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Abstract

Canonical correlation analysis (CCA) is a common method used to estimate the associations
between two different sets of variables by maximizing the Pearson correlation between linear
combinations of the two sets of variables. We propose a version of CCA for transelliptical
distributions with an elliptical copula using pairwise Kendall’s tau to estimate a latent scatter
matrix. Because Kendall’s tau relies only on the ranks of the data this method does not make any
assumptions about the marginal distributions of the variables, and is valid when moments do not
exist. We establish consistency and asymptotic normality for canonical directions and correlations
estimated using Kendall’s tau. Simulations indicate that this estimator outperforms standard CCA
for data generated from heavy tailed elliptical distributions. Our method also identifies more
meaningful relationships when the marginal distributions are skewed. We also propose a method
for testing for non-zero canonical correlations using bootstrap methods. This testing procedure
does not require any assumptions on the joint distribution of the variables and works for all
elliptical copulas. This is in contrast to permutation tests which are only valid when data are
generated from a distribution with a Gaussian copula. This method’s practical utility is shown in
an analysis of the association between radial diffusivity in white matter tracts and cognitive tests
scores for six-year-old children from the Early Brain Development Study at UNC-Chapel Hill. An
R package implementing this method is available at github.com/blangworthy/transCCA.
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Introduction

Canonical correlation analysis (CCA), first introduced by Hotelling [21], is a useful
dimension reduction technique for exploring the relationship between two sets of variables.
CCA finds the linear combinations of the two sets of variables that have maximal Pearson
correlation. After the first direction, further directions are defined as the linear combinations
that are maximally correlated subject to the constraint that they are uncorrelated with all
previous directions. A small number of directions may be used to summarize the relationship
between the two sets of variables.

In Section 4 we present an example where CCA is useful in understanding the relationship
between the structure of white matter brain tracts and executive function in six-year-old
children. Many of the variables show excess skewness or kurtosis relative to the normal
distribution. This suggests transformations may be needed for CCA using Pearson’s
correlation to fully capture the association between the two sets of variables. However it is
not clear how to optimally transform the data, especially for heavy tailed distributions where
transforming may weaken linear associations. In such settings standard CCA may be
problematic, and alternative approaches are valuable.

In the finite dimensional setting when all second moments exist, CCA is valid based on an
eigendecomposition involving the sample covariance matrix. In settings where the empirical
covariance estimator is either inconsistent or inefficient, including when second moments do
not exist or when there are outliers contaminating the observed data, the CCA estimates
based on the empirical covariance matrix will also be either inconsistent or inefficient. There
is a rich literature on robust estimators of the covariance matrix that are insensitive to
outliers and heavy tailed distributions, and may improve the performance of standard CCA
based on Pearson correlation. Examples of these are the minimum covariance determinant
(MCD) [40], the S-estimator [31], and Tyler’s M-estimator [46]. There have been studies
examining the performance of CCA using robust estimators of the covariance matrix or by
maximizing other robust correlation measures [3, 7, 44, 47]. Many of these robust methods
emphasize eigendecompositions employing robust estimates of the covariance or Pearson
correlation matrix, which do not exist in the absence of finite moments. Further assumptions
are needed to interpret robust CCA in these settings.

We explicitly define a version of CCA for distributions with elliptical copulas that does not
require the existence of moments using properties of Kendall’s tau for elliptical
distributions. For elliptical distributions there is a known monotone relationship between
Pearson’s correlation and Kendall’s tau rank correlation. We utilize this relationship to
define CCA using Kendall’s tau instead of Pearson correlation such that it is well defined
when moments do not exist and has the same canonical directions and correlations as
standard CCA for elliptical distributions when moments do exist. Perhaps most importantly
this definition of CCA does not make any assumptions about the marginal distributions of
the variables, so it can be easily extended to a family of distributions known as transelliptical
distributions. The transelliptical family consists of all multivariate distributions which can be
transformed into an elliptical distribution using monotone marginal transformations, or
equivalently all multivariate distributions with a copula from an elliptical distribution [1, 11,
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12, 27, 30]. Standard CCA is inadequate to describe the relationship between two sets of
variables which are transelliptically distributed and have potentially non-linear associations.
CCA using Kendall’s tau identifies the linear relationships in the elliptical distribution which
characterizes the transelliptical distribution. This is desirable because within elliptical
distributions linear relationships describe meaningful association between the variables. We
show that CCA for transelliptical distributions can be estimated without transforming the
variables to an elliptical distribution, by estimating the scatter matrix based on
transformations of Kendall’s tau for all pairs of variables [30]. We establish that the resulting
estimates for CCA directions and non-zero correlations are consistent and asymptotically
normal. This result is more general than previous results which require affine equivariant
estimators of the scatter matrix for data generated from elliptical distributions [4, 44].
Interestingly, the estimate based on transformations of Kendall’s tau for all pairs of variables
is not affine equivariant. Simulations indicate that these results can be used to construct
confidence intervals that perform similar to bootstrap confidence intervals with close to the
desired coverage for the first canonical directions. Confidence intervals for higher order
canonical directions and correlations do not perform as well whether using bootstrap or
asymptotic results to construct the confidence intervals. This highlights the difficulty in
accounting for variability in the estimates due to added constraints for finite samples.

