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Abstract

The study of the relationships between two compositions is of paramount importance in 

geochemical data analysis. This paper develops a compositional version of canonical correlation 

analysis, called CoDA-CCO, for this purpose. We consider two approaches, using the centred log-

ratio transformation and the calculation of all possible pairwise log-ratios within sets. The 

relationships between both approaches are pointed out, and their merits are discussed. The related 

covariance matrices are structurally singular, and this is efficiently dealt with by using generalized 

inverses. We develop compositional canonical biplots and detail their properties. The canonical 

biplots are shown to be powerful tools for discovering the most salient relationships between two 

compositions. Some guidelines for compositional canonical biplot construction are discussed. A 

geochemical data set with X-ray fluorescence spectrometry measurements on major oxides and 

trace elements of European floodplains is used to illustrate the proposed method. The relationships 

between an analysis based on centred log-ratios and on isometric log-ratios are also shown.
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1. Introduction

Many geological investigations concern compositional data sets, which are characterized by 

components that form part of a whole. Classical examples are the mineral composition of 

rocks, the oxide and trace composition of sediments and the chemistry of water and natural 

gases. The corresponding compositions typically contain more than two parts, and the data 

are therefore inherently of multivariate nature. In several cases, due to analytical 

requirements for detecting components with different properties, several compositional 

datasets are obtained from the same whole sample. Again, compositions can be associated 

with different portions of the same sample when the partition is expected to give some sense 

to the investigation. Particularly interesting in geochemistry is the development of graphical 

and numerical methods able to associate trace elements to major and minor components 

when considered as different (sub)compositions. In fact trace elements tend to follow the 

behaviour of major and minor components with coherent properties, and the identification of 

clear associations could help to point out the dynamics of natural processes for different 

concentration scales but characterized parallel paths. Log-ratio principal component analysis 

(Aitchison, 1983) has become a standard multivariate technique in compositional data 

analysis (CoDA), and is often one of the first tools used to explore a compositional data set 

(e.g. Otero et al., 2005; Tolosana-Delgado et al., 2005). Specific compositional biplots 

(Aitchison, 1990; Aitchison and Greenacre, 2002) have been proposed that allow efficient 

visualization of geochemical data sets.

Compositional data often go together with other variables that can appear as predictors of 

the compositions, or that can appear as responses explained by compositions. In this paper 

we address the situation where there are two sets of variables which are both geochemical 

compositions, and our goal is to study the relationships between the two sets by means of a 

canonical correlation analysis (CCO). The CCO of compositional data has been previously 

addressed by several authors (Aitchison, 1986a, Section 14.4; Reyment and Savazzi, 1999, 

Chapter 6; Mateu-Figueras et al., 2016), who used the additive log-ratio transformation. In 

this paper, we use the centred log-ratio transformation and deal with structural singularity by 

using a generalized inverse, the Moore-Penrose inverse. We extend the previous work with a 

detailed development of compositional canonical biplots and goodness-of-fit statistics.

Over the last decades, compositional data analysis (Aitchison, 1982, 1986a) has experienced 

a strong development. Scientists have become increasingly aware of the fact that 

compositional data are special data and this has to be taken into account in any statistical 

analysis. Recent books by Pawlowsky-Glahn and Buccianti (2011), Van den Boogaart and 

Tolosana-Delgado (2013), and Pawlowsky-Glahn et al. (2015) show that the analysis of 

compositional data is an active field of research. It is now clear that compositional data are 

multivariate data and that the only way to capture the complex dynamics of natural 

phenomena is to adopt adequate tools as the CoDA ones. However, since in Earth Sciences 

relationships between (sub)compositions with different types of compounds can be of 

interest, this item will be here developed from a theoretical and practical point of view. The 

structure of this paper is as follows. In Section 2 we provide the theory for our 

compositional version of CCO, hereafter called CoDA-CCO and develop the corresponding 

compositional biplots. In Section 3 we illustrate our methodology with an artificial example 
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and with the analysis of a geochemical data set of major oxides and trace elements measured 

in European floodplain sediments. Floodplain sediments are represented by a continuum of 

sediment types that range from clay- to gravel-size particles, including both terrigenous and 

organic deposits. Their importance is related to economically relevant reservoirs of oil, 

natural gas, and water, and as a fundamental tool to provide detailed records of past and 

present environments. Finally, a discussion completes the paper.

