some entanglements of a given chain, while new 

entanglements are formed, thereby changing the conformation of the tube of the chain.

Those three contributions can be expressed according to the self-consistent theory developed 

by Rubinstein and Colby7 that approximates entanglement part of stress relaxation function 

as the product of single-chain contribution μ(t) (reptation and CLF) and constraint release 

contribution R(t)

GL t = Geμ t R t

This theory is based on the duality principle that implies that the rates of relaxation by 

single-chain motions (reptation and CLF) are equal to the rates of constraint release events 

between this chain and its neighbors.

The stress relaxation function for reptation and CLF, μ(t), is presented in equation (3)7 

where P(ϵ) is the spectrum of relaxation rates representing the fraction of entanglements 

released at a rate ϵ due to reptation (equation (4b)) and CLF (equation (4c)). The duality 

concept indicates that P(ϵ) also describes the rate of CR events. τL represents the reptation 

time of the linear polymer chains (τL = τeZ3), NL is the total number of monomers per 

(linear polymer) chain, and ν is the adjustable parameter.

μ t = ∫
0

∞
P ϵ  exp −tε dε (3)

P ϵ =

0 if ε < 1
τL 1 − v/ NL

2

1
2 τL

ε− 3
2 if 1

τL 1 − v/ NL
2 < ϵ <   NL

v2τL
  4 b

1
2

v2

NLτL

1/4
ε− 5

4  if ε > NL
v2τL

    4 c

4(a)

R t = ∫
0

∞ dM ϵ  exp  −ϵt
dϵ dϵ = t∫

0

∞ exp  −ϵt
1 + C1ϵ−β1 + C2ϵ−β2

dϵ (5)

The entanglements of a given chain do not all relax at the same rate: there are some 

entanglements close the ends which relax faster and some far from the ends which relax 

slower. For such a reason the CR term (equation (5)) represents the motion of a confining 

tube by a Rouse chain with the probability distribution of bead mobilities assumed equal to 

the spectrum of relaxation rates P(ϵ). The function M(ϵ), which describes the relaxation rate 

of CR events can be obtained numerically for the known probability distribution of 

mobilities. In the present case, as well as in that reported in Ref. 7, the empirical function 
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M ϵ = 1/ 1 + C1ϵ−β1 + C2ϵ−β2  provides a realistic description of the CR contribution to the 

stress relaxation. The constants displayed in the M(ϵ) function are C1=0.15+12 NL
−0.7, 

C2=4.6+2000 NL
−2.1, β1=0.14+0.27 NL

−0.27, β2=0.78+2.4 NL
−0.9 as reported in literature.7 

Note that, in monodisperse linear polymer chains, the contribution of the constraint release 

mechanism to the stress relaxation is smaller than the reptation contribution, yet non-

negligible (see Figure S15 in SI).

The segmental dynamics of the rings and linear polymers are almost the same and the 

segmental dynamics of the melt does not significantly change with the addition of rings to 

the linear matrix. The long-time dynamics of blends are affected by the addition of even low 

fractions of ring polymer to linear polymer melts.

Topological interactions between non-concatenated ring polymers change their 

conformations in pure melts from ideal to fractal loopy globular.58 In the present study, we 

consider a low volume fraction of ring polymers in ring-linear blends below the onset of 

ring-ring topological interactions (Figure 3A). At these low volume fractions (ϕR < ϕR,e) 

rings are threaded and entangled by linear chains but do not topologically interact with each 

other and are expected to maintain ideal conformations. Entanglements between rings and 

linear polymers can only relax by CR due to the motion of linear chains (Figure 3D). We, 

therefore, assume that topological part of stress or rings relaxes through CR driven by the 

reptation of linear chains.

The stress relaxation of rings by constraint release process (see Figure 3D) can be 

approximated by

GR t = Ge

exp − t

AτL
NR
Ne

2

1 + t
AτL

(6)

The denominator of this expression is the approximation of the Rouse constraint release 

motion of the tube of rings with the rate controlled by the reptation time τL of the linear 

chains. The numerator in equation (6) is the exponential cut-off of this constraint release 

process of rings containing NR/Ne entanglements at the corresponding Rouse time τL(NR/

Ne)2. The coefficient in equation (6) is the plateau modulus Ge and A is the dimensionless 

parameter relating the effectiveness of reptation of linear chains to change the conformation 

of the confining tube of a ring.