We also develop a testing procedure to identify non-zero canonical correlations using
bootstrap bias and standard error estimates. This is necessary because although the
asymptotic results for non-zero canonical correlations can be used to construct confidence
intervals, asymptotic results for zero canonical correlations are not as straightforward.
However based on previous results [5] it can be expected that the zero canonical correlations
will converge at rate 77 rather than /n. Therefore by inverting a normal bootstrap confidence
interval we derive a test that is consistent and conservative for large sample sizes. This
testing procedure can be used for CCA estimated using Kendall’s tau or standard methods.
This testing procedure is necessary because previously derived asymptotic tests assume the
data are generated from a multivariate normal distribution [37, 38, 48]. Even permutation
based tests assume that zero correlation implies independence, which is not true for non-
Gaussian elliptical copulas. In non-Gaussian elliptical copulas the canonical directions may
not be independent even when they are not informative of any associations between the two
sets of variables, and therefore permutation tests which test for independence are not useful
in determining which canonical directions capture meaningful associations between the two
sets of variables. Our bootstrap based testing procedure makes minimal assumptions, and
can even be useful even when data are not generated from a distribution with an elliptical
copula.

The rest of the paper is structured as follows. Section 2 overviews the theoretical framework
for rank estimation of CCA in the elliptical and transelliptical distributions and provides
theoretical results for consistency and asymptotic normality of the estimates. Section 3
reports the results of simulation studies under elliptical and transelliptical distributions.
Section 4 provides an analysis of associations between white matter structure and executive
function in six-year-old children. Section 5 overviews the paper and concludes with remarks.
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Rank correlation methodology

Assume Xis a px 1 dimensional random vector and Yis a ¢ x 1 dimensional random
vector. The first canonical directions for Xand Yare the px 1 vector, 4, and the gx 1

vector, &y, for which the correlation between U = a}X and vy = b}Y is maximized. The first

canonical correlation is defined as the Pearson’s correlation between U and V4. In order to
uniquely define a; and by, it is necessary to add the constraints that Var(4) = Var(\}) = 1
[21]. After the first canonical direction and correlation, higher directions are a sequence of p

x 1 vectors, a; and g x 1 vectors, bj; such that U; = "X and v'; = b1y are maximall
i q )j j =4 j=bj y

correlated, subject to the constraints that Cor(U;, U;) = Cor(U;, Vj) = Cor(V}, Uj) =
Cor(Vj, V) =0 for all /< j and Var(U)) = Var(V)) = 1 for all j. This uniquely defines the
canonical directions corresponding to a non-zero canonical correlation except for
multiplication of both g;and 4;by —1. There are at most min(p, g) non-zero canonical
correlations assuming both Xand Yare full rank.

The canonical directions and correlations for X'and Y can be shown to be the solutions to an
eigendecomposition based on the covariance matrix between Xand Y. Estimates of the
canonical directions and correlations are commonly based on the same eigendecomposition
involving the sample covariance matrix. If we define the joint covariance matrix of Xand Y
as

2XX XXY

Cor{(XT.¥D') = Yyx Xyy

then the canonical correlations and directions may be derived from:

—-1/2 —1 —-1/2 -1/2 -1 —1/2
C=YXX XXVY2YYXYXXZXX -D=2yy 2YXXXXXXYXYY -

The matrices Cand D share the same first min(p, g) eigenvalues, and the canonical
correlations are the square root of these eigenvalues [21]. If v,/is the jth eigenvector of C,

then uc,-zgﬂ(/z = a;, and if vy is the ith eigenvector of D, then vy; = 2;11/2 = b; [21].