Canonical correlation analysis (CCO) is an important classical multivariate method 

developed by Hotelling (1935, 1936) dedicated to the study of relationships between two 

sets of multiple variables, an X- set and a Y-set. Statistics courses on multivariate analysis 

usually cover the method, and textbooks in the field typically dedicate a chapter to the 

technique (Anderson, 1984, Mardia et al., 1979, Johnson and Wichern, 2002, Dillon and 

Goldstein, 1984, Manly, 1989). The monograph by Gittins (1985) is entirely dedicated to 

canonical analysis. Canonical correlation analysis offers a unifying theoretical framework, 

since several multivariate techniques are particular cases of it. CCO is a generalization of 

multiple regression with more than one response variable (Mardia et al., 1979; Gittins, 

1985), relates to multivariate analysis of variance (MANOVA) and discriminant analysis 

when one of the two sets of variables consists of indicator variables (Gittins, 1985, Section 

4.6), and is also intricately related to correspondence analysis (Greenacre, 1984, Section 4.4) 

when both the X variables and the Y variables consist of indicator variables. CCO has been 

greatly enhanced by the development of biplots that efficiently depict the correlation 

structure of the variables. The method provides a generalized least squares approximation to 

the between-set correlation matrix. Haber and Gabriel (1976), Ter Braak (1990) and 

Graffelman (2005) have shown that canonical correlation analysis allows the construction of 

a biplot of the between-set correlation matrix. The biplot greatly helps the interpretation of 

the output of a canonical correlation analysis.

2. Theory

In this section we establish our notation, briefly summarize classical CCO and then develop 

a compositional version of CCO.

2.1. Classical CCO

We consider one set containing p predictor variables (X-variables) and a second set 

containing q criterion variables (Y-variables). Both sets are assumed real, that is, the sample 

space is the ordinary Euclidean space. The Y-variables can be thought of as response 

variables, though not necessarily so, as the analysis treats X and Y in a symmetric fashion. 

The main aim of a CCO is to search for linear combinations U = XcA and V = YcB of the 

column-mean centred variables in Xc and Yc that have maximal correlation. The coefficient 

matrices A and B are known as the canonical weights or the canonical coefficients, and the 

constructed linear combinations are known as the canonical variables (also termed canonical 
variates by some authors). The solution of a CCO is efficiently computed by using the 

singular value decomposition (s.v.d.) of the transformed between-set covariance matrix. In 

particular, the canonical coefficients and correlations can be obtained by the s.v.d. of
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K = Sxx
−1 ∕ 2SxySyy

−1 ∕ 2 = ADB′, (1)

where Sxx, Syy and Sxy are the sample covariance matrices of the X-variables, the Y-

variables, and the between-set covariances, respectively. Matrix A is a p × r orthonormal 

matrix of left singular vectors ((A′A = Ir)) and matrix B is a q × r orthonormal matrix of right 

singular vectors (B′B = Ir). Diagonal matrix D is of rank r (r = min(p,q) and contains the 

canonical correlations in non-increasing order of magnitude (Gittins, 1985, Section 2.3.2). 

The canonical coefficients are related to the left and right singular vectors by

A = Sxx
−1 ∕ 2A, B = Syy

−1 ∕ 2B . (2)

The canonical coefficients are normalized so that A′SxxA = Ir and B′SyyB = Ir and, 

consequently, the canonical variables are standardized variables,

(1 ∕ n)(XcA)′XcA = A′SxxA = Ir, (1 ∕ n)(YcB)′YcB = B′SyyB = Ir .

The singular value decomposition in Eq. (1) shows that we do a weighted least squares 

approximation of given rank to the between-set covariance matrix Sxy. Row markers (F) and 

column markers (G) for the biplot can be obtained by:

Fp = SxxAD, Gs = SyyB . (3)

We use the subindices p and s to indicate “principal” and “standard” coordinates, 

respectively. This convenient terminology was proposed by Greenacre (1984) in the context 

of correspondence analysis, and was previously used in CCO by Graffelman (2005); it 

serves to distinguish the different biplot scalings. The principal coordinates are characterized 

by the presence of diagonal matrix D in the formula, whereas standard coordinates refer to 

coordinates without matrix D in their formula. An alternative scaling for the biplot is to have 

rows in standard coordinates, and columns in principal coordinates:

