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Abstract

Canonical correlation analysis (CCA) is a common method used to estimate the associations 

between two different sets of variables by maximizing the Pearson correlation between linear 

combinations of the two sets of variables. We propose a version of CCA for transelliptical 

distributions with an elliptical copula using pairwise Kendall’s tau to estimate a latent scatter 

matrix. Because Kendall’s tau relies only on the ranks of the data this method does not make any 

assumptions about the marginal distributions of the variables, and is valid when moments do not 

exist. We establish consistency and asymptotic normality for canonical directions and correlations 

estimated using Kendall’s tau. Simulations indicate that this estimator outperforms standard CCA 

for data generated from heavy tailed elliptical distributions. Our method also identifies more 

meaningful relationships when the marginal distributions are skewed. We also propose a method 

for testing for non-zero canonical correlations using bootstrap methods. This testing procedure 

does not require any assumptions on the joint distribution of the variables and works for all 

elliptical copulas. This is in contrast to permutation tests which are only valid when data are 

generated from a distribution with a Gaussian copula. This method’s practical utility is shown in 

an analysis of the association between radial diffusivity in white matter tracts and cognitive tests 

scores for six-year-old children from the Early Brain Development Study at UNC-Chapel Hill. An 

R package implementing this method is available at github.com/blangworthy/transCCA.
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1. Introduction

Canonical correlation analysis (CCA), first introduced by Hotelling [21], is a useful 

dimension reduction technique for exploring the relationship between two sets of variables. 

CCA finds the linear combinations of the two sets of variables that have maximal Pearson 

correlation. After the first direction, further directions are defined as the linear combinations 

that are maximally correlated subject to the constraint that they are uncorrelated with all 

previous directions. A small number of directions may be used to summarize the relationship 

between the two sets of variables.

In Section 4 we present an example where CCA is useful in understanding the relationship 

between the structure of white matter brain tracts and executive function in six-year-old 

children. Many of the variables show excess skewness or kurtosis relative to the normal 

distribution. This suggests transformations may be needed for CCA using Pearson’s 

correlation to fully capture the association between the two sets of variables. However it is 

not clear how to optimally transform the data, especially for heavy tailed distributions where 

transforming may weaken linear associations. In such settings standard CCA may be 

problematic, and alternative approaches are valuable.

In the finite dimensional setting when all second moments exist, CCA is valid based on an 

eigendecomposition involving the sample covariance matrix. In settings where the empirical 

covariance estimator is either inconsistent or inefficient, including when second moments do 

not exist or when there are outliers contaminating the observed data, the CCA estimates 

based on the empirical covariance matrix will also be either inconsistent or inefficient. There 

is a rich literature on robust estimators of the covariance matrix that are insensitive to 

outliers and heavy tailed distributions, and may improve the performance of standard CCA 

based on Pearson correlation. Examples of these are the minimum covariance determinant 

(MCD) [40], the S-estimator [31], and Tyler’s M-estimator [46]. There have been studies 

examining the performance of CCA using robust estimators of the covariance matrix or by 

maximizing other robust correlation measures [3, 7, 44, 47]. Many of these robust methods 

emphasize eigendecompositions employing robust estimates of the covariance or Pearson 

correlation matrix, which do not exist in the absence of finite moments. Further assumptions 

are needed to interpret robust CCA in these settings.

We explicitly define a version of CCA for distributions with elliptical copulas that does not 

require the existence of moments using properties of Kendall’s tau for elliptical 

distributions. For elliptical distributions there is a known monotone relationship between 

Pearson’s correlation and Kendall’s tau rank correlation. We utilize this relationship to 

define CCA using Kendall’s tau instead of Pearson correlation such that it is well defined 

when moments do not exist and has the same canonical directions and correlations as 

standard CCA for elliptical distributions when moments do exist. Perhaps most importantly 

this definition of CCA does not make any assumptions about the marginal distributions of 

the variables, so it can be easily extended to a family of distributions known as transelliptical 

distributions. The transelliptical family consists of all multivariate distributions which can be 

transformed into an elliptical distribution using monotone marginal transformations, or 

equivalently all multivariate distributions with a copula from an elliptical distribution [1, 11, 
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12, 27, 30]. Standard CCA is inadequate to describe the relationship between two sets of 

variables which are transelliptically distributed and have potentially non-linear associations. 

CCA using Kendall’s tau identifies the linear relationships in the elliptical distribution which 

characterizes the transelliptical distribution. This is desirable because within elliptical 

distributions linear relationships describe meaningful association between the variables. We 

show that CCA for transelliptical distributions can be estimated without transforming the 

variables to an elliptical distribution, by estimating the scatter matrix based on 

transformations of Kendall’s tau for all pairs of variables [30]. We establish that the resulting 

estimates for CCA directions and non-zero correlations are consistent and asymptotically 

normal. This result is more general than previous results which require affine equivariant 

estimators of the scatter matrix for data generated from elliptical distributions [4, 44]. 

Interestingly, the estimate based on transformations of Kendall’s tau for all pairs of variables 

is not affine equivariant. Simulations indicate that these results can be used to construct 

confidence intervals that perform similar to bootstrap confidence intervals with close to the 

desired coverage for the first canonical directions. Confidence intervals for higher order 

canonical directions and correlations do not perform as well whether using bootstrap or 

asymptotic results to construct the confidence intervals. This highlights the difficulty in 

accounting for variability in the estimates due to added constraints for finite samples.

We also develop a testing procedure to identify non-zero canonical correlations using 

bootstrap bias and standard error estimates. This is necessary because although the 

asymptotic results for non-zero canonical correlations can be used to construct confidence 

intervals, asymptotic results for zero canonical correlations are not as straightforward. 

However based on previous results [5] it can be expected that the zero canonical correlations 

will converge at rate n rather than n. Therefore by inverting a normal bootstrap confidence 

interval we derive a test that is consistent and conservative for large sample sizes. This 

testing procedure can be used for CCA estimated using Kendall’s tau or standard methods. 

This testing procedure is necessary because previously derived asymptotic tests assume the 

data are generated from a multivariate normal distribution [37, 38, 48]. Even permutation 

based tests assume that zero correlation implies independence, which is not true for non-

Gaussian elliptical copulas. In non-Gaussian elliptical copulas the canonical directions may 

not be independent even when they are not informative of any associations between the two 

sets of variables, and therefore permutation tests which test for independence are not useful 

in determining which canonical directions capture meaningful associations between the two 

sets of variables. Our bootstrap based testing procedure makes minimal assumptions, and 

can even be useful even when data are not generated from a distribution with an elliptical 

copula.

The rest of the paper is structured as follows. Section 2 overviews the theoretical framework 

for rank estimation of CCA in the elliptical and transelliptical distributions and provides 

theoretical results for consistency and asymptotic normality of the estimates. Section 3 

reports the results of simulation studies under elliptical and transelliptical distributions. 

Section 4 provides an analysis of associations between white matter structure and executive 

function in six-year-old children. Section 5 overviews the paper and concludes with remarks.
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2. Rank correlation methodology

Assume X is a p × 1 dimensional random vector and Y is a q × 1 dimensional random 

vector. The first canonical directions for X and Y are the p × 1 vector, a1, and the q × 1 

vector, b1, for which the correlation between U1 = a1
⊺X and V 1 = b1

⊺Y  is maximized. The first 

canonical correlation is defined as the Pearson’s correlation between U1 and V1. In order to 

uniquely define a1 and b1, it is necessary to add the constraints that Var(U1) = Var(V1) = 1 

[21]. After the first canonical direction and correlation, higher directions are a sequence of p 

× 1 vectors, aj, and q × 1 vectors, bj, such that Uj = aj
⊺X and V j = bj

⊺Y  are maximally 

correlated, subject to the constraints that Cor(Uj, Uj′) = Cor(Uj, Vj′) = Cor(Vj, Uj′) = 

Cor(Vj, Vj′) = 0 for all j′ < j, and Var(Uj) = Var(Vj) = 1 for all j. This uniquely defines the 

canonical directions corresponding to a non-zero canonical correlation except for 

multiplication of both aj and bj by −1. There are at most min(p, q) non-zero canonical 

correlations assuming both X and Y are full rank.

The canonical directions and correlations for X and Y can be shown to be the solutions to an 

eigendecomposition based on the covariance matrix between X and Y. Estimates of the 

canonical directions and correlations are commonly based on the same eigendecomposition 

involving the sample covariance matrix. If we define the joint covariance matrix of X and Y 
as

Cov{(X⊺, Y ⊺)⊺} =
∑XX ∑XY
∑Y X ∑Y Y

then the canonical correlations and directions may be derived from:

C = ∑XX
−1/2∑XY ∑Y Y

−1 ∑Y X∑XX
−1/2, D = ∑Y Y

−1/2∑Y X∑XX
−1 ∑XY ∑Y Y

−1/2 .

The matrices C and D share the same first min(p, q) eigenvalues, and the canonical 

correlations are the square root of these eigenvalues [21]. If vci is the ith eigenvector of C, 

then vci∑XX
−1/2 = ai, and if vdi is the ith eigenvector of D, then vdi = ∑Y Y

−1/2 = bi [21].

CCA can be made robust via robust estimation of the covariance matrix [7, 44]. Many robust 

estimates of the covariance matrix are consistent under the elliptical family of distributions. 

The elliptical family of definitions are commonly defined through their characteristic 

functions in the following way [8],

Definition 2.1 (Elliptical Distributions) A d × 1 random vector Z is considered to be 

elliptical if for some d × 1 vector μZ, some d × d positive semi-definite matrix ∑Z, and a 

function ψZ[0, ∞) ℝ, the characteristic function, Φ, satisfies ΦZ−μZ(t) = ψ(t⊺∑Zt) for all 

d×1 vectors t. In this case we would say that Z is a d×1 dimensional elliptically distributed 

random variable, which we can note as Z ∼ ℰDd(μZ, ∑Z, ψZ)
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We use ∑Z in definition 2.1 because in the elliptical distribution ∑Z can be viewed as a 

generalization of the covariance matrix for Z. When second moments exist ∑Z equals the 

covariance matrix up to a scaling factor, and ψZ can be chosen such that it is equal to the 

covariance matrix. We will refer to ∑Z as the scatter matrix of Z, which exists even if second 

moments do not exist. The following proposition shows that for linear combinations of Z the 

scatter matrix, ∑Z and location vector μZ, are affine equivariant. To be precise, linear 

combinations of elliptical random variables are also elliptically distributed with a scatter 

matrix which is a quadratic form in ∑Z.

Proposition 2.1 (Linear combinations of elliptically distributed random variables) Assume 
Z ∼ εDd(μZ, ∑Z, ψZ). Define B to be a k × d dimensional matrix of rank k ≤ d. Then W = 

BZ is a k × 1 dimensional random vector where W ∼ εDk(BμZ, B∑ZB⊺, ψ)

A proof of 2.1 can be found in Owen and Rabinovitch [36].