CCA can be made robust via robust estimation of the covariance matrix [7, 44]. Many robust
estimates of the covariance matrix are consistent under the elliptical family of distributions.
The elliptical family of definitions are commonly defined through their characteristic
functions in the following way [8],

Definition 2.1 (Elliptical Distributions) A dx 1 random vector Zis considered to be
elliptical if for some d'x 1 vector y» some d x dpositive semi-definite matrix y » and a
function v 7[0, ) — R, the characteristic function, @, satisfies ® ~,, (9 = w(f'y ) for all
ax1 vectors ¢ In this case we would say that Zis a a1 dimensional elliptically distributed
random variable, which we can note as Z ~ €9 ,4(uz, Y. 7. wz)
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We use ) ~in definition 2.1 because in the elliptical distribution Y ~can be viewed as a
generalization of the covariance matrix for Z When second moments exist Y ~equals the
covariance matrix up to a scaling factor, and -~ can be chosen such that it is equal to the
covariance matrix. We will refer to Y »as the scatter matrix of Z, which exists even if second
moments do not exist. The following proposition shows that for linear combinations of Zthe
scatter matrix, Y ~»and location vector y are affine equivariant. To be precise, linear
combinations of elliptical random variables are also elliptically distributed with a scatter
matrix which is a quadratic formin y »

Proposition 2.1 (Linear combinations of elliptically distributed random variables) Assume
Z ~eDyluz, Y. 7,.wz). Define B to be a k x d dimensional matrix of rank k< d. Then W=

BZ is a kx 1 dimensional random vector where W ~ e Dy(Buz, BY. BT, y)

A proof of 2.1 can be found in Owen and Rabinovitch [36].
Letting Z= (X", ¥1)T, the scatter matrix of Zcan be decomposed as

XXX XXY

2z= 2YX XYY

Next we introduce the concept of the scale-invariant scatter matrix of Z, Pz which will be
equivalent to the correlation matrix of Zwhen second moments exist. Analogously to y » P~
may be written as,

Pxx Pxy

Pz =
Pyx Pyy

The elements of Pz pj; are related to the elements of § ~ o ; through the following equality,
pij = 0j/(foiifo ;). In general we will assume that y ~and P~are positive-definite in order to

guarantee existence of unique solutions for canonical correlation analysis.

A useful extension of elliptical distributions is the transelliptical family of distributions,
whose definition is given below,

Definition 2.2 (Transelliptical distributions) A ¢ x 1 dimensional random vector Zhas a
transelliptical distribution if there exists a positive-semidefinite matrix 2-with all ones
along the diagonal, a function w7 : [0, 00) — R, and a set of functions /1, ..., /i7ywhere

hz; : R — R is a monotone increasing function for /=1, ..., ¢ such that
{hz(Z), ..., hzd(ZP)T ~ D40, Pz, wz). The random variable Zis a ¢x 1 dimensional

transelliptically distributed random variable, denoted as Z ~ 7&4(h 7,0, Pz, w 7).

The elliptical distribution used in Definition 2.2 is scale invariant and has a scatter matrix
with all ones along the diagonal as well as centrality parameter zero in order to uniquely
identify the transformations, /1~ This definition was given by Liu et al. [30], but an
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equivalent definition is any multivariate distribution with continuous marginal distributions
and a copula from an elliptical distribution [1, 11, 12, 27].

For the elliptical and transelliptical distributions we propose an alternative definition of CCA
using a rank correlation measure. This version of CCA has the same true canonical
directions and correlations as standard CCA based on Pearson correlation in the elliptical
family when second moments exist and still well defined if they do not exist. This
construction uses properties of the rank correlation measure, Kendall’s tau. For two
univariate random variables Z;and Z;with joint CDF AZj;, Z)), Kendall’s tau is

ZiZj) _ E{sign(Z; — Z)(Zj - 71')}

where (Z;, Z)T is an identically distributed copy of (2, Z/)T [25]. This quantity exists for all
bivariate continuous distributions, and does not require the existence of moments. A
consistent estimator of Kendall’s tau based on n iid copies of Z;and Zj; (zj, z/-l)T, s (Ziny
Zip)', is

s

Zi,Zp 1 . .
T, PV = w Z sign(zjk — zipsign(zjk — zj1)
1<k<lI<n

This estimator is a U-statistic with consistency and asymptotic normality coming from U-
statistic theory [20].