Combining equations (1) – (6) we express the stress relaxation modulus of the blend as a 

function of linear and ring polymers’ contributions as well as the ring volume fraction ϕR:15

G t = GL t 1 − ϕR + ϕRGR t (7)

where GL(t) is the contribution of the linear chains to the relaxation modulus of the blend 

(GL(t) = Geμ(t)R(t)). Note that we use the constraint release expression R(t) of pure linear 
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melts (eq (5)) and thus ignore the effect of rings at low volume fraction (ϕR < ϕR,e) on this 

constraint release function. Equation (7) can be re-written by using the equations (1–6) as

G t = GF , Rouse t + GLong t + 1 − ϕR Geμ t R t + ϕRGR t (8)

Note that in the above expression the term in square brackets on the right-hand side contains 

the contribution to stress relaxation from modes involving entanglements, whereas the first 

two terms are the same for both rings and linear chains and correspond to unentangled 

modes. The zero-shear viscosities of both linear precursor and blends at different ring 

volume fractions are calculated by integrating the stress relaxation modulus as η0 = ∫0
τG t dt

(see Table I and Figure 5).

III.3. COMPARISON OF THE MODEL WITH EXPERIMENTAL DATA

The result of the theoretical prediction for the linear precursor and blends in terms of G(t) is 

shown in Figure 4 along with the experimental results (transformed into G(t) representation). 

The experimental relaxation modulus was obtained through the conversion of the dynamic 

data shown in Figure 2A by using the method of Schwarzl.59 The comparison between 

experiments and theoretical predictions in terms of dynamic moduli as functions of 

frequency are shown in Figs. S4–S7 of the Supporting Information. The theoretical 

predictions for pure ring polymer melt and the corresponding data are not shown as the 

corresponding theoretical description goes beyond the scope of the present work and has 

been already discussed in the previous publications31,33,58,60. The procedure used to model 

the stress relaxation modulus is described in detail below. The first step is to estimate the 

reptation time τL and entanglement time τe as the reciprocal frequencies of the low- and 

high-frequency intersections of storage and loss moduli of pure linear melt (see Figure 2A). 

The corresponding values are τL= 2.4 s and τe = 0.002 s (also reported in Table II). The 

second step is to fit the stress relaxation function of a pure linear melt using equation (8) 

with ϕR=0 and with an adjustable parameter ν, using experimentally determined reptation 

time (τL=2.4 s) and entanglement time (τe=0.002 s). The best fit was found with ν=2.13 (see 

the black line in Figure 4). Previous experimental results7 on two polybutadiene linear chain 

systems with molar masses 355,000 g/mol and 70,900 g/mol reported the value ν=1.8, 

which is close to the value ν=2.13 obtained in this work. The same value ν=2.13 was kept 

for all the blends. Next, the A coefficient in eq. (6) was adjusted to obtain the best fit of the 

experimental data. The resulting single value of A for all blends was A=0.32. Hence, the 

only parameter varying between different curves in Figure 4 is the ring volume fraction ϕR 

of each sample (see equation (8)). The predictions of the phenomenological model for 

linear-ring blends are compared with experimentally measured stress relaxation functions for 

five blends with volume fractions of rings varying from 0.05 to 0.3. The data in Figure 4 are 

shifted vertically for clarity of presentation. The reference is the pure linear melt with ϕR = 

0. The shift factor α was chosen to be 3, 8, 20, 50 300 with increasing ring fraction (ϕR = 

0.05, 0.1, 0.15,0.2 and 0.3, respectively). In order to measure how well the measured data 

are replicated by the model, the coefficient of determination R2 (equation (9)) was calculated 

for all the data-sets and reported in Figure 3.
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R2 = 1 −
∑i logyi − logfi

2

∑i logyi − logy 2 (9)

where yi represents the ith experimental value, fi is the predicted value and logy the mean of 

the logarithm of the experimental value. The predicted values display at most an error of 8% 

for the pure linear chains (ϕR=0) compared to the observed data, whereas for the blends the 

error is only 1%. Hence, the predictions of the present CR model for linear-ring polymer 

blends are in excellent agreement with the experimental data for 5 blend compositions (with 

ring volume fraction ϕR ≤ 0.3). The only adjustable parameters are ν=2.13, fixed based on 

the best fit of stress relaxation of pure linear melt and the constraint release coefficient for 

rings A=0.32. Different representations of Figure 4 are reported in Figures S16 and S17 in 

SI.

The table below reports the viscosity values calculated as η0 = ∫0
τG t dt for both experiments 

and model by using adjustable parameter A=0.32 as discussed above (see eq 6). The 

viscosity values of the linear chain precursors are also reported in the table below.