Letting Z = (X⊺, Y⊺)⊺, the scatter matrix of Z can be decomposed as

∑Z =
∑XX ∑XY
∑Y X ∑Y Y

.

Next we introduce the concept of the scale-invariant scatter matrix of Z, PZ, which will be 

equivalent to the correlation matrix of Z when second moments exist. Analogously to ∑Z, PZ 

may be written as,

PZ =
PXX PXY
PY X PY Y

.

The elements of PZ, ρij, are related to the elements of ∑Z, σij, through the following equality, 

ρij = σij/( σii σjj). In general we will assume that ∑Z and PZ are positive-definite in order to 

guarantee existence of unique solutions for canonical correlation analysis.

A useful extension of elliptical distributions is the transelliptical family of distributions, 

whose definition is given below,

Definition 2.2 (Transelliptical distributions) A d × 1 dimensional random vector Z has a 

transelliptical distribution if there exists a positive-semidefinite matrix PZ with all ones 

along the diagonal, a function ψZ : [0, ∞) ℝ, and a set of functions hZ1, …, hZd where 

ℎZi : ℝ ℝ is a monotone increasing function for i = 1, …, d, such that 

{ℎZ1(Z1), …, ℎZd(Zd)}⊺ ∼ ℰDd(0, PZ, ψZ). The random variable Z is a d × 1 dimensional 

transelliptically distributed random variable, denoted as Z ∼ Tℰd(ℎZ, 0, PZ, ψZ).

The elliptical distribution used in Definition 2.2 is scale invariant and has a scatter matrix 

with all ones along the diagonal as well as centrality parameter zero in order to uniquely 

identify the transformations, hZ. This definition was given by Liu et al. [30], but an 
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equivalent definition is any multivariate distribution with continuous marginal distributions 

and a copula from an elliptical distribution [1, 11, 12, 27].

For the elliptical and transelliptical distributions we propose an alternative definition of CCA 

using a rank correlation measure. This version of CCA has the same true canonical 

directions and correlations as standard CCA based on Pearson correlation in the elliptical 

family when second moments exist and still well defined if they do not exist. This 

construction uses properties of the rank correlation measure, Kendall’s tau. For two 

univariate random variables Zi and Zj with joint CDF F(Zi, Zj), Kendall’s tau is

τ(Zi, Zj) = E{sign(Zi − Zi)(Zj − Zj)}

where (Zi, Zj)
⊺ is an identically distributed copy of (Zi, Zj)⊺ [25]. This quantity exists for all 

bivariate continuous distributions, and does not require the existence of moments. A 

consistent estimator of Kendall’s tau based on n iid copies of Zi and Zj, (zi1, zj1)⊺, …, (zin, 

zjn)⊺, is

τn
(Zi, Zj) = 1

n
2

∑∑
1 ≤ k < l ≤ n

sign(zik − zil)sign(zjk − zjl)

This estimator is a U-statistic with consistency and asymptotic normality coming from U-

statistic theory [20].

Within the transelliptical family the following proposition, which is equivalent to Theorem 

3.2 in Han and Liu [18] and Theorem 3.1 in Fang et al. [12], gives the correspondence 

between Kendall’s tau and the elements of the transelliptical scatter matrix.

Proposition 2.2 (Kendall’s tau for transelliptically distributed random variables) Assume 
Z ∼ Tℰd(ℎ, 0, PZ, ψZ). If pij is the i jth entry of PZ and τ(Zi,Zj) is the Kendall correlation 

between the ith and jth entries of Z then τ(Zi,Zj) = (2/π) arcsin(ρij)

Because the function connecting Kendall’s tau and the scale invariant scatter matrix is a 

monotone increasing function between zero and one that takes the value zero only at zero, 

maximizing Pearson’s correlation is equivalent to maximizing Kendall’s tau within the 

elliptical family, and constraining Pearson’s correlation to zero is equivalent to constraining 

Kendall’s tau to zero. Importantly this relationship still holds between elements of the scale 

invariant scatter matrix and Kendall’s tau for tanselliptical distributions when moments do 

not exist.

Given propositions 2.2 and 2.1 we define CCA for transelliptical distributions as follows,

Definition 2.3 (Canonical correlation analysis for transelliptical distributions) Assume X is a 

p×1 dimensional random vector and Y is a q × 1 dimensional random vector, and that the 

random vector (X⊺, Y ⊺)⊺ = Z ∼ Tℰp + q(ℎZ, 0, PZ, ψZ). Define hX to be the elementwise 

functions of hZ corresponding to X and hY to be the elementwise functions of hZ 

Langworthy et al. Page 6

J Multivar Anal. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



corresponding to Y. The first canonical direction vectors, the p × 1 vector, a1, and the q × 1 

vector, b1, are the vectors that maximize τ(U1,V1) where U1 = a1
⊺ℎX(X) and V 1 = b1

⊺ℎY (Y ), 

subject to the constraint that U1 and V1 have scale parameter equal to one. The jth canonical 

direction vectors are the p×1 vector aj and the q×1 vector bj that maximize τ(Uj,Vj) where 

Uj = aj
⊺ℎX(X) V j = bj

⊺ℎY (Y ), subject to the constraints that τ(Uj,Uj′) = τ(Uj,Vj′) = τ(Vj,Uj′) = 

τ(Vj,Vj′) = 0 for all j′ < j, and the scale parameter for Uj and Vj are equal to one for all j. The 

jth canonical correlation can be defined as sin (π/2)τ(Uj, V j) .

When second moments exist and (X⊺, Y⊺)⊺ has an elliptical distribution this definition is 

equivalent to performing CCA based on the correlation matrix. When (X⊺, Y⊺)⊺ has an 

elliptical distribution but moments do not exist CCA for the transelliptical family uses the 

same eigendecomposition of the scatter matrix as standard CCA. A large advantage of this 

definition is when (X⊺, Y⊺)⊺ is transelliptically, but not elliptically distributed. In this setting 

standard CCA depends heavily on the marginal distributions of the variables in X and Y, 

which depends on hX and hY. In many cases hX and hY can act to obscure potential linear 

relationships between the variables. Definition 2.3 is based on PZ, which does not depend on 

the marginal distributions of the variables. In this sense CCA using Definition 2.3 can be 

thought of as first transforming the variables to elliptical symmetry and then performing 

CCA. As shown in proposition 2.1 linear combinations of elliptical distributions 

meaningfully describe the associations within the variables.

It is important to note that when (X⊺, Y⊺)⊺ = Z is transelliptically distributed and ψz is not 

the generating function of a Gaussian distribution Ui and Uj for i ≠ j are rank uncorrelated, 

but not independent. The same is true of Vi and Vj, as well as Ui and Vj. This is in contrast 

to CCA when Z has a multivariate normal distribution, where the different canonical variates 

are not only uncorrelated, but also independent. However, for all elliptical distributions it 

will still be the case that Ui is mean independent of Uj, in the sense that E(Ui|Uj) = E(Ui) 

[36], and likewise for Vi and Vj as well as Ui and Vj. In addition, if {hX(X)⊺, hY(Y)⊺}⊺ = 

hZ(Z) has a non-Gaussian elliptical distribution it is not possible to find linear combinations 

of hX(X) and hY(Y) that are independent. This is because any linear combination of hX(X) 

and any linear combination of hY(Y) will jointly have a non-Gaussian elliptical distribution, 

which cannot be independent [1, 24]. Therefore we believe that the constraints in 

transelliptical CCA requiring different canonical directions to be rank uncorrelated, and 

therefore mean independent, is a useful way to find a meaningful low-rank representation of 

the association between the variables. Requiring fully independent, rather than just 

uncorrelated canonical variates, for all transelliptical distributions would in some cases 

require non-linear combinations of the data resulting in difficulty in interpretation.

An issue with estimating CCA for the transelliptical family is estimation of a scatter matrix 

of transformed versions of X and Y. If (X⊺, Y⊺)⊺ = Z is transelliptically distributed and hX, 

hY, and ψZ are all unknown, then all three must be estimated to transform Z to it’s 

underlying elliptical distribution. Many methods assume that ψZ is the generating function 

from a Gaussian distribution, which can introduce bias if this assumption is not met. In order 
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to avoid estimation of hX, hY and ψZ we directly estimate the scatter matrix in the 

transelliptical distribution as follows [30],

Definition 2.4 (Transelliptical scatter matrix estimate) Assume that Z ∼ Tℰd(ℎZ, 0, PZ, ψZ). 
Assume that ρij is the element of PZ corresponding to the ith and jth elements of Z. Then we 

can estimate ρij as ρn, ij = sin (π/2)τn
(Zi, Zj)

, and PZ by estimating all individual entries in 

this manner. We will refer to this estimator of the scatter matrix, PZn, as the transformed 

Kendall’s scatter matrix estimator.

This estimator has also been referred to as the latent generalized correlation matrix, and its 

statistical properties including convergence rate in high dimensions have been previously 

studied [17, 19]. To obtain estimates for the canonical directions and correlations for the 

transelliptical family, we simply decompose the transformed Kendall’s scatter matrix 

estimator as we would any correlation matrix estimate when conducting CCA. We note that 

the transformed Kendall’s scatter matrix estimator does not require estimation of the 

transformations hZ, or the generator ψZ for all transelliptical distributions.

There are other rank based methods that can be used to estimate the scatter matrix for 

transellipticals when ψZ is assumed to be the generating function for the Guassian 

distribution. One such estimator uses transformations of Spearman’s correlation. For the 

bivariate normal distribution Spearman’s correlation, s, and Pearson correlation, ρ, have the 

following relationship, s = (6/π)arcsin (ρ/2), although this relationship does not extend to 

other elliptical distributions in the same way that the relationship between Kendall’s tau and 

Pearson’s correlation does [22]. Another rank based method is to transform all marginals to 

be normal using an inverse CDF transformation and then using the standard sample Pearson 

correlation estimator. When data are generated from a transelliptical distribution and the 

generating function, ψZ, is from an elliptical distribution other than a Guassian this method 

results in biased estimates of the transelliptical scatter matrix.

In addition there is another rank based method, Blomqvist’s beta, that can be used to 

estimate the scatter matrix across all transelliptical distributions. Blomqvist’s beta between 

two variables, Zi and Zj, βB
(Zi, Zj)

, is defined as, 

βB
(Zi, Zj) = E{sign(Zi − Zimed)sign(Zj − Zjmed)}, where Zimed and Zjmed denote the population 

medians of Zi and Zj respectively. For elliptical copulas βB
(Zi, Zj) = τ(Zi, Zj) [1, 23, 43]. This 

means that the correspondence between Blomqvist’s beta and Pearson correlation within 

transelliptical distributions is the same as the correspondence between Kendall’s tau and 

Pearson correlation. Therefore the sample estimate of Blomqvist’s beta can be used in a 

similar fashion to the sample estimate of Kendall’s tau in order to estimate transelliptical 

canonical directions and correlations. However, simulation results in Section 3 indicate that 

estimates using the sample version of Blomqvist’s beta perform much worse than estimates 

using the sample version of Kendall’s tau in the finite sample setting, and for this reason we 

primarily focus on the transformed Kendall’s scatter matrix estimator. One area in which we 

do consider estimation of Blomqvist’s beta is in testing whether data are generated using an 
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elliptical copula. Jaser et al. [23] creates a test for the null hypothesis that data are generated 

from a transelliptical distribution that uses the equivalence between Kendall’s tau and 

Blomqvist’s beta for elliptical copulas. We revisit this in Section 4.