Within the transelliptical family the following proposition, which is equivalent to Theorem
3.2 in Han and Liu [18] and Theorem 3.1 in Fang et al. [12], gives the correspondence
between Kendall’s tau and the elements of the transelliptical scatter matrix.

Proposition 2.2 (Kendall’s tau for transelliptically distributed random variables) Assume
Z ~ TE 4(h,0, P,y 2). \f pjjis the i jth entry of Pz and ©%iZ)) s the Kendall correlation

between the ith and jth entries of Z then ©%i) = (2/r) arcsin(p;)

Because the function connecting Kendall’s tau and the scale invariant scatter matrix is a
monotone increasing function between zero and one that takes the value zero only at zero,
maximizing Pearson’s correlation is equivalent to maximizing Kendall’s tau within the
elliptical family, and constraining Pearson’s correlation to zero is equivalent to constraining
Kendall’s tau to zero. Importantly this relationship still holds between elements of the scale
invariant scatter matrix and Kendall’s tau for tanselliptical distributions when moments do
not exist.

Given propositions 2.2 and 2.1 we define CCA for transelliptical distributions as follows,

Definition 2.3 (Canonical correlation analysis for transelliptical distributions) Assume Xis a
px1 dimensional random vector and Y'is a ¢ x 1 dimensional random vector, and that the

random vector (xT,YT) = Z ~ T Ep+ ¢hz.0, Pz, wz). Define fixto be the elementwise
functions of /~corresponding to X'and /y to be the elementwise functions of /1~
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corresponding to Y. The first canonical direction vectors, the p x 1 vector, 4, and the g x 1
vector, by, are the vectors that maximize #YL V) where U, = a}hX(X) and v = b{hy(Y),

subject to the constraint that {/; and V4 have scale parameter equal to one. The j#/ canonical
direction vectors are the px1 vector a;and the gx1 vector b;that maximize £ V) where

Uj=alhx(X)V;= blhy(Y), subject to the constraints that dUiY)) = dUiVi) = AV5iYp) =
«V}Vj) =0 forall /"< j and the scale parameter for U;and Vj;are equal to one for all /i The
Jth canonical correlation can be defined as sin{(ﬂ/Z)r(Uj’ VJ')}.

When second moments exist and (X7, ¥7)T has an elliptical distribution this definition is
equivalent to performing CCA based on the correlation matrix. When (X7, ¥")T has an
elliptical distribution but moments do not exist CCA for the transelliptical family uses the
same eigendecomposition of the scatter matrix as standard CCA. A large advantage of this
definition is when (X7, YNT is transelliptically, but not elliptically distributed. In this setting
standard CCA depends heavily on the marginal distributions of the variables in X'and Y,
which depends on /1y and /y. In many cases /1xand /1y can act to obscure potential linear
relationships between the variables. Definition 2.3 is based on P which does not depend on
the marginal distributions of the variables. In this sense CCA using Definition 2.3 can be
thought of as first transforming the variables to elliptical symmetry and then performing
CCA. As shown in proposition 2.1 linear combinations of elliptical distributions
meaningfully describe the associations within the variables.

It is important to note that when (X7, YT)T = Zis transelliptically distributed and v, is not
the generating function of a Gaussian distribution Ujand Ujfor /7# jare rank uncorrelated,
but not independent. The same is true of V;and Vj, as well as Ujand V. This is in contrast
to CCA when Zhas a multivariate normal distribution, where the different canonical variates
are not only uncorrelated, but also independent. However, for all elliptical distributions it
will still be the case that Ujis mean independent of Uj, in the sense that E(U]U) = E(U)
[36], and likewise for Vjand Vjas well as U;and V. In addition, if {Ax(X)T, A N} =
hA2) has a non-Gaussian elliptical distribution it is not possible to find linear combinations
of 1x{(X) and /1 (Y) that are independent. This is because any linear combination of /,{X)
and any linear combination of /1y Y) will jointly have a non-Gaussian elliptical distribution,
which cannot be independent [1, 24]. Therefore we believe that the constraints in
transelliptical CCA requiring different canonical directions to be rank uncorrelated, and
therefore mean independent, is a useful way to find a meaningful low-rank representation of
the association between the variables. Requiring fully independent, rather than just
uncorrelated canonical variates, for all transelliptical distributions would in some cases
require non-linear combinations of the data resulting in difficulty in interpretation.