Fs = SxxA, Gp = SyyBD . (4)

In CCO all these sets of coordinates for biplots can be interpreted as covariances. The 

principal coordinates Fp are cross covariances between X-variables and canonical Y-

variables. The standard coordinates Gs are the covariances between canonical Y-variables 

and the original Y-variables. In the same manner, the standard coordinates Fs are intra-set 

covariances for the X-variables and the canonical X-variables, and the principal coordinates 

Gp are cross covariances between Y-variables and X-variables. This is shown by the 

following set of equations,

Sxu = 1
nXc′U = SxxA = Fs, (5)
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Sxv = 1
nXc′V = SxyB = SxxAD = Fp, (6)

Syu = 1
nYc′U = SyxA = SyyBD = Gp, (7)

Syv = 1
nYc′V = SyyB = Gs . (8)

A biplot of the between-set covariance matrix Sxy can be obtained as FpGs′ in Eq. (3) or as 

FsGp′ in Eq. (4). Numerical output of a CCO typically also includes the canonical loadings. 

The canonical loadings are the correlations between the original variables and the canonical 

variables and can be used to interpret the canonical variables. In a correlation-based CCO 

the previous covariance expressions (Eqs. (5)-(8)) are in fact equal to the canonical loadings. 

If a covariance-based CCO is used, then the loadings are obtained by premultiplying the 

previous covariances with the inverse of a diagonal matrix containing the standard deviations 

(Dsx,Dsy), so that the loadings are obtained by:

Rxu = Dsx
−1Sxu = Dsx

−1Fs, (9)

Rxv = Dsx
−1Sxv = Dsx

−1Fp, (10)

Ryu = Dsy
−1Syu = Dsy

−1Gp, (11)

Ryv = Dsy
−1Syv = Dsy

−1Gs . (12)

Note that, in order to obtain the loadings, post-multiplication by the inverse of the standard 

deviation of the canonical variables is not needed, as the latter are already standardized by 

virtue of the normalization constraints on the singular vectors in Eq. (1). This shows that the 

correlation-based and covariance-based biplots are almost identical, and that the only 

difference is a rescaling of the variable vectors. In correlation-based CCO biplots all variable 

vectors will be within the unit circle. In covariance-based CCO biplots, variable vectors can 

be outside the unit circle. The angles between the variable vectors are the same in both types 

of analysis, and the goodness-of-fit of Sxy equals the goodness of fit of Rxy.

We briefly summarize the main measures of goodness-of-fit in canonical analysis. The 

goodness-of-fit of the between-set covariance matrix in a k-dimensional biplot is given by

∑i = 1
k di

2

∑i = 1
min(p, q)di

2 . (13)
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Matrix Xc is approximated by the inner products between the rows of U and the columns of 

Fs. If the X-set is the smaller set (p ≤ q) then, in the full space of the solution, Xc is perfectly 

recovered, because

UFs′ = XcAFs′ = XcAA′Sxx = Xc . (14)

In a k-dimensional biplot Xc is approximated by X = U(k)Fs(k)
′. The total variance of the X 

variables accounted for by a given number of canonical U variables, called the adequacy 
coefficient (Thompson, 1984), is

tr(Sxu(k)Sxu(k)′)
tr(Sxx) , (15)

where Sxu(k) refers to the covariance matrix between X variables and the first k canonical X 
variables. Note that the adequacy coefficient is not scale-invariant under standardization of 

the original variables. With standardized variables, the adequacy coefficients are obtained by 

changing all covariances in Eq. (15) by correlations, and this reduces to 
1
p ∑i = 1

p ∑j = 1
k r2(xi, uj). The latter is also the average of the coefficients of determination 

(R2) obtained by regressing all X variables onto k canonical variables. Likewise, the inner 

products of U with the Y-variables in principal scaling approximate the Y-measurements in 

the full space, and we have

UGp
′ = UU′Yc(1 ∕ n) = U(U′U)−1U′Yc = Y, (16)

which can be interpreted as the fitted values obtained in a regression of Yc onto the 

canonical X-variables. In general, it will not be possible to exactly recover the measurements 

of the variables in principal scaling, even if we use the full space of the solution. The amount 

of explained variation of the Y-variables in a k-dimensional solution, known as the 

redundancy coefficient (Stewart and Love, 1968), is

tr(Syu(k)Syu(k)′)
tr(Syy) . (17)

The redundancy coefficients are neither scale-invariant under standardization of the original 

variables. With standardized variables, the redundancy coefficients are obtained by changing 

the covariances in Eq. (17) by correlations, and reduce to q−1∑i = 1
q ∑j = 1

k r2(yi, uj). 