A potential issue with the transformed Kendall’s scatter matrix estimator is that it is not 

guaranteed to be positive-definite even when the true scatter matrix, PZ, is positive-definite. 

As discussed by Rousseeuw and Molenberghs [41] various methods are available to adjust 

PZn so that it is positive-definite. For simplicity we define P Zn to be the matrix with the 

same eigenvectors and positive eigenvalues as PZn but with with all negative eigenvalues set 

to some small positive constant. P Zn will have the same asymptotic behavior as PZn based 

on the following theorem:

Theorem 2.1 (Transformed Kendall’s scatter matrix estimator eigenvalues) Assume z1, …, 

zn are d-dimensional iid realizations of transelliptically distributed vector, Z, with positive-
definite scale invariant scatter matrix PZ. Define the ordered eigenvalues of the transformed 
Kendall’s scatter matrix, PZn to be λn1, …, λnd, where λnd is the minimum eigenvalue of PZn. 

Then Pr(λnd > 0) p 1

A proof of theorem 2.1 is presented in the Appendix. Theorem 2.1 gives that the probability 

of P Zn being equal to PZn converges to one for transelliptically distributed Z with positive-

definite PZ. This means for transelliptical Z when PZ is positive-definite n(PZn − PZ) and 

n(PZn − PZ) will have the same limiting distribution. The limiting distribution of 

n(PZn − PZ) can be shown to be asymptotically normal with mean zero and finite variance 

based on U-statistic theory [20, 42] and the delta method.

Next we will show asymptotic properties for estimates of transelliptical canonical 

correlation using an eigendecomposition based off of a consistent and asymptotically normal 

estimate of the scatter matrix. Specifically we will focus on the unique non-zero 

transelliptical canonical correlations and there corresponding directions. As before we will 

assume (X⊺, Y ⊺)⊺ = Z ∼ Tℰp + q(ℎZ, 0, PZ, ψZ), and that there are r ≤ min(p, q) unique non-

zero transelliptical canonical correlations. We will denote these as λ1, …, λr, with λ1 > ⋯ > 

λr > 0. Define Λr = diag(λ1, …, λr) to be the diagonal matrix with the ordered non-zero 

canonical correlations on the diagonal. Let Ar = (a1, …, ar) be the p × r matrix where the ith 

column is the ith transelliptical canonical direction for X, and Br = (b1, …, br
⊺) be the q × r 

matrix where the ith column is the ith transelliptical canonical direction for Y. Define Ar+ = 

(ar+1, …, ap) and Br+ = (br+1, …, bq) to be a solution to the canonical directions 

corresponding to the zero canonical correlations. This means for A = (Ar, Ar+) and B = (Br, 

Br+), A⊺PXXA = Ip, B⊺PXXB = Iq, and A⊺PXY B =
Λr 0
0 0

. Note that Ar and Br are well 

defined up to a sign change and Ar+ and Br+ are well defined up to multiplication by an 

orthogonal matrix on the right. Ar+ and Br+ can be made unique by imposing suitable 

constraints.
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PZn* =
PXXn

* PXYn
*

PY Xn
* PY Yn

*  will be used to denote an arbitrary consistent and asymptotically normal 

estimator of PZ based on n iid realizations of Z. Λr, Ar, and Br can all be estimated by the 

eigendecomposition of the relevant function of PZn* . Denote these estimates as Λrn* , Arn* , and 

Brn*  respectively. For notational simplicity the subscript n may be dropped in future 

references. For theoretical purposes we will define PUU* = A⊺PXX* A, PV V* = B⊺PY Y* B, 

PUV* = A⊺PXY* B, and PVU
∗ = PUV

∗ ⊺ . PUUij
∗  will denote the entry for the ith row and jth column 

of PUU* , with similar notation used for PV V* , PV U*  and PUV* . Further define G = (g1, …, gr) 

and H = (h1, …, hr) to be the solutions to the system of equations

−λi*PUU* PUV*
PV U* λi*PV V*

gi
ℎi

= 0
0 , (1)

where

−λi*PUU* PUV*
PV U* −λi*PV V* = 0 . (2)

In order to uniquely define G and H we will assume that

G⊺PUU* G = Ir, H⊺PV V* H = Ir, (3)

and gii > 0 where gii is the ith entry of gi. Further define gij to be the ith entry of gj, and 

likewise for hij. Theorem 2.2 establishes conditions under which the estimates of 

transelliptical CCA directions and correlations will be consistent and asymptotically normal 

and gives results on the form of the limiting variances.

Theorem 2.2 (Asymptotic results for transelliptical CCA) Assume (xl
⊺, yl

⊺) for l ∈ {1, …, n} 

are iid realizations of the (p + q) × 1 dimensional random vector 

(X⊺, Y ⊺)⊺ = Z ∼ Tℰp + q(ℎZ, 0, PZ, ψZ), with positive-definite PZ. Further assume that p ≥ q 

and there are r ≤ min(p, q) unique non-zero transelliptical canonical correlations for X and 
Y. If PZ*  is guaranteed to be positive-definite and

n

vec(PXX* )

vec(PXY* )

vec(PY Y* )
−

vec(PXX)
vec(PXY )
vec(PY Y )

d Np3 × q3(0, Θ),

then
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n
vec(PUU* )
vec(PUV* )
vec(PV V* )

−
vec(Ip)

vec(Λr, pq)
vec(Iq)

d Np3 × q3(0, JZΘJZ
⊺ ), (4)

where Λr,m1m2 is an m1 × m2 matrix with m1, m2 ≥ r and the upper left hand corner equal 
to Λr and all other entries equal to zero, and JZ is the (p3 × q3) × (p3 × q3) block matrix,

JZ =
A⊺ΘA⊺ 0 0

0 B⊺ΘB⊺ 0

0 0 B⊺ΘB⊺
.

For i ∈ {1, …, r}

n(λi* − λi) =
n λi(PUV ii* − λi) + λi(PV Uii* − λi) − λi(PV V ii* − 1)λi(PUUii* − 1)

4λi
2

+ op(1),
(5)

n(gii − 1) =
n(PUUii − 1)

4 + op(1), (6)

n(ℎii − 1) =
n(PV V ii − 1)

4 + op(1), (7)

where λi = 0 if i > r. For i ∈ {1, …, p}, j ∈ {1, …, r} and i ≠ j

n(gij) =
n PUV ij* λj + PV Uij* λi − PV V ij* λiλj − PUUij* λj

2

(λi
2 − λj

2)2 + op(1), (8)

and for i ∈ {1, …, q}, j ∈ {1, …, r}, and i ≠ j

n(ℎij) =
n PV Uij* λj + PUV ij* λi − PUUij* λiλj − PV V ij* λj

2

(λi
2 − λj

2)2 + op(1), (9)

and finally for j ∈ {1, …, r}

n(aj* − aj) = ∑
j = 1

p
ai n{gij − 1(i = j)} + op(1), (10)
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n(bj* − bj) = ∑
i = 1

q
bi n{ℎij − 1(i = j)} + op(1) . (11)

n{vec(Λr*) − vec(Λr)}, n{vec(Ar*) − vec(Ar)} and n{vec(Br*) − vec(Br)} jointly have a 

multivariate normal limiting distribution with mean zero and finite variance that is a function 
of Θ, A, B, and Λr and can be solved for by using Equations (4–11).

The proof for Theorem 2.2 can be found in the Appendix. A consistent estimate of the 

relevant limiting variances can be found by plugging in consistent estimates of Θ, A, B, and 

Λr. This result, and the limiting variance of the estimates, is more general than previous 

results from Anderson [4] and Taskinen et al. [44], and requires only that the estimate of the 

covariance matrix be asymptotically normal and positive-definite. Anderson [4] show the 

asymptotic results for standard CCA directions and correlations when Z has a multivariate 

normal distribution and CCA is estimated using the sample covariance matrix. Taskinen et 

al. [44] expanded this result to CCA for elliptical distributions when using positive-definite 

and affine equivariant estimators of the covariance matrix. Because we make minimal 

assumptions about the form of Θ we do not get a concise form of the limiting variances as in 

previous results. Because PZn is not affine equivariant our more general result is needed.

We have already shown that PZn is positive-definite, consistent, and asymptotically normal, 

which leads directly to corollary 2.2.1.

Corollary 2.2.1 (Asymptotic results for transformed Kendall’s scatter matrix estimator) 

Assume the same set up as in Theorem 2.2 and that PZ is estimated using PZn. Define Λrn, 

Arn, and Brn as the corresponding estimates for the non-zero transelliptical canonical 

correlations and their corresponding transelliptical canonical directions. Then 
n{vec(Λrn) − vec(Λr)}, n{vec(Arn) − vec(Ar)}, and n{vec(Brn) − vec(Br)}, jointly have a 

multivariate normal limiting distribution with mean zero and finite variance. The form of the 
variances can be found using Theorem 2.2 by substituting the limiting variance of PZn for 

Θ.

This result follows directly from Theorem 2.2. Methods from Rublik [42] can be used to 

obtain estimators for the limiting covariance matrix for all pairwise estimates of Kendall’s 

tau. An estimate of the limiting variance of PZn can then be found using the delta method. 

This can be used as a consistent estimate of Θ in Theorem 2.2. This allows for the limiting 

variances of Λrn, Arn, and Brn to be estimated by a ”plug-in” estimator using Equations (4–

11) in Theorem 2.2. Section 3 and the supplementary materials include simulations studies 

that compare the coverages of confidence intervals using this method to bootstrapped 

confidence intervals.

These results show that the transelliptical CCA estimates using the transformed Kendall’s 

estimator are consistent and asymptotically unbiased. For finite samples the estimates of the 

transelliptical canonical correlations have a positive bias that is also present in the estimation 

of canonical correlations using standard methods. Because of this bias we recommend using 
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a jackknife bias correction for the estimates of both transelliptical canonical correlations and 

standard canonical correlations.

It is important to note that Theorem 2.2 and Corollary 2.2.1 only apply to non-zero 

canonical correlations and cannot be used for hypothesis testing for zero correlations. 

Anderson [5] gives the asymptotic distribution for the zero canonical correlations for 

standard CCA when X and Y are jointly multivariate normal and show that in this case the 

estimates of the correlations converge at rate n. A number of asymptotic tests have been 

derived for the specific case where standard CCA is used and X and Y have a multivariate 

normal joint distribution[37, 38, 48]. In addition Muirhead and Waternaux [33] shows how 

test statistics used to test for a true canonical correlation of zero when X and Y are 

multivariate normal can be modified for elliptical distributions. These results exploit special 

properties of elliptical distributions and sample covariance matrix, but it is unclear how to 

generalize these results to transelliptical CCA using the transformed Kendall’s scatter matrix 

estimator. Because of this we propose a testing procedure based on bootstrapped replicates. 