An issue with estimating CCA for the transelliptical family is estimation of a scatter matrix
of transformed versions of Xand Y. If (X, YT = Zis transelliptically distributed and A,
hy, and yare all unknown, then all three must be estimated to transform Zto it’s
underlying elliptical distribution. Many methods assume that y~is the generating function
from a Gaussian distribution, which can introduce bias if this assumption is not met. In order
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to avoid estimation of /1y, /1y and y~>we directly estimate the scatter matrix in the
transelliptical distribution as follows [30],

Definition 2.4 (Transelliptical scatter matrix estimate) Assume that Z ~ 7&4(hz,0, Pz, w 7).
Assume that pj;is the element of 2~ corresponding to the /t/7and jth elements of Z. Then we
can estimate pj;;as g, ;; = sin((n/Z)?zZi’ Zj)], and P~by estimating all individual entries in

this manner. We will refer to this estimator of the scatter matrix, P, as the transformed
Kendall’s scatter matrix estimator.

This estimator has also been referred to as the latent generalized correlation matrix, and its
statistical properties including convergence rate in high dimensions have been previously
studied [17, 19]. To obtain estimates for the canonical directions and correlations for the
transelliptical family, we simply decompose the transformed Kendall’s scatter matrix
estimator as we would any correlation matrix estimate when conducting CCA. We note that
the transformed Kendall’s scatter matrix estimator does not require estimation of the
transformations /17 or the generator y~for all transelliptical distributions.

There are other rank based methods that can be used to estimate the scatter matrix for
transellipticals when y~is assumed to be the generating function for the Guassian
distribution. One such estimator uses transformations of Spearman’s correlation. For the
bivariate normal distribution Spearman’s correlation, s, and Pearson correlation, p, have the
following relationship, s= (6/)arcsin (o/2), although this relationship does not extend to
other elliptical distributions in the same way that the relationship between Kendall’s tau and
Pearson’s correlation does [22]. Another rank based method is to transform all marginals to
be normal using an inverse CDF transformation and then using the standard sample Pearson
correlation estimator. When data are generated from a transelliptical distribution and the
generating function, y is from an elliptical distribution other than a Guassian this method
results in biased estimates of the transelliptical scatter matrix.

In addition there is another rank based method, Blomqvist’s beta, that can be used to
estimate the scatter matrix across all transelliptical distributions. Blomqvist’s beta between

. Zi,Z;) . "
two variables, Z;and Z, ﬁ; ! /), is defined as,

Zi, Z; ) ) .
ﬁ; . E{sign(Z; = Zipmeq)Sign(Zj = Z jmed)}, Where Zjmegand Zjmeq denote the population

Zj)

medians of Z;and Z;respectively. For elliptical copulas ﬂ;Zi’ = Zi-Z)) 1, 23, 43]. This

means that the correspondence between Blomqvist’s beta and Pearson correlation within
transelliptical distributions is the same as the correspondence between Kendall’s tau and
Pearson correlation. Therefore the sample estimate of Blomqvist’s beta can be used in a
similar fashion to the sample estimate of Kendall’s tau in order to estimate transelliptical
canonical directions and correlations. However, simulation results in Section 3 indicate that
estimates using the sample version of Blomquvist’s beta perform much worse than estimates
using the sample version of Kendall’s tau in the finite sample setting, and for this reason we
primarily focus on the transformed Kendall’s scatter matrix estimator. One area in which we
do consider estimation of Blomqvist’s beta is in testing whether data are generated using an
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elliptical copula. Jaser et al. [23] creates a test for the null hypothesis that data are generated
from a transelliptical distribution that uses the equivalence between Kendall’s tau and
Blomgvist’s beta for elliptical copulas. We revisit this in Section 4.

A potential issue with the transformed Kendall’s scatter matrix estimator is that it is not
guaranteed to be positive-definite even when the true scatter matrix, P, is positive-definite.
As discussed by Rousseeuw and Molenberghs [41] various methods are available to adjust
P, S0 that it is positive-definite. For simplicity we define P, to be the matrix with the
same eigenvectors and positive eigenvalues as P, but with with all negative eigenvalues set
to some small positive constant. P, will have the same asymptotic behavior as P, based

on the following theorem:

Theorem 2.1 (Transformed Kendall’s scatter matrix estimator eigenvalues) Assume zi, ...,
Zp, are d-dimensional iid realizations of transelliptically distributed vector, Z, with positive-
definite scale invariant scatter matrix P». Define the ordered eigenvalues of the transformed
Kendall’s scatter matrix, Pz, to be i,y ..., Ang, Where A,g is the minimum eigenvalue of P z,,.