Analogous adequacy and redundancy coefficients can be calculated for the canonical Y 
variables.

In conclusion, classical CCO basically provides a biplot of the between-set covariance or 

correlation structure, in which the original observations are absent. Classical biplots made by 

principal component analysis (Gabriel, 1971) provide more information, since they do not 

only represent the variables, but also the original samples. In previous work, Graffelman 

(2005) has shown that it is possible to represent the original samples in the CCO biplot by 

Graffelman et al. Page 6

J Geochem Explor. Author manuscript; available in PMC 2021 January 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



using regression results for the representation of supplementary information (Graffelman 

and Aluja-Banet, 2003). If samples are fitted to the biplot by generalized least squares, it is 

particularly simple to represent them in the biplot: the FsGp′ biplot should be overplotted 

with the canonical X variables, and the FpGs′ biplot should be overplotted with the 

canonical Y variables. These results are of particular relevance for a compositional version 

of CCO, as they will allow the representation of the original compositions in the CCO biplot 

(see Section 2.2). The corresponding plots could be termed triplots because they represent 

three entities: X variables, Y variables and data points. The term triplot stems from 

ecological multivariate analysis, as triplots are commonly made in canonical correspondence 

analysis (Ter Braak, 1986; Ter Braak and Smilauer, 2002) and redundancy analysis (Ter 

Braak and Looman, 1994).

We finish this section with a few remarks on the scaling of the original data matrix, as this is 

also relevant for the compositional analysis that is to follow. One can decide to perform 

CCO using covariance matrices (as outlined above), or using correlation matrices. A 

correlation based analysis is possible by simply standardizing the data matrices prior to the 

analysis, e.g. dividing the columns of X and Y by their respective standard deviations. CCO 

is, to a large extent, invariant to such standardization. Canonical correlations, canonical 

variables, and canonical loadings will all be the same in a covariance-based and a 

correlation-based analysis. In this sense CCO differs from principal component analysis 

(PCA), since it is well known that a PCA of the centred data matrix is different from the 

PCA of the standardized data matrix, giving rise to two “variants” of PCA. The main 

difference between a covariance based CCO and a correlation based CCO concerns the 

biplot: the first produces a biplot of the between-set covariance matrix, whereas the latter 

produces a biplot of the between-set correlation matrix. The goodness-of-fit of these 

matrices will be the same in both approaches. Finally, the goodness-of-fits of the original 

data matrices, as expressed by the adequacy and redundancy coefficients, are different in a 

covariance-based and correlation-based analysis as explained above.

2.2. Compositional CCO

In the development in the previous section, X and Y typically stand for matrices of 

quantitative real variables. We now consider X and Y to be matrices with n compositions in 

their rows, and having Dx and Dy parts (columns) respectively. Recall that compositional 

data can be defined as strictly positive vectors for which the information of interest is in the 

ratios between components. There are several ways to perform a CoDA-CCO, depending on 

how the compositions are transformed. One can use the additive, the centred or the isometric 

log-ratio transformation, or one can also use the matrices with all pairwise log-ratios of the 

X-set and the Y-set. The different approaches are largely equivalent, though the biplots 

obtained will be different. We develop two approaches to CoDA-CCO in the corresponding 

subsections below, using the canonical analysis of the clr transformed compositions (Section 

2.2.1), and, largely equivalently, the canonical analysis of all pairwise log-ratios of the X-set 

and the Y-set (Section 2.2.2). Both these transformations lead to a visualization of the 

pairwise log-ratios which form the most simple representation of the data, and from which 

more complex ratios can be build. The clr-based approach is also the usual approach taken in 

log-ratio principal component analysis (Pawlowsky-Glahn et al., 2015; Aitchison and 
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Greenacre, 2002). Some invariance properties for the isometric log-ratio transformation are 

derived in Appendix A.