To control the type I error at α simply invert a (1-2α)-bootstrapped confidence interval using 

the normal approximation with bias correction. A (1-2α)-confidence interval is used because 

this test is only one sided, so using a (1 – α) interval will unnecessarily reduce power. Other 

bootstrap confidence intervals may be used, although it is important not to use the simple 

percentile method. This is because within each bootstrap sample the estimated canonical 

correlation will be above zero. This means some type of bias correction is necessary. 

Although the asymptotic distribution for true correlations of zero is not normal, the fact that 

the correlations converge at rate n as opposed to n implies that this will have conservative 

type I error as sample size increases. Simulation results in Section 3 indicate that this is the 

case.

Given the conservative nature of this test, particularly as sample size increases, it is 

important to point out why it this bootstrapping procedure is preferred to other testing 

procedures, including permutation based testing. Permutation or randomization testing 

assumes that under the null hypothesis observations are exchangeable. For transelliptical 

distributions this assumption is only met when data are generated from a distribution with a 

Gaussian copula where having a true correlation of zero implies independence. For all other 

elliptical copulas this is not the case, so permutation tests will lead to inflated type I error. 

Even for CCA estimated using the sample correlation or covariance matrix a permutation 

test will lead to inflated type I error if the data are not generated from a distribution with a 

Gaussian copula, and asymptotic testing procedures assume the data are generated from a 

multivariate Gaussian distribution. Importantly this means that even if all the marginal 

distributions are Gaussian, permutation and asymptotic tests will result in inflated type I 

error if the copula defining the joint distribution is not a Gaussian copula. The permutation 

test can be thought of as a test of the null hypothesis that the canonical variates are 

independent, rather than a test for a true canonical correlation of zero. However for 

transelliptical CCA a test of independence can be misleading if data are not generated from a 

Gaussian copula. As an example consider (XT, YT)T = Z with a multivariate Cauchy 

distribution and a scatter matrix equal to the identity matrix. In this case there are no well 

defined unique canonical directions for transelliptical CCA, as any linear combinations of X 
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and Y which meet the relevant constraints will be rank uncorrelated. Any estimated 

directions will be purely due to random variability within the particular sample, and will not 

be informative of associations between X and Y. However any linear combinations of X and 

Y will not be independent. Therefore even when transelliptical CCA variables are not 

independent, the estimated directions may still be due purely to random noise and not be 

informative of any true associations of the variables. For this reason we recommend testing 

the null that the true canonical correlation is zero, which can be done using the inverted 

bootstrap procedure. This is particularly the case when data are not generated from a 

distribution with a Gaussian copula.

The inverted bootstrap procedure does not even need the transelliptical assumption, just the 

assumption that the estimated correlation or covariance matrix is asymptotically normal. For 

the transformed Kendall’s estimator this only requires that the data from different subjects 

be independent and identically distributed, and for the sample correlation or covariance 

matrix this only requires that the data be independent and identically distributed and fourth 

moments exist. When using the transformed Kendall’s estimator this bootstrap procedure 

will test the null hypothesis that for all variables in X the true pairwise Kendall’s tau 

coefficient with all variables in Y is zero. Therefore even when data are not generated from a 

distribution with an elliptical copula this provides a meaningful test for association between 

the two sets of variables. Simulation results comparing the bootstrap testing procedures with 

other testing procedures are presented in Section 3.3.

3. Simulation Results

3.1. Empirical bias and variance of CCA with robust covariance estimation

Simulations are conducted to compare transelliptical CCA using the transformed Kendall’s 

estimator and standard CCA under both elliptical and transelliptical settings. In addition 

CCA based on two robust covariance matrix estimators are considered, the re-weighted 

MCD estimator from the R package robustbase [45] and the S estimator from the R package 

rrcov [45]. For the re-weighted MCD estimator a maximum proportion of 0.75 and 0.5 of the 

observations were considered. When using a cutoff of 0.75 the bias and standard deviation of 

the direction and correlation of estimates are improved relative to those using a cutoff of 0.5, 

so only those results using a cutoff of 0.75 are reported. For the S estimator a breakdown 

point of 0.75 and 0.5 were considered. Results were very similar across both breakdown 

points so only tm breakdown point of 0.75 is presented. In addition two different rank based 

correlation estimators are considered, one based on Spearman’s correlation and one based on 

Blomqvist’s beta. The Spearman correlation estimator estimates all pairwise Spearman 

correlation values and uses the inverse of the equivalence relationship between Spearman’s 

correlation and Pearson correlation, s = (6/π)arcsin(ρ/2), to get an estimate of the Pearson 

correlation matrix. Because this equivalence only holds for the multivariate normal 

distribution and not elliptical distributions in general this estimator was only considered 

when data were generated with a Gaussian copula. Likewise the Blomqvist Beta estimator 

first estimates all pairwise Blomqvist’s beta values and then uses the inverse of the 

equivalence relationship between Blomqvist’s beta and Pearson correalation, β = (2/
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π)arcsin(ρ), to get an estimate of the Pearson correlation matrix. Standard CCA is calculated 

using the R package CCA [16].

The distributions of the simulated data sets are multivariate normal, multivariate Cauchy, 

multivariate t with five and ten degrees of freedom, and the multivariate lognormal. The first 

four distributions satisfy the elliptical assumptions, while the latter is a member of the 

transelliptical but not elliptical family. The sample size of the simulated data sets are n=200 

and n=1000, and the dimension of X and Y are p=q=4,8 and 16. Results for p=q=8 and 

n=200 are presented below, with the other results given in the supplementary material. The 

relative performance of the different methods is generally consistent across the different 

dimensions and sample sizes, with methods improving as sample size increases or 

dimension decreases as long as they have been shown to be consistent for a given 

distribution. The true scatter matrix for X and Y is ∑XX = ∑YY = Ip, and ∑XY is a diagonal 

matrix where the first four diagonal entries are 0.9,0.5,0.4, and 1/3, and all remaining 

diagonal entries are zero. The structure of these scatter matrices is similar to those in Branco 

et al. [7]. To define PZn all negative eigenvalues are set to 0.001. For each simulation 

setting, at most 0.2% of simulations resulted in PZn not being positive-definite. The total 

number of simulated data sets for each simulation setting is 1000.

Based on the 1000 simulated data sets the empirical bias and standard deviation is calculated 

for the canonical correlations and directions for each of CCA methods. For the canonical 

correlation estimates the bias and variance are calculated after a Fisher inverse hyperbolic 

tangent transformation. For the ith canonical direction the angle between the true direction 

for X, ai, and estimated direction for X for the jth simulation, ai
(j), is calculated as

cos−1 |ai
(j)⊺ai|

‖ai
(j)‖ ⋅ ‖ai‖

.

The bias for the canonical directions is estimated as the average angle across all simulated 

data sets and the standard deviation is estimated as the empirical standard deviation of the 

angles across all simulated data sets. Table 1 gives the output for the canonical correlation 

and canonical direction. Because ∑XY is symmetric and p = q only the bias and standard 

deviation for the X direction are presented, with the results for Y being nearly identical.

Based on results in Table 1 standard CCA has the smallest bias and standard deviation when 

simulating under the multivariate normal distribution, with the S estimator outperforming 

the other robust methods. The transformed Kendall’s estimator performs similarly to the re-

weighted MCD estimator and estimator based on Spearman’s correlation, while the 

Blomqvist’s beta estimator is by far the worst estimator when data are simulated from a 

multivariate normal distribution. As noted previously, we can see in the multivariate normal 

setting that there is evidence of a positive finite sample bias in the estimates of the canonical 

correlations for all methods considered. This is also true for all simulations from all other 

distributions considered, except for the lognormal distribution when methods are not 

invariant to monotone transformations of the data. For simulations from the Cauchy 
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distribution the S estimator performs the best and the transformed Kendall’s estimator 

performs slightly worse than the re-weighted MCD estimator for the first direction, and 

better than the re-weighted MCD estimator higher directions. The estimator using 

Blomqvist’s beta is again the worst performing robust estimator. Standard CCA has high 

bias and variance under this setting because of the lack of moments. When data are 

generated from a multivariate t distribution with five or ten degrees of freedom the S 

estimator is again the best performing robust method, followed by the transformed Kendall’s 

estimator. When data are simulated from a t distribution with ten degrees of freedom the 

standard CCA estimates perform similarly to the S estimator, while when data are simulated 

using a t distribution with five degrees of freedom the standard estimator performs worse 

than the S estimator and transformed Kendall’s estimator. This suggests that even when 

standard CCA is well defined, robust estimators such as the S estimator or transformed 

Kendall’s estimator outperforms the sample covariance matrix for heavy tailed elliptical 

distributions. Under the lognormal setting the standard estimator, the re-weighted MCD 

estimator, and the S estimator all underestimate the transelliptical canonical correlations, 

while the transformed Kendall’s estimator and estimator using Spearman’s correlation has 

small positive bias that reduces with sample size. This is particularly evident for n = 1000 

presented in the supplementary material. In addition the estimated canonical directions using 

the transformed Kendall’s estimator have lower bias than standard CCA or the estimates 

using the S or re-weighted MCD estimators, particularly in the second and higher directions. 

These findings illustrate the advantages of the transelliptical CCA with data that are 

transelliptically but not elliptically distributed. Even without transforming potentially 

skewed marginal distributions the transformed Kendall’s estimator can estimate the strongest 

linear relationships based on the underlying copula. The transformed Kendall’s estimator 

also has advantages over the other rank based methods. Unlike the method based on 

transformed Spearman’s correlation it can be us,d for non-Gaussian elliptical copulas. It also 

greatly outperforms the method based on transformations of Blomqvist’s beta in all 

simulation settings considered.

3.2. Confidence intervals for non-zero canonical correlations

Simulations are run to compare coverages for transelliptical canonical correlations estimated 

using the transformed Kendall’s estimator using normal bootstrapped confidence intervals as 

well as asymptotic confidence intervals using ”plug-in” estimators of the asymptotic 

variance for the estimates from Theorem 2.2. Details on the form of the variance estimates 

are in Theorem 2.2 and Corollary 2.2.1, as well as the Appendix. The ”plug-in” variance 

estimator is calculated using estimates of transelliptical canonical correlations and 

directions, based on the transformed Kendall’s estimator. An estimate of the variance of the 

transformed Kendall’s scatter matrix is obtained using methods from Rublik [42] and the 

delta method. Because canonical correlations must be between zero and one the asymptotic 

confidence intervals are truncated at zero or one as necessary. For the bootstrap confidence 

intervals 1000 bootstrap replicates are used. Confidence intervals using 2000 bootstrap 

replicates were also considered and had similar coverages. The bootstrap confidence 

intervals for the canonical correlations use the normal approximation method including a 

bias correction. The confidence intervals are constructed from the square of the canonical 

correlations, and then transformed using the square root to give the bounds for the 
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transelliptical canonical correlations. Because we are using the normal approximation 

bootstrap confidence intervals may need to be truncated at zero or one, similar to the 

asymptotic confidence intervals. This can be done before applying the square root 

transformation. We use the square of the canonical correlations because bootstrap 

confidence intervals constructed in this way have better coverage than using the canonical 

correlations themselves in our simulations. We believe this is related to the fact that the 

canonical correlations are themselves the square root of the eigenvalues for the eigensystem 

used to solve for CCA directions and correlations.