ThenPr(dpg > 0) —, 1

A proof of theorem 2.1 is presented in the Appendix. Theorem 2.1 gives that the probability
of P, being equal to P, converges to one for transelliptically distributed Zwith positive-

definite P This means for transelliptical Zwhen P~is positive-definite \/n(Pz, — P) and
Jn(Pz, — Pz) will have the same limiting distribution. The limiting distribution of

Jn(Pz, — P) can be shown to be asymptotically normal with mean zero and finite variance
based on U-statistic theory [20, 42] and the delta method.

Next we will show asymptotic properties for estimates of transelliptical canonical
correlation using an eigendecomposition based off of a consistent and asymptotically normal
estimate of the scatter matrix. Specifically we will focus on the unique non-zero
transelliptical canonical correlations and there corresponding directions. As before we will

assume (XT, YN = z ~ T &p 4 4(hz,0, Pz, wz), and that there are < min(p, g) unique non-
zero transelliptical canonical correlations. We will denote these as A, ..., A, with ¢ > --- >
A,> 0. Define A= diag(Ay, ..., A)) to be the diagonal matrix with the ordered non-zero
canonical correlations on the diagonal. Let A,= (&, ..., 4,) be the p x rmatrix where the jth
column is the Jjthtranselliptical canonical direction for X, and B, = (b1, ..., b}) be the g x r
matrix where the 7t/ column is the 7t/ transelliptical canonical direction for Y. Define A+ =
(@r1, ---» dp) and B+ = (bpy, ..., by) to be a solution to the canonical directions
corresponding to the zero canonical correlations. This means for A= (A, A/) and B= (B,

Bp), ATPxxA = Iy, B'PxxB= I, and ATPxyB =

A O
0 of Note that A,and B,are well

defined up to a sign change and A+ and B+ are well defined up to multiplication by an
orthogonal matrix on the right. A+ and B+ can be made unique by imposing suitable
constraints.
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Pxx, Pxv,| ) ) )
P}n = will be used to denote an arbitrary consistent and asymptotically normal

Pyx, Pyy,
estimator of P~based on niid realizations of Z. A, Ay and B,can all be estimated by the
eigendecomposition of the relevant function of P*Zn. Denote these estimates as A, A%, and

B, respectively. For notational simplicity the subscript 7 may be dropped in future
references. For theoretical purposes we will define P, = ATP% xA, Py, = BT Py B,

%k  _ AT p* k _ p* T s i ; ;
Py = A'PxyB, and Py = Py, . Pyy,; Will denote the entry for the /#7row and /¢ column
of P{;y;, with similar notation used for Py, Pj; and Py, Further define G= (g1, ..., 9)

and H= (/n, ..., h) to be the solutions to the system of equations
= 1
0) @

-XPhy Phy

Pyy  APpy

8i
h;

where

~4Poy Py

% * pk =0. @
PVU _’liPVV

In order to uniquely define G and A we will assume that
G'Piy,G=1,, HP},H =1, ®)

and g;;> 0 where gj;is the /thentry of g;. Further define gj;to be the /th entry of g;, and
likewise for /7. Theorem 2.2 establishes conditions under which the estimates of
transelliptical CCA directions and correlations will be consistent and asymptotically normal
and gives results on the form of the limiting variances.

Theorem 2.2 (Asymptotic results for transelliptical CCA) Assume (x,T, y,T) forle{1, ..., n}
are ifd realizations of the (p + qg) x 1 dimensional random vector
X'y =z~7% »+qhz2.0. Pz.wz), with positive-definite Pz. Further assume that p= q

and there are r< min(p, q) unique non-zero transelliptical canonical correlations for X and
Y. If P%, Is guaranteed to be positive-definite and

Uec(P;(X) vec(Px x)
Jn{vec(Pyy) — vec(Pxy)} —4 N3 % 4300,6),
vee(Pyy)  vec(Pyy)

then
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vec(Pfyy) vec(I )

Jnivec(Ply) — vec(Ar, p) | =4 N3« 30, J70J)),

vec(Pyy)  vecy)
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4

where Ar,mymy is an my X my matrix with my, mp = r and the upper left hand corner equal
to A\, and all other entries equal to zero, and J» is the (18 x ¢°) x (03 x ¢°) block matrix,