The viscosity of the blend can be expressed in an analogous way with the linear chain 

contribution reduced by 1-ϕR and with an addition of ring contribution. Note that the 

reduction of linear chains contribution to viscosity is expected to be smaller than the 

increase in viscosity due to the rings contribution. By analogy with equation (7), the 

viscosity of the blend can be written as:

η = 1 − ϕR ηL + ϕRηR (10)

where the viscosities of linear (ηL) and ring (ηR) consist of contributions from modes that 

do not (ηun) and do (ηen) involve entanglements

ηL = ηun + ηen, L (10a)

ηR = ηun + ηen, R (10b)

The contributions to viscosity that do not involve entanglements are almost the same for 

both linear and ring polymers

ηun = ∫
0

∞
GF , Rouse t + GLong t dt (10c)

The contribution to linear chain viscosity from modes that involve entanglements is

ηen, L = Ge∫
0

∞
μ t R t dt = cLGeτeZ3

(11)
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where the coefficient cL = 1.77 is obtained by integration of μ(t)R(t). The contribution to 

ring viscosity from modes that involve entanglements is

ηen, R = ∫
0

∞
GR t dt = A πGeτL

NR
Ne

(12)

The viscosity of the blend can be written in terms of specific viscosity by diving equation 10 

by ηL and subtracting 1:

η
ηL

− 1 = ϕR
ηR
ηL

− 1 = ϕR
ηen, R − ηen, L
ηun + ηen, L

(13)

The contribution to viscosity due to modes that do not involve entanglements is small 

(11,700 Pa s) compared to those involving entanglements (1.2×106 Pa s) and is ignored 

below. Therefore, the specific viscosity can be approximated using eqs. 11 and 12 as

η
ηL

− 1 = ϕR
ηen, R
ηen, L

− 1 = ϕR
A π
cL

NR
Ne

− 1 (14)

A comparison between the experimental results (open circles) and the values predicted by 

equation (14) (solid green line) is shown in Figure 5 as a function of the ring polymer mass 

fraction. Two remarks are in order: (i) a relatively small volume fraction ϕR = 0.2 of ring 

polymer suffices to almost double the viscosity of the blend; (ii) the predicted values are in 

very good agreement with the experimentally measured viscosity (the standard deviation R2, 

in this case, is 0.9, amounting to less than 15% error). The increase of the viscosity of the 

blends was attributed to the conjecture that rings trapped by their entanglements with linear 

chains can only relax by linear-chain-induced constraint release. This leads to much slower 

relaxation of rings than of linear chains (see eq. (6)). Replacing linear chains by much 

slower relaxing entangled rings increases blend viscosity. This trend continues until a higher 

fraction ϕR, rings begin to topologically restrict other rings, forcing them into more compact 

conformations. Ring-ring topological constraints relax by different (much faster) modes.58 

This regime of ϕR is not addressed in this work. The prefactor A π/cL was found to be 0.32 

(see solid green line in Figure 5). The dashed black line in Figure 5 represents the specific 

viscosity estimated by the integral of equation (8). Further, in Figure 5 the overlap (ϕR*) ring 

fraction is indicated by the arrow and the estimated range of the entanglement (ϕR,e) ring 

fraction is indicated by the red square bracket. The latter represents the ring fraction above 

which ring-ring topological interactions become non-negligible. In such a case the stress 

relaxation of topologically interacting entangled rings58 should be accounted for in addition 

to ring-linear constraint release. Hence, the present analysis is not applicable beyond ϕR,e 

where the dependence of blend viscosity and stress relaxation function on ring fraction is no 

longer linear (in analogy to other mixtures involving tube dilation). In fact, we expect that 

the maximum viscosity of the blend occurs around ϕR,e. The dynamics around the peak 

viscosity and the higher ring fraction regime will be addressed in a future work both 

theoretically and experimentally.
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Table II summarizes the main molecular characteristics of polystyrene (from literature, 

synthesis and rheological measurements) used here. All the characteristic times refer to the 

linear polymer precursor at a reference temperature Tref= 150 °C.

IV. CONCLUSIONS

We have combined linear viscoelastic measurements and modelling in order to explore the 

dynamics of symmetric linear-ring polymer blends in the lower-ring fraction regime. Blends 

of linear and ring polymers display unique rheological properties for small fractions (ϕR ≤ 

0.3) of ring polymers. Even though viscosity and relaxation time of pure ring melt is lower 

than that of linear chains melt, the terminal relaxation time and the zero-shear viscosity of 

the investigated ring-linear blends increase above the values for pure linear melts with 

increasing ring fraction. The enhancement of viscosity reaches nearly a factor of 2. The 

origin of this phenomenon lies in the fact that ring polymers threaded by and entangled with 

linear chains can only relax by the constraint release processes. This constraint release of the 

rings driven by the reptation of the linear chains is much slower than reptation of linear 

chains resulting in slower relaxation times of these rings in comparison with the linear 

matrix and correspondingly higher contribution of these rings to the viscosity of the blend. 