The simulation set-ups are the same as Section 3.1. Table 2 reports the coverages for the 

canonical correlations when p = q = 8, with other dimensions found in the supplementary 

materials. As with the results for the empirical bias and variance, the relative performance of 

different methods for constructing confidence intervals is similar across different 

dimensions. For the non-zero canonical correlations both the the asymptotic and bootstrap 

confidence intervals tend to have undercoverage in our simulations when n=200. This is 

particularly the case for asymptotic confidence intervals as dimension increases, likely due 

to the lack of bias correction. Coverage for both the asymptotic and bootstrap confidence 

intervals improves in our simulations as sample size increases. The bootstrap confidence 

intervals still have undercoverage in our simulations for higher directions even in 

simulations when n=1000 across all distributions. This may be due to difficulty with 

accounting for variance due to additional constraints. The asymptotic confidence intervals 

for the canonical correlations have close to the desired coverage for the higher directions, 

but have undercoverage for the first two directions in our simulations, particularly when data 

are simulated from a multivariate Cauchy distribution. This is likely due to the same positive 

finite sample bias that causes severe undercoverage when n=200.

For the transelliptical canonical directions using transformed Kendall’s estimator, bootstrap 

and asymptotic confidence intervals are calculated for the loading of each variable in 

directions corresponding to non-zero canonical correlations. For each bootstrap replicate the 

estimates of both transelliptical canonical directions are flipped if necessary in order to 

minimize the sum of the angles between the estimated direction within the bootstrap 

replicate and the original sample. Table 3 reports the coverages for p = q = 8 and data 

simulated from a multivariate normal distribution. Results for p = q = 4 and 16 as well as 

data simulated from the multivariate Cauchy distribution are reported in the supplementary 

materials. Some of the issues with undercoverage, particularly with n = 200 that are apparent 

in Table 3 are more severe for p = q = 16 and less severe for p = q = 4 in the tables presented 

in supplementary materials. The performance when data are generated from a multivariate 

Cauchy distribution is similar to the performance when data are generated from a 

multivariate normal distribution. The coverages are close to 95% for the first canonical 

direction, with overcoverage for the variable with a non-zero loading for the first direction. 

For both the bootstrap confidence intervals and asymptotic confidence intervals there is 

undercoverage for some loadings in the second, third, and fourth directions. This is likely 

due to the added complexity of additional constraints for higher order canonical directions, 

similar to what is seen in the bootstrap confidence intervals for the canonical correlations. 

We recommend interpreting any confidence intervals for higher order directions with 
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caution. In finite samples it is difficult to fully quantify the uncertainty that arises as the 

number of constraints increases.

3.3. Testing procedures to identify non-zero canonical correlations

In addition to constructing confidence intervals for the non-zero canonical correlations and 

the associated directions, testing the null hypothesis that the true canonical correlation 

equals zero is also of interest. As noted in Section 2 we propose testing for a true canonical 

correlation of zero at the 0.05 significance level by inverting a 90% normal bootstrap 

confidence interval for the transelliptical canonical correlation, and rejecting the null 

hypothesis if the lower bound for the confidence interval is above zero. We use a 90% 

confidence interval because the alternative for this test is one sided. If the test for the ith 
transelliptical canonical correlation fails to reject the null hypothesis of a true transelliptical 

canonical correlation of zero then we will also fail to reject the null hypothesis for all higher 

order transelliptical canonical correlations. This procedure can be done iteratively, starting 

with the first transelliptical canonical correlation and moving on to higher order correlations, 

stopping when the test fails to reject the null hypothesis of a true correlation of zero.

We compare the type I error and power for the bootstrapped testing procedure using the 

transformed Kendall’s estimator with a permutation test also using the transformed 

Kendall’s estimator and the asymptotic Wilk’s Lambda [48] from the R package CCP [32] 

using standard CCA based on the sample correlation matrix. In addition the bootstrap and 

permutation testing procedures using the sample correlation matrix estimator are presented. 

We consider p = q = 8 and ∑XX = ∑YY = I where ∑XY has either all zeros or a single non-

zero entry ranging from 0.2 to 0.8 in increments of 0.2. This set up is employed for 

multivariate normal, multivariate Cauchy, multivariate t with five and ten degrees of 

freedom, and multivariate lognormal distributions for both n = 200 and n = 1000. 1000 data 

sets are simulated for each setting. Table 4 gives the proportion of simulated data sets for 

which the null hypothesis that the first transelliptical canonical correlation is zero is rejected 

for each testing procedure. The bootstrap test using Kendall’s transformed estimator controls 

for type I error, being conservative in all settings when n = 1000. For n = 200 type I error is 

not controlled for using the bootstrap method when data are simulated from a multivariate 

Cauchy or multivariate t with five degrees of freedom, but is closer to the nominal level than 

asymptotic or permutation tests. The type I error not being controlled for heavy tailed 

elliptical distributions is likely due to the fact that the asymptotic distribution of the 

canonical correlations with a true value of zero is not normal and bootstrap procedures may 

not give the desired coverage, particularly for smaller sample sizes. However, given that for 

standard CCA the zero canonical correlations converge at rate n rather than n we would 

expect overcoverage for the bootstrap confidence intervals for zero canonical correlations as 

sample size increases, which would result in the conservative type I errors we see for 

n=1000. For the multivariate Cauchy distribution the transelliptical CCA bootstrap method is 

the only procedure that doesn’t have a type I error of at least 0.77 for both sample sizes. The 

permutation based test only controls for type I error when data are simulated from a normal 

or lognormal distribution for both transelliptical CCA estimated using the transformed 

Kendall’s estimator and standard CCA. This is because permutation based tests for CCA are 

only valid when zero correlation also implies independence, which is only true for the 
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Gaussian copula. When the sample size is 1000 the type I error rate for the permutation test 

is even higher than for a sample size of 200. Also as expected the asymptotic Wilk’s 

Lambda test only controls type I error when the data are simulated from a multivariate 

normal distribution. The type I error rate for this test is inflated even for the lognormal, 

because changes to the marginal distributions also affect this testing procedure. Power for 

the bootstrap method is generally comparable to the other testing methods, particularly as 

sample size increases.

4. White matter tractography data and executive function in six year old 

children

We provide a comparison of transelliptical CCA estimated with the transformed Kendall’s 

estimator and standard CCA estimated with the sample correlation matrix, using diffusion 

tensor imaging (DTI) and executive function (EF) data from six-year olds. The data come 

from an ongoing longitudinal study at the University of North Carolina investigating 

behavior and brain development from birth through adolescence [13, 28, 29]. The data 

include some sibling and twin pairs in addition to singletons. In our analysis, the data from 

one randomly selected child per family is used.

For DTI, we fcus on 20 white matter tracts previously associated with cognitive function 

[15]. The 20 tracts included in the analysis can be found in Table 5. Imaging measures of 

diffusion rate and direction are available on these tracts including fractal anisotropy (FA), 

radial diffusivity (RD) and axial diffusivity (AD). We employ a single value for each tract, 

calculated by averaging measurements across all locations in the tract. Additional 

information on these measures and their interpretations can be found at Alexander et al. [2]. 

Results for RD are presented in the main text with those for FA and AD given in the 

supplementary material.

EF measures are an executive composite score from the Behavior Rating Inventory of 

Executive Function (BRIEF) [14], Cambridge Neuropsychological Test Automated Battery 

(CANTAB) Spatial Span (SSP), CANTAB Stockings of Cambridge (SOC) [9], Stanford-

Binet Verbal Fluid Reasoning (SB VFR), and Stanford-Binet Non-verbal Fluid Reasoning 

(SB NVFR) [39]. The BRIEF is a parent report measure whereas, CANTAB and Stanford-

Binet are child assessments. For all EF variables except BRIEF a higher score indicates 

better EF, while for BRIEF a lower score indicates better EF. A total of 214 children have 

data for all EF measures plus all of the white matter tracts, and 216 have data for all EF 

measures plus all the bilateral tracts.

For each method p-values testing whether the true canonical correlation is zero are based on 

the bootstrap testing procedure using 1000 replicates. For both methods bootstrap 

confidence intervals for the direction loadings are reported using 1000 bootstrap replicates 

and the normal approximation bootstrap method. Confidence intervals based on a ”plug-in” 

variance estimator for transelliptical CCA directions using the transformed Kendall’s 

estimator are also reported.
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The marginal distributions for each of the variables to be included in the CCA analysis are 

tested for violations of normality which would indicate that transelliptical CCA may be 

more effective at summarizing the associations between the variables than standard CCA 

and that the transformed Kendall’s estimator may be more efficient than the sample 

correlation estimator. Specifically all variables are tested for excess kurtosis using the 

Anscombe test[6], and skewness using the D’Agostino test [10]. The average RD values for 

a number of white matter tracts shows excess kurtosis relative to a normal distribution 

including ARC FT Right, ARC FP Left, ARC TP Right, CTPF Left, CTPF Right, ILF Left, 

SLF Left, and Splenium. The ARC FP Left, ARC TP right, CTPF Left, CTPF Right, and 

Splenium also have positive skewness. In addition the SB VFR scores also have excess 

kurtosis and negative skewness, while the BRIEF scores show positive skewness.

Transelliptical CCA assumes the data come from a transelliptical distribution which can be 

tested using the methods from Jaser et al. [23]. This test is based on the equivalence between 

Kendall’s tau and Blomqvist’s beta for elliptical copulas. After testing for the equivalence 

between Blomqvist’s beta and Kendall’s tau for all pairs of variables and applying a false 

discovery rate (FDR) correction there were no significant differences between Blomqvist’s 

beta and Kendall’s tau at the 0.05 level. This suggests that deviations from the transelliptical 

assumption are relatively minor.

Table 6 gives the first canonical directions and correlations for both transelliptical CCA and 

standard CCA. The jackknife corrected estimate for the first transelliptical canonical 

correlation is 0.49, compared to 0.32 for standard CCA. In both cases, the first canonical 

correlation has p-value less than 0.05 using the bootstrap testing procedure. No other 

canonical correlations are significant. The DTI variable loadings are similar for the two 

methods, with the largest differences arising from tracts such as CTPF, ARC FP, ARC FT, 

ARC TP, and Splenium that show excess kurtosis or skewness. For all direction loadings the 

confidence intervals overlap between transelliptical CCA and standard CCA. The asymptotic 

confidence intervals for the transelliptical CCA direction loadings are narrower than the 

bootstrap confidence intervals for the DTI variables and similar to the bootstrap confidence 

intervals for the EF variables. When interpreting the direction loadings for RD values for the 

white matter tracts we note that lower RD is indicative of higher myelination, which would 

result in faster transmission of electrical impulses.