ATeAl o 0
Jz=| o BleBT o0
0 0 BleBT

Forie {1, ..., r}
R — 2 = (PG = ) + APy, = &) = APy = DA(Py. = 1)
o 472
®)
+o,(1),
Vn(Pyy, = 1)
V(g = 1) = ——"——+ 0,(D), ©)
n(Pyy..—1)
Vn(hi; — 1) = % +o,(1), @
where ;=0 /fi>r. Fori€{l, ...,p}, JE{L, ..., Y andi% |
‘/'_l Py, Aj+ Piy. Ai— Phy. Aidj— Phy. .ljz-
Vn(g;j) = { Y ”2 2 & 2 } + 0,(1), ®)
GF =2
and fori€{1, ..., gy JELL, ..., }, and i # j
JalPiy a4 PRy di— Py k= Phy. A2
Jalhij) = (o S ) +o,(1), ©
i =25
and finally forje {1, ..., r}
p
Jn(at —ap =Y aj\fnlgi;— 16 = )} +o,(D). 10)
j=1
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q
Vnf = b)) = 37 bifnihi;=1G = )} +0,(1). a

i=1

Jn{vec(A¥) — vec(A)}, \Jn{vec(AF) — vec(A,)} andn{vec(By) — vec(B,)} fointly have a
multivariate normal limiting distribution with mean zero and finite variance that is a function
of®, A, B, and A, and can be solved for by using Equations (4-11).

The proof for Theorem 2.2 can be found in the Appendix. A consistent estimate of the
relevant limiting variances can be found by plugging in consistent estimates of ®, A, B, and
A . This result, and the limiting variance of the estimates, is more general than previous
results from Anderson [4] and Taskinen et al. [44], and requires only that the estimate of the
covariance matrix be asymptotically normal and positive-definite. Anderson [4] show the
asymptotic results for standard CCA directions and correlations when Zhas a multivariate
normal distribution and CCA is estimated using the sample covariance matrix. Taskinen et
al. [44] expanded this result to CCA for elliptical distributions when using positive-definite
and affine equivariant estimators of the covariance matrix. Because we make minimal
assumptions about the form of ® we do not get a concise form of the limiting variances as in
previous results. Because P, is not affine equivariant our more general result is needed.

We have already shown that P, is positive-definite, consistent, and asymptotically normal,
which leads directly to corollary 2.2.1.

Corollary 2.2.1 (Asymptotic results for transformed Kendall’s scatter matrix estimator)
Assume the same set up as in Theorem 2.2 and that P is estimated using P z,,. Define A,
A, and B,, as the corresponding estimates for the non-zero transelliptical canonical
correlations and their corresponding transelliptical canonical directions. Then

Jn{vec(Apy) — vec(Ay)}, n{vec(Ap) — vec(Ay)}, andJn{vec(B,,) — vec(B,)}, jointly have a
multivariate normal limiting distribution with mean zero and finite variance. The form of the
varfances can be found using Theorem 2.2 by substituting the limiting variance of P z,, for
0.

This result follows directly from Theorem 2.2. Methods from Rublik [42] can be used to
obtain estimators for the limiting covariance matrix for all pairwise estimates of Kendall’s
tau. An estimate of the limiting variance of P, can then be found using the delta method.
This can be used as a consistent estimate of ® in Theorem 2.2. This allows for the limiting
variances of A, A,,, and B,, to be estimated by a ”plug-in” estimator using Equations (4—
11) in Theorem 2.2. Section 3 and the supplementary materials include simulations studies
that compare the coverages of confidence intervals using this method to bootstrapped
confidence intervals.

These results show that the transelliptical CCA estimates using the transformed Kendall’s
estimator are consistent and asymptotically unbiased. For finite samples the estimates of the
transelliptical canonical correlations have a positive bias that is also present in the estimation
of canonical correlations using standard methods. Because of this bias we recommend using
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a jackknife bias correction for the estimates of both transelliptical canonical correlations and
standard canonical correlations.