We have used the self-consistent theory proposed by Rubinstein and Colby for pure linear 

polymer chains and Rouse constraint release model to treat the relaxation of rings. The 

model, which is appropriate for the regime of low ring fractions (here we have performed 

experiments at ϕR ≤ 0.3) predicts the stress relaxation function and viscosity of different 

blend fractions with only two fitting parameters: ν and A. The value ν=2.13 was obtained 

by fitting the stress relaxation data for the linear precursor, the value of A=0.32 represents 

the effective rate of constraint release of rings by reptating linear chains. The coefficient A is 

smaller than unity because many of the constraints imposed on rings by linear chains relax at 

times shorter than reptation time by tube length fluctuations of linear chains. Both 

parameters ν and A were kept constant for all the blends. This work proposes a new self-

consistent model for blends involving rings and linear polymers. The model predicts that the 

relative viscosity at ring overlap increases proportionally to the square root of the degree of 

polymerization of rings

η ϕR*
ηL

≈ ϕR*
NR
Ne

NR
1/2 .

The prediction will be tested in future work by measuring the viscosity of ring-linear blends 

with different degrees of polymerization. The present work clearly demonstrates that it is 

possible to enhance the viscosity and simultaneously the structural relaxation time of linear 

polymer melts by adding a small fraction of ring polymers and provides a quantitative model 

of this enhancement.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Size exclusion chromatography spectrum (refractive index Δn versus elution volume VE) for 

linear precursor (green dashed line) and ring (blue solid line) before and after (red dotted 

line) fractionation at the critical condition. Separation conditions: three mixed bed columns 

with THF as eluent at a flow rate of 0.7 mL/min. Column temperature: 40°C.
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Figure 2. 
A) Master curves of the frequency dependence of G′ (solid symbols) and G″ (open 

symbols) for the pure polymers and blends at different ring volume fractions. The reference 

temperature is 150 °C. Black arrows represent the characteristic reptation time (τL) of linear 

chains and entanglement time (τe) estimated as the moduli crossover at low and high 

frequency respectively for linear homopolymer. B) Horizontal (left-hand y-axis and solid 

symbols) and vertical (right-hand y-axis and open circles) shift factors. The red line 

represents the WLF fit, with the respective constants at 150 °C provided in the plot. Note: 

master curves in panel A refer to a range of temperature from 130 °C to 170 °C.
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Figure 3. 
Schematic cartoon of the relaxation dynamics in ring-linear polymer blends at a low mass 

fraction of rings.
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Figure 4. 
Stress relaxation modulus of the pure linear chain melt (black) and ring-linear blends 

(color). Symbols refer to experimental data and solid lines to model predictions. The 

reference temperature is 150 °C. Black arrows indicate respectively the entanglement time 

(τe=0.002 s), Rouse time (τRouse=0.22 s) and reptation time (τL=2.4 s) of the linear polymer 

precursor. R2 values are also reported in the plot.
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Figure 5. 
Specific viscosity of rings in the linear-ring blend as a function of ring volume fraction. 

Experimental points (black circles) are reported along with model predictions (black dashed 

line with A=0.32). The solid green line is obtained using equation (14). The ratio A π/cL
was found to be 0.32 (see text). The red arrow at ϕR*=0.13 indicates the overlap ring 

fraction, while the red square bracket represents the entanglement ring fraction range 

0.3<ϕR,e<0.4 (see text).
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Table I.

Viscosity of ring-linear polymer blends calculates as η0 = ∫0
τG t dt

η [MPa s]

ϕR 0.00 0.05 0.1 0.15 0.2 0.3

Experiments 1.22 1.32 1.57 1.64 2.03 2.00

Model 1.23 1.38 1.52 1.68 1.81 2.11
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Table II.

Molecular characteristics and relaxation times.

Symbol Description

M0=720 g/mol Molar mass of a Kuhn monomer

Me= 17,500 g/mol Molar mass of an entanglement strand for a melt of linear PS

Mw= 185,000 g/mol Weight-average molar mass

b= 1.8 nm Kuhn monomer length

Ge= 3×105 Pa Plateau modulus at τe

τe=0.002 s Rouse time of an entanglement strand

τR = 0.22 s Rouse time of the linear precursor

τL = 2.4 s Reptation or disentanglement time of the linear precursor

Z=Mw/Me=10.6 Number of entanglements per chain

ϕR*=0.13 Overlap volume fraction of rings

ϕR,e=0.3–0.4 Entanglement volume fraction of rings
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