For all of the bilateral DTI tracts except the CTPF, SLF, and UNC the loading for the left 

hemisphere is larger than that for the right hemisphere. This is particularly noticeable in the 

ARC FT and IFOF tracts. Further analysis is done to examine the association between 

lateralization of RD among the bilateral tracts and EF tests. In order to do this we employ 

the lateralization measure from Niogi and McCandliss [35]. For the ith bilateral tract the 

lateralization measure, RDLATi, is defined as

RDLATi =
RDLi − RDRi

(RDLi + RDRi)/2 ,

where RDLi is the RD measure from the ith bilateral tract on the left hemisphere and RDRi is 

the RD measure from the tract on the right hemisphere. The lateralization measure for CTPF 
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shows both excess kurtosis and positive skewness as measured by the Anscombe and 

D’Agostino tests. The test from Jaser et al. [23] is again used to test for potential violations 

of the transelliptical assumption, and again none of the pairwise tests show a significant 

difference between Kendall’s tau and Blomqvist’s beta after an FDR correction.

Table 7 reports the estimated first direction and correlation for transelliptical CCA using the 

transformed Kendall’s estimator and standard CCA. The jackknife corrected estimate for the 

first canonical correlation using the transformed Kendall’s estimator is 0.33, compared to 

0.23 for standard CCA. In this case only CCA using the transformed Kendall’s estimator has 

a p-value less than 0.05 for the first direction based on the bootstrap testing procedure. A 

higher lateralization measure for ARC FT and IFOF is correlated with higher SB VFR 

scores. A higher lateralization score means that RD is lower on the right hemisphere, 

indicating higher myelination for the right hemisphere tract. This gives evidence that for 

ARC FT and IFOF tracts greater development of the right hemisphere relative to the left 

hemisphere is associated with greater fluid reasoning. To the authors’ knowledge, this is a 

novel finding.

This analysis illustrates the benefits of CCA based on the transformed Kendall’s estimator. 

Even with moderate violations of normality as measured by kurtosis and skewness we 

uncover stronger associations than with standard CCA.

5. Discussion

In this paper we define a version of CCA for transelliptical distributions using Kendall’s tau. 

Consistent and asymptotically normal estimates of canonical directions and correlations can 

be obtained using a transformed Kendall’s scatter matrix estimator. Simulation studies 

suggest that CCA estimates using the transformed Kendall’s estimator perform well relative 

to other robust CCA methods in finite sample settings. The transformed Kendall’s scatter 

matrix estimator can be used to consistently estimate transelliptical CCA directions and 

correlations for all transelliptical distributions, unlike other commonly used robust 

covariance matrix estimators such as MCD or S estimators which are only consistent for 

elliptical distributions. An R package implementing transelliptical CCA using the 

transformed Kendall’s scatter matrix estimator as well as the data for the example in Section 

4 is available at github.com/blangworthy/transCCA.

Confidence intervals for the canonical directions and nonzero correlations can be obtained 

using bootstrap methods or based on the asymptotic variances of the estimator. In simulation 

studies the bootstrap confidence intervals are superior for the canonical correlations when 

sample size is small, and the two methods perform similarly for the canonical directions. 

Confidence intervals for higher level canonical directions do not perform as well in terms of 

coverage as confidence intervals for the first canonical directions for both bootstrap and 

asymptotic based methods. This is likely due to difficulty in accounting for variability due to 

additional constraints for finite samples. For this reason we suggest interpreting confidence 

intervals for higher order directions with caution. In addition we propose a bootstrap 

procedure for testing if the true canonical correlation is equal to zero based on inverting 

bootstrap confidence intervals. This is necessary because both asymptotic and permutation 
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based methods are not useful for identifying informative canonical directions if data are not 

generated from a distribution with a Gaussian copula. One area for future research is finding 

an improved testing procedure based on the asymptotic distribution for canonical 

correlations with true value zero using either the sample correlation or transformed 

Kendall’s estimator when data are not generated from a multivariate normal distribution. 

These results have been found for standard CCA under a multivariate normality, but it is not 

straightforward to extend these results to transelliptical CCA.

CCA using the transformed Kendall’s estimator shows promise for use in high dimensions 

or for more than two sets of variables. A number of formulations for sparse CCA have been 

proposed [49–51]. The methods from Yoon et al. [51] also use Kendall’s tau to estimate the 

correlation matrix, however they only considered data generated from a Gaussian copula and 

neither establish the large sample properties of their estimators nor consider testing and 

confidence interval construction. Extensions of CCA to more than two sets of variables have 

been proposed which can be adapted to the transelliptical setting [26, 34].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix - Proof of theorems

Proof of Theorem 2.1 Define λd to be the minimum eigenvalue of PZ. By assumption λd > 

0. Given that τ (Zi, Zj)
p τ(Zi, Zj) for all 1 ≤ i, j ≤ d, by continuous mapping theorem 

ρn, ij p ρij. Define δn, ij = ρn, ij − ρij. Then for every γ > 0 there exists an Nγ such that for 

every n > Nγ,

Pr ∑
1 ≤ i, j ≤ d

δn, ij ≥ λd
2 ≤ γ (12)

Define Δn = PZn − PZ, and ωnii to be the ith eigenvalue of Δn. Because 

ωni ≤ Σ1 ≤ i, j ≤ n δn, ij , Equation (12) implies that for 1 ≤ i ≤ d and n > Nγ

Pr |ωni| ≥ λd
2 ≤ γ (13)

Because Pn = PZ + Δn Weyl’s inequality is used to put a bound on λnd. Specifically 

λnd ≥ λd + ωnd. Combining this with Equation (13) the result Pr(λnd > 0) p 1 is obtained.
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Proof of Theorem 2.2 This proof is a generalization of the work in Anderson [4] and uses 

similar algebraic steps. The true canonical directions, a and bi corresponding to the 

canonical correlation λi are solutions to the system of equations

−λiPXX PXY
PY X −λiPY Y

ai
bi

= 0
0 .

The r non-zero canonical correlations, λ1 > ⋯ > λr > 0, are the non-zero values such that

−λiPXX PXY
PY X −λiPY Y

= 0 .

Ar = (a1, …, ar) and Br = (b1, …, br) will be uniquely determined up to a change in sign. In 

order to uniquely define Ar and Br it is possible to order the rows of X such that aii > 0. 

Define Ar+ = (ar+1), …, ap) and Br+ = (br+1), …, aq) to be solutions such that for A = 

(Ar,Ar+) and B = (Br,Br+) the equalities A⊺PXXA = Ip, B⊺PXXB = Iq, and ATPXY B =
Λr 0
0 0

hold. The solutions for Ar+ and Br+ are only unique up to multiplication by an orthogonal 

matrix on the right hand side, but the following results will hold for any unique value of Ar+ 

and Br+ obtained by imposing suitable constraints. For simplicity the subscript n will be 

dropped from the notation for the estimates of canonical correlations and directions. The 

estimates of ai and bi, ai∗ and bi
∗, are solutions to the system of equations

−λi*PXX* PXY*
PY X* λi*PY Y*

ai*
bi*

= 0
0 . (14)

The estimate of λi, λi
∗, is the ith solution to

−λi*PXX* PXY*
PY X* −λi*PY Y* = 0 . (15)

Recall the transformations PUU
∗ = A⊺PXX

∗ A, PV V
∗ = B⊺PY Y

∗ B, PUV
∗ = A⊺PXY

∗ B, and 

PV U
∗ = PV U

∗ T , with limiting distribution defined in Equation (4). It is straightforward to show 

that the limiting distribution in Equation (4) holds by the delta method. Further recall G and 

H which are defined by the system of equations in Equations (1–3) Because the determinant 

of the product of two square matrices equals product of the determinants, if λi
∗ is a solution 

to (2) it is also a solution to (15). The solutions to (14) and (1) are related through the 

identities Agi = ai∗ and Bℎi = bi
∗. Equation (1) implies

PUV* H = PUU* GΛr*, PV U* G = PV V* HΛr* . (16)
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Define the matrix Ir,m1,m2 to be the m1 × m2 matrix with m1, m2 ≥ r and the upper left hand 

corner equal to Ir and all other entries equal to zero. Based on (4) PUU →p Ip, PVV →p Iq, 

and PUV →p Λr,pq. It follows that G →p Ir,pr and H →p Ir,qr. Because G, H, and Λr
∗ are 

single valued functions of PUU
∗ , PUV

∗ , and PV V
∗  that are differentiable in the neighborhood of 

Ir,pr and Λr, by the Delta method if we define G = n(G − Ir, pr), H = n(H − Ir, qr), and 

Λr = n(Λr
∗ − Λr), then vec(G), vec(H), and vec(Λr) all have a normal limiting distribution 

with mean zero and finite variances. Note the following equalities obtained by expanding 

and rearranging the terms of (16),

n{(PUV* Ir, qr − Λr, pr) − (PUU* − Ip)Λr, pr} = GΛr + Λr, pr − Λr, pqH + op(1), (17)

n{(PV U* Ir, pr − Λr, qr) − (PV V* − Iq)Λr, qr} = HΛr + Λr, qr − Λr, qpG + op(1) . (18)

Multiplying (17) by Λr on the right hand side and (18) by Λr,pq on the left hand side and 

taking the sum, and then multiplying (17) by Λr,qp on the left hand side and (18) by Λr on 

the right hand side and taking the sum results in the following two equalities:

n{(PUV* Ir, qr − Λr, pr)Λr + Λr, pq(PV U* Ir, pr − Λr, qr) − Λr, pq(PV V* − Iq)Λr, qr
− (PUU* − Ip)Λr, prΛr}
= 2Λr, prΛr + GΛr, pr

2 − Λr, pp
2 G + op(1),

(19)

n{(PV U* Ir, pr − Λr, qr)Λr + Λr, qp(PUV* Ir, qr − Λr, pr) − Λr, qp(PUU* − Ip)Λr, pr
− (PV V* − Iq)Λr, qrΛr}
= 2Λr, qrΛr + HΛr, qr

2 − Λr, qq
2 H + op(1) .