It is important to note that Theorem 2.2 and Corollary 2.2.1 only apply to non-zero
canonical correlations and cannot be used for hypothesis testing for zero correlations.
Anderson [5] gives the asymptotic distribution for the zero canonical correlations for
standard CCA when Xand Yare jointly multivariate normal and show that in this case the
estimates of the correlations converge at rate n. A number of asymptotic tests have been
derived for the specific case where standard CCA is used and X'and Y have a multivariate
normal joint distribution[37, 38, 48]. In addition Muirhead and Waternaux [33] shows how
test statistics used to test for a true canonical correlation of zero when Xand Yare
multivariate normal can be modified for elliptical distributions. These results exploit special
properties of elliptical distributions and sample covariance matrix, but it is unclear how to
generalize these results to transelliptical CCA using the transformed Kendall’s scatter matrix
estimator. Because of this we propose a testing procedure based on bootstrapped replicates.
To control the type I error at a simply invert a (1-2a)-bootstrapped confidence interval using
the normal approximation with bias correction. A (1-2a)-confidence interval is used because
this test is only one sided, so using a (1 — a) interval will unnecessarily reduce power. Other
bootstrap confidence intervals may be used, although it is important not to use the simple
percentile method. This is because within each bootstrap sample the estimated canonical
correlation will be above zero. This means some type of bias correction is necessary.
Although the asymptotic distribution for true correlations of zero is not normal, the fact that
the correlations converge at rate /7as opposed to /» implies that this will have conservative
type | error as sample size increases. Simulation results in Section 3 indicate that this is the
case.

Given the conservative nature of this test, particularly as sample size increases, it is
important to point out why it this bootstrapping procedure is preferred to other testing
procedures, including permutation based testing. Permutation or randomization testing
assumes that under the null hypothesis observations are exchangeable. For transelliptical
distributions this assumption is only met when data are generated from a distribution with a
Gaussian copula where having a true correlation of zero implies independence. For all other
elliptical copulas this is not the case, so permutation tests will lead to inflated type | error.
Even for CCA estimated using the sample correlation or covariance matrix a permutation
test will lead to inflated type | error if the data are not generated from a distribution with a
Gaussian copula, and asymptotic testing procedures assume the data are generated from a
multivariate Gaussian distribution. Importantly this means that even if all the marginal
distributions are Gaussian, permutation and asymptotic tests will result in inflated type |
error if the copula defining the joint distribution is not a Gaussian copula. The permutation
test can be thought of as a test of the null hypothesis that the canonical variates are
independent, rather than a test for a true canonical correlation of zero. However for
transelliptical CCA a test of independence can be misleading if data are not generated from a
Gaussian copula. As an example consider (X7, ¥7)7 = Zwith a multivariate Cauchy
distribution and a scatter matrix equal to the identity matrix. In this case there are no well
defined unique canonical directions for transelliptical CCA, as any linear combinations of X
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and Y'which meet the relevant constraints will be rank uncorrelated. Any estimated
directions will be purely due to random variability within the particular sample, and will not
be informative of associations between Xand Y. However any linear combinations of X and
Y will not be independent. Therefore even when transelliptical CCA variables are not
independent, the estimated directions may still be due purely to random noise and not be
informative of any true associations of the variables. For this reason we recommend testing
the null that the true canonical correlation is zero, which can be done using the inverted
bootstrap procedure. This is particularly the case when data are not generated from a
distribution with a Gaussian copula.

The inverted bootstrap procedure does not even need the transelliptical assumption, just the
assumption that the estimated correlation or covariance matrix is asymptotically normal. For
the transformed Kendall’s estimator this only requires that the data from different subjects
be independent and identically distributed, and for the sample correlation or covariance
matrix this only requires that the data be independent and identically distributed and fourth
moments exist. When using the transformed Kendall’s estimator this bootstrap procedure
will test the null hypothesis that for all variables in X'the true pairwise Kendall’s tau
coefficient with all variables in Y'is zero. Therefore even when data are not generated from a
distribution with an elliptical copula this provides a meaningful test for association between
the two sets of variables. Simulation results comparing the bootstrap testing procedures with
other testing procedures are presented in Section 3.3.

3. Simulation Results

3.1. Empirical bias and variance of CCA with robust covariance estimation

Simulations are conducted to compare transelliptical CCA using the transformed Kendall’s
estimator and standard CCA under both elliptical and transelliptical settings. In addition
CCA based on two robust covariance matrix estimators are considered, the re-weighted
MCD estimator from the R package robustbase [45] and the S estimator from the R package
rrcov [45]. For the re-weighted MCD estimator a maximum proportion of 0.75 and 0.5 of the
observations were considered. When using a cutoff of 0.75 the bias and standard deviation of
the direction and correlation of estimates are improved relative to those using a cutoff of 0.5,
so only those results using a cutoff of 0.75 are reported. For the S estimator a breakdown
point of 0.75 and 0.5 were considered. Results were very similar across both breakdown
points so only tm breakdown point of 0.75 is presented. In addition two different rank based
correlation estimators are considered, one based on Spearman’s correlation and one based on
Blomaqyvist’s beta.