(20)

The ith diagonal term where 1 ≤ i ≤ r of the right hand side of both (19) and (20) will be 

equal to 2λiλi + op(1), which can be used to find Equation (5). The ith row and jth column 

where 1 ≤ i ≤ p, 1 ≤ j ≤ r and j ≠ i of the right hand side of (19) is equal to gij(λj
2 − λi

2), while 

the ith row and jth column where 1 ≤ i ≤ q, 1 ≤ j ≤ r and i ≠ j from the right hand side of (20) 

is equal to ℎij(λj
2 − λi

2), where gij and ℎij are the entry from the ith row and jth column of G
and H respectively. These can be used to show Equations (8) and (9). In order to solve for 

the variances and covariances of gii and ℎii the following equalities are obtained by 

substituting G and H into (3)

n(Ir, rpPUU* Ir, pr − Ir) = − (G⊺Ir, pr + Ir, rpG) + op(1), (21)

n(Ir, rqPV V* Ir, qr − Ir) = − (H⊺Ir, qr + Ir, rqG) + op(1) . (22)
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The ith diagonal term for 1 ≤ i ≤ r of the right hand side of (21) is −2gii + op(1) and the ith 

diagonal term for 1 ≤ i ≤ r of the right hand side of (22) is −2ℎii + op(1). The variances and 

covariances for each term on the left hand side of (19), (20), (21), and (22) can be solved for 

using (4) and can be used to show Equations (6) and (7). Given the variances of G and H the 

asymptotic variances of n(aj∗ − aj) and n(bj
∗ − bj) for 1 ≤ j ≤ r are solved for using the 

following equalities,

n(aj* − aj) = nA(gj − ιpj) = ∑
i = 1

p
aigij + op(1), (23)

n(bj* − bj) = nB(ℎj − ιqj) = ∑
i = 1

q
biℎij + op(1), (24)

where ιpj is a p × 1 vector where the jth element is one and the rest are zero. Equations (23) 

and (24) can be used to show Equations (10) and (11). The limiting covariances on the left 

hand side can be found by solving for the covariances of the right hand side. Consistent 

estimates for for the covariance matrix for n(Ar
∗ − Ar), n(Br

∗ − Br), and n(Λr
∗ − Λr) can be 

obtained by plugging in consistent estimates of Θ, A, B, and Λ.
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Table 1:

Average empirical bias (standard deviation) from 1000 simulations of the estimates of the first four canonical 

correlations and directions. Six different estimation techniques used with data simulated from five different 

elliptical and transelliptical distributions with p=q=8 and n=200.

Canonical Correlations

Normal Cauchy Lognormal t5 t10

Cor 1 Standard 0.05 (0.07) 1.94 (1.13) −0.12 (0.19) 0.09 (0.11) 0.05 (0.08)

Kendall 0.06 (0.08) 0.17 (0.14) 0.05 (0.08) 0.07 (0.09) 0.06 (0.08)

S 0.05 (0.08) 0.09 (0.11) −0.16 (0.12) 0.06 (0.08) 0.04 (0.08)

MCD 0.06 (0.08) 0.13 (0.12) −0.15 (0.13) 0.08 (0.10) 0.07 (0.09)

Spearman 0.05 (0.09) - 0.04 (0.08) - -

Blomqvist 0.60 (0.60) 0.63 (0.65) 0.60 (0.60) 0.60 (0.57) 0.57 (0.58)

Cor 2 Standard 0.09 (0.06) 1.70 (0.69) 0.01 (0.12) 0.17 (0.09) 0.11 (0.07)

Kendall 0.10 (0.07) 0.19 (0.09) 0.10 (0.07) 0.12 (0.07) 0.11 (0.07)

S 0.09 (0.06) 0.17 (0.08) −0.02 (0.07) 0.11 (0.07) 0.10 (0.06)

MCD 0.11 (0.07) 0.23 (0.09) 0.02 (0.08) 0.15 (0.08) 0.15 (0.08)

Spearman 0.10 (0.07) - 0.10 (0.07) - -

Blomqvist 0.29 (0.13) 0.29 (0.13) 0.30 (0.12) 0.29 (0.12) 0.30 (0.12)

Cor 3 Standard 0.07 (0.05) 1.22 (0.46) −0.02 (0.07) 0.13 (0.07) 0.09 (0.06)

Kendall 0.08 (0.06) 0.14 (0.07) 0.08 (0.06) 0.09 (0.06) 0.09 (0.06)

S 0.07 (0.06) 0.13 (0.07) −0.02 (0.06) 0.08 (0.06) 0.08 (0.06)

MCD 0.09 (0.06) 0.17 (0.08) 0.01 (0.06) 0.12 (0.07) 0.11 (0.06)

Spearman 0.08 (0.06) - 0.08 (0.06) - -

Blomqvist 0.19 (0.09) 0.20 (0.09) 0.20 (0.09) 0.19 (0.09) 0.20 (0.09)

Cor 4 Standard 0.03 (0.06) 0.86 (0.34) −0.05 (0.06) 0.07 (0.06) 0.04 (0.06)

Kendall 0.03 (0.06) 0.07 (0.06) 0.03 (0.06) 0.04 (0.06) 0.04 (0.06)

S 0.03 (0.06) 0.07 (0.06) −0.05 (0.05) 0.04 (0.06) 0.03 (0.06)

MCD 0.04 (0.06) 0.11 (0.07) −0.03 (0.06) 0.06 (0.06) 0.06 (0.06)

Spearman 0.03 (0.06) - 0.03 (0.06) - -

Blomqvist 0.11 (0.07) 0.11 (0.07) 0.11 (0.07) 0.11 (0.07) 0.12 (0.07)

Canonical Directions

Dir 1 Standard 0.10 (0.03) 0.69 (0.43) 0.13 (0.07) 0.13 (0.04) 0.11 (0.03)

Kendall 0.11 (0.03) 0.19 (0.06) 0.11 (0.03) 0.13 (0.04) 0.12 (0.04)

S 0.10 (0.03) 0.14 (0.04) 0.12 (0.04) 0.11 (0.03) 0.11 (0.03)

MCD 0.11 (0.03) 0.16 (0.05) 0.15 (0.05) 0.13 (0.04) 0.13 (0.04)

Spearman 0.11 (0.03) - 0.11 (0.03) - -

Blomqvist 0.31 (0.10) 0.30 (0.10) 0.31 (0.10) 0.30 (0.10) 0.30 (0.10)

Dir 2 Standard 0.57 (0.30) 1.26 (0.26) 0.80 (0.42) 0.72 (0.34) 0.63 (0.32)

Kendall 0.60 (0.31) 0.75 (0.32) 0.60 (0.32) 0.63 (0.31) 0.63 (0.31)

S 0.58 (0.31) 0.74 (0.33) 0.73 (0.37) 0.62 (0.31) 0.59 (0.30)

MCD 0.63 (0.32) 0.82 (0.33) 0.81 (0.36) 0.71 (0.33) 0.69 (0.32)
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Canonical Correlations

Normal Cauchy Lognormal t5 t10

Spearman 0.60 (0.31) - 0.60 (0.32) - -

Blomqvist 0.87 (0.32) 0.88 (0.32) 0.87 (0.32) 0.85 (0.31) 0.88 (0.32)

Dir 3 Standard 0.82 (0.35) 1.25 (0.24) 1.04 (0.36) 0.97 (0.34) 0.89 (0.35)

Kendall 0.84 (0.34) 0.99 (0.32) 0.85 (0.34) 0.88 (0.34) 0.88 (0.34)

S 0.83 (0.35) 0.99 (0.33) 0.99 (0.34) 0.87 (0.35) 0.85 (0.34)

MCD 0.87 (0.33) 1.06 (0.30) 1.06 (0.32) 0.96 (0.34) 0.93 (0.33)

Spearman 0.84 (0.34) - 0.86 (0.35) - -

Blomqvist 1.06 (0.29) 1.07 (0.30) 1.07 (0.30) 1.08 (0.30) 1.05 (0.30)

Dir 4 Standard 0.79 (0.31) 1.27 (0.24) 1.07 (0.33) 1.00 (0.31) 0.88 (0.32)

Kendall 0.83 (0.31) 1.03 (0.31) 0.84 (0.32) 0.89 (0.32) 0.86 (0.32)

S 0.80 (0.30) 1.01 (0.31) 1.02 (0.32) 0.87 (0.32) 0.84 (0.32)

MCD 0.85 (0.30) 1.08 (0.30) 1.12 (0.29) 0.99 (0.31) 0.96 (0.31)

Spearman 0.83 (0.31) - 0.84 (0.32) - -

Blomqvist 1.11 (0.29) 1.12 (0.28) 1.11 (0.28) 1.10 (0.29) 1.10 (0.29)
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Table 2:

Proportion of 1000 simulations in which the estimated confidence interval for the transelliptical canonical 

correlation contains the true transelliptical canonical correlation. Calculated for bootstrap and asymptotic 

confidence intervals using the transformed Kendall’s estimator for first four canonical correlations with data 

simulated from five different elliptical and transelliptical distributions with p=q=8 and n=200 and 1000.

Bootstrap Coverages Asymptotic Coverages

Normal Cauchy Lognormal t5 t10 Normal Cauchy Lognormal t5 t10

Canonical Correlation n=200

1 0.90 0.81 0.92 0.88 0.90 0.84 0.60 0.84 0.79 0.82

2 0.90 0.90 0.89 0.91 0.89 0.73 0.51 0.74 0.70 0.70

3 0.87 0.88 0.89 0.86 0.88 0.85 0.75 0.84 0.82 0.83

4 0.85 0.86 0.83 0.84 0.81 0.97 0.96 0.97 0.97 0.98

n=1000

1 0.94 0.90 0.93 0.93 0.92 0.93 0.89 0.93 0.93 0.93

2 0.93 0.92 0.93 0.91 0.94 0.93 0.89 0.92 0.90 0.91

3 0.89 0.89 0.91 0.91 0.90 0.94 0.93 0.95 0.93 0.93

4 0.91 0.91 0.91 0.89 0.93 0.98 0.97 0.97 0.96 0.97
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Table 3:

Proportion of 1000 simulations in which the estimated confidence interval for the transelliptical canonical 

direction loading contains the true canonical direction loading. Calculated for bootstrap and asymptotic 

confidence intervals using the transformed Kendall’s estimator for the first four canonical directions with data 

simulated from the multivariate normal distribution with p=q=8 and n=200 and 1000.

Bootstrap Coverages Asymptotic Coverages

Dir 1 Dir 2 Dir 3 Dir 4 Dir 1 Dir 2 Dir 3 Dir 4

Variable n=200

1 1.00 0.96 0.95 0.94 0.99 0.94 0.95 0.95

2 0.97 0.98 0.76 0.86 0.96 0.94 0.88 0.80

3 0.96 0.76 0.94 0.65 0.99 0.92 0.94 0.77

4 0.96 0.85 0.67 0.95 0.98 0.86 0.78 0.93

5 0.96 0.94 0.92 0.91 0.99 0.99 0.97 0.99

6 0.96 0.92 0.92 0.92 0.99 0.99 0.99 0.99

7 0.96 0.93 0.92 0.91 0.99 0.99 0.99 0.99

8 0.97 0.94 0.93 0.91 0.99 0.99 0.98 0.98

n=1000

1 1.00 0.94 0.96 0.94 1.00 0.99 1.00 1.00

2 0.94 1.00 0.92 0.94 0.94 0.99 0.95 0.93

3 0.94 0.92 0.99 0.86 0.96 0.95 0.98 0.86

4 0.95 0.94 0.85 0.99 0.95 0.94 0.87 0.98

5 0.94 0.94 0.94 0.96 0.98 0.98 0.99 0.99

6 0.96 0.95 0.95 0.96 0.99 1.00 0.99 0.99

7 0.94 0.94 0.95 0.94 0.99 1.00 0.99 0.99

8 0.96 0.95 0.95 0.96 0.99 0.99 0.99 0.99
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Table 4:

Proportion of 1000 simulations in which the null hypothesis of a true first canonical correlation of zero is 

rejected. Calculated for the Wilk’s Lambda testing procedure as well as bootstrap and permutation testing 

procedure for both transelliptical canonical correlation estimates using transformed Kendall’s estimator and 

standard canonical correlation estimates. Simulated for five different elliptical and transelliptical distributions 

with p=q=8 and n=200 and 1000.

True correlation 0 0.2 0.4 0.6 0.8

n=200

Normal Kendall Bootstrap 0.05 0.17 0.85 1 1

Kendall Permutation 0.06 0.16 0.86 1 1

Wilk’s Lambda 0.05 0.17 0.80 1 1

Standard Bootstrap 0.06 0.19 0.92 1 1

Standard Permutation 0.05 0.17 0.90 1 1

Cauchy Kendall Bootstrap 0.14 0.19 0.64 0.99 1

Kendall Permutation 0.77 0.85 0.98 1 1

Wilk’s Lambda 1 1 1 1 1

Standard Bootstrap 1 1 1 1 1

Standard Permutation 1 1 1 1 1

Lognormal Kendall Bootstrap 0.05 0.15 0.87 1 1

Kendall Permutation 0.05 0.15 0.87 1 1

Wilk’s Lambda 0.10 0.17 0.43 0.88 1

Standard Bootstrap 0.03 0.06 0.30 0.87 0.99

Standard Permutation 0.05 0.08 0.30 0.83 1

t5 Kendall Bootstrap 0.08 0.16 0.78 1 1

Kendall Permutation 0.17 0.33 0.90 1 1

Wilk’s Lambda 0.94 0.96 1 1 1

Standard Bootstrap 0.30 0.40 0.84 1 1

Standard Permutation 0.76 0.85 0.99 1 1

t10 Kendall Bootstrap 0.06 0.15 0.84 1 1

Kendall Permutation 0.10 0.22 0.88 1 1

Wilk’s Lambda 0.43 0.65 0.96 1 1

Standard Bootstrap 0.11 0.23 0.86 1 1

Standard Permutation 0.28 0.45 0.96 1 1

n=1000

Normal Kendall Bootstrap 0.02 0.85 1 1 1

Kendall Permutation 0.06 0.94 1 1 1

Wilk’s Lambda 0.05 0.88 1 1 1

Standard Bootstrap 0.02 0.91 1 1 1

Standard Permutation 0.05 0.97 1 1 1

Cauchy Kendall Bootstrap 0.02 0.45 1 1 1

Kendall Permutation 0.80 1 1 1 1
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True correlation 0 0.2 0.4 0.6 0.8

n=200

Wilk’s Lambda 1 1 1 1 1

Standard Bootstrap 1 1 1 1 1

Standard Permutation 1 1 1 1 1

Lognormal Kendall Bootstrap 0.02 0.84 1 1 1

Kendall Permutation 0.06 0.92 1 1 1

Wilk’s Lambda 0.10 0.45 0.99 1 1

Standard Bootstrap 0.00 0.09 0.92 0.99 1

Standard Permutation 0.06 0.29 0.99 1 1

t5 Kendall Bootstrap 0.02 0.67 1 1 1

Kendall Permutation 0.18 0.95 1 1 1

Wilk’s Lambda 0.98 1.00 1 1 1

Standard Bootstrap 0.01 0.28 0.99 1 1

Standard Permutation 0.94 1 1 1 1

t10 Kendall Bootstrap 0.01 0.79 1 1 1

Kendall Permutation 0.12 0.97 1 1 1

Wilk’s Lambda 0.48 0.99 1 1 1

Standard Bootstrap 0.01 0.70 1 1 1

Standard Permutation 0.37 0.99 1 1 1
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Table 5:

List of 20 white matter tracts and their abbreviations used in transelliptical and standard canonical correlation 

analysis estimating association between white matter and executive function tests in six-year-old children.

Tract Name Abbreviation

Arcuate fasciculus direct pathway left/right ARC FT Left/Right

Arcuate fasciculus indirect anterior pathway left/right ARC FP Left/Right

Arcuate fasciculus indirect posterior pathway lef/right ARC TP Left/Right

Anterior cingulum left/right CGC Left/Right

Corticothalamic prefrontal projections left/right CTPF Left/Right

Inferior fronto-occipital fasciculus left/right IFOF Left/Right

Inferior longitudinal fasciculus left/right ILF Left/Right

Superior longitudinal fasciculus left/right SLF Left/Right

Uncinate Left/Right UNC Left/Right

Splenium of the corpus callosum Splenium

Genu of the corpus callosum Genu
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Table 6:

Estimates for first canonical correlation direction loadings and correlations along with jackknife corrected 

correlation and bootstrap p-values for canonical correlation analysis between radial diffusivity measures for 20 

white matter tracts and five executive function tests in six-year-old children. Estimated for transelliptical 

canonical correlation analysis using the transformed Kendall’s estimator as well as standard canonical 

correlation analysis.

DTI Vars Transelliptical CCA Loadings Boot CI Asymp CI Standard CCA Loadings Boot CI

ARCFT Left 0.93 (0.30, 2.06) (0.39, 1.47) 0.21 (−0.60, 1.09)

ARCFT Right −0.83 (−2.53, 0.45) (−1.87, 0.22) 0.48 (−0.38, 1.77)

ARCFP Left −0.26 (−1.18, 0.47) (−0.84, 0.32) 0.12 (−0.52, 0.86)

ARCFP Right 0.24 (−0.38, 0.98) (−0.32, 0.81) 0.09 (−0.46, 0.67)

ARCTP Left 0.05 (−0.62, 0.79) (−0.45, 0.56) 0.10 (−0.55, 0.85)

ARCTP Right −0.05 (−1.06, 0.95) (−0.76, 0.65) −0.73 (−1.70, −0.27)

CGC Left 0.25 (−0.51, 1.22) (−0.32, 0.82) 0.10 (−0.62, 0.83)

CGC Right −0.02 (−0.84, 0.64) (−0.50, 0.47) −0.21 (−0.85, 0.30)

CTPF Left 0.27 (−0.13, 0.84) (−0.12, 0.66) 0.11 (−0.27, 0.51)

CTPF Right 0.17 (−0.28, 0.83) (−0.21, 0.56) 0.19 (−0.16, 0.69)

Genu 0.02 (−0.64, 0.68) (−0.47, 0.51) −0.01 (−0.56, 0.53)

ILF Left −0.04 (−0.92, 0.80) (−0.65, 0.57) −0.02 (−0.75, 0.68)

ILF Right 0.26 (−0.45, 1.04) (−0.23, 0.76) −0.17 (−0.81, 0.35)

IFOF Left 0.89 (0.12, 2.10) (0.19, 1.58) 0.75 (0.16, 1.84)

IFOF Right −1.31 (−2.73, −0.52) (−1.89, −0.73) −1.10 (−2.27, −0.52)

SLF Left −0.50 (−1.42, 0.26) (−1.06, 0.07) −0.05 (−0.73, 0.62)

SLF Right 0.06 (−0.64, 0.72) (−0.47, 0.60) −0.12 (−0.89, 0.54)

Splenium −0.66 (−1.39, −0.27) (−1.04, −0.28) −0.65 (−1.39, −0.33)

UNC Left −0.26 (−1.09, 0.48) (−0.83, 0.32) −0.02 (−0.75, 0.70)

UNC Right 0.64 (0.01, 1.54) (0.14, 1.14) 0.68 (0.23, 1.50)

EF Vars

SB V 1.02 (0.71, 1.77) (0.86, 1.19) 0.87 (0.55, 1.57)

SB NV −0.41 (−1.09, 0.22) (−0.94, 0.11) −0.50 (−1.30, 0.08)

Brief −0.26 (−0.77, 0.10) (−0.59, 0.07) −0.54 (−1.18, −0.17)

SOC −0.01 (−0.64, 0.58) (−0.44, 0.41) 0.14 (−0.40, 0.73)

SSPSpan 0.17 (−0.55, 0.91) (−0.24, 0.57) −0.18 (−0.79, 0.31)

Cor 0.63 0.48

Jackknife Cor 0.49 0.32

Pval 4.80E-04 4.138E-03

N 214 214
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Table 7:

Estimates for first canonical correlation direction loadings and correlations along with jackknife corrected 

correlation and bootstrap p-values for canonical correlation analysis between radial diffusivity lateralization 

measures for seven bilateral white matter tracts and five executive function tests in six-year-old children. 

Estimated for transelliptical canonical correlation analysis using the transformed Kendall’s estimator as well 

as standard canonical correlation analysis.

Lat Vars Transelliptical CCA Loadings Boot CI Asymp CI Standard CCA Loadings Boot CI

ARC FT 0.71 (0.17, 1.51) (0.14, 1.29) 0.18 (−0.60, 1.09)

ARC FP −0.36 (−0.92, 0.05) (−0.81, 0.08) −0.04 (−0.55, 0.47)

ARC TP −0.13 (−0.74, 0.49) (−0.65, 0.40) 0.25 (−0.28, 0.88)

CGC 0.29 (−0.04, 0.77) (−0.03, 0.61) 0.40 (0.12, 0.88)

CTPF 0.05 (−0.35, 0.48) (−0.33, 0.43) 0.07 (−0.35, 0.54)

ILF −0.09 (−0.54, 0.36) (−0.49, 0.32) 0.04 (−0.42, 0.55)

IFOF 0.59 (0.20, 1.25) (0.17, 1.01) 0.65 (0.28, 1.34)

SLF 0.28 (−0.18, 0.87) (−0.16, 0.71) 0.30 (−0.19, 1.04)

UNC −0.38 (−0.91, 0.00) (−0.76, 0.01) −0.35 (−0.94, 0.10)

EF Vars

SB V 0.82 (0.39, 1.58) (0.43, 1.21) 0.80 (0.41, 1.50)

SB NV −0.13 (−0.76, 0.59) (−0.72, 0.45) 0.02 (−0.67, 0.80)

Brief −0.28 (−0.75, 0.06) (−0.60, 0.04) −0.41 (−1.03, −0.02)

SOC −0.41 (−1.14, 0.17) (−0.93, 0.12) −0.10 (−0.88, 0.53)

SSPSpan 0.43 (−0.05, 1.00) (0.07, 0.80) 0.20 (−0.24, 0.73)

Cor 0.44 0.35

Jackknife Cor 0.33 0.23

Pval 0.03 0.11

N 216 216
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