2.2.1. The centred log-ratio (clr) approach—We consider the centred log-ratio 

transformation (clr) of a composition x given by

clr(x) = ln x1
gm(x) , ln x2

gm(x) , ⋯, ln xD
gm(x) , (18)

where gm(x) is the geometric mean of the components of the composition x. Let Xℓ be the 

log transformed compositions, that is Xℓ = ln (X) with the natural logarithmic transformation 

applied element-wise. The clr transformed data can be obtained by just centring the rows of 

this matrix, using the centring matrix Hr = I − 1
D11′, with D equal to Dx or Dy as 

corresponds. Then

Xclr = XℓHr, Yclr = YℓHr . (19)

These clr transformed data matrices have the same dimensions as X and Y. The columns of 

Xclr and Yclr are subject to a zero sum constraint because Hr1 = 0. The column rank of these 

matrices is, in the absence of additional linear constraints, equal to Dx – 1 and Dy – 1, 

respectively. We now column-centre the clr transformed data, producing data matrices that 

have column means that are zero,

Xcclr = HcXclr = HcXℓHr, Ycclr = HcYclr = HcYℓHr, (20)

where Hc is the idempotent centring matrix Hc = I – (1/n)11′. Thus, Xcclr and Ycclr have 

zero row means due to the subtraction of the geometric means, and zero column means due 

to centring operation Hc. We propose to use Xcclr and Ycclr as the input matrices for a 

classical CCO described in Section 2.1. Due to the zero row sum constraint, the covariance 

matrices of Xcclr and Ycclr are singular. In CCO the covariance (or correlation) matrices of 

the X and Y variables are inverted. In order to be able to deal with the structural singularity 

due to the compositional nature of the data, we use a generalized inverse, the Moore-Penrose 

inverse (Searle, 1982), in order to be able to proceed with the analysis. In CCO with non-

singular covariance matrices, the inverse of the square roots of the covariance matrices are 

needed (Eq. (1)) and these can be obtained from the spectral decomposition of the 

covariance matrices, in particular

Sxx
−1 ∕ 2 = WΛ−1 ∕ 2W′, (21)

where W and Λ contain eigenvectors and eigenvalues obtained in the spectral decomposition 

of Sxx = WΛW′. Under singularity of Sxx, the Moore-Penrose inverse denoted by Sxx
+  is 

obtained by WΛW′, with Λ = diag(1 ∕ λ1, 1 ∕ λ2, …, 1 ∕ λD − 1, 0), which satisfies the four 

Moore-Penrose conditions. Compositional canonical correlation analysis (CoDA-CCO) can 

then be carried out using the singular value decomposition
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K = (Sxx
+ )1 ∕ 2Sxy(Syy

+ )1 ∕ 2 = ADB′ . (22)

Due to the compositional nature of the data, the number of dimensions in the solution, the 

rank of D, is now given by r = min(Dx – 1, Dy – 1). The canonical coefficients are now 

obtained as

A = (Sxx
+ )1 ∕ 2A, B = (Syy

+ )1 ∕ 2B . (23)

The biplot coordinates and the canonical loadings of a CoDA-CCO are now obtained by the 

same expressions given for the classical analysis in Eqs. (3) and (4) and (5) through (8). 

Note that the between-set covariance matrix of the clr coordinates Sxy has dimension Dx × 

Dy, but that the generalized inverses have at most rank Dx – 1 and Dy – 1, respectively. 

Consequently, matrix K is not full rank, but has at most rank min(Dx – 1, Dy – 1). We note 

that computer programs typically produce an s.v.d. where D has dimensions (r + 1) × (r + 1), 

implying that D has a trailing zero on the diagonal, which is consequence of the singularity 

of the covariance matrices of the clr transformed data. If the s.v.d. in Eq. (22) is conceived 

that way, the corresponding normalization of the canonical coefficients is affected, and one 

has that A′SxxA = I and B′SyyB = I, where I is a diagonal matrix with r ones and one 

trailing zero on its diagonal. In the remainder, we conceive D of dimension r × r, without 

trailing zero, such that the canonical coefficient matrices have no trailing column of zeros 

and can be considered to be full column rank, and satisfy the usual normalizations A′SxxA = 
Ir and B′SyyB = Ir. Note that the columns of the matrices of canonical coefficients sum to 

zero. A justification for this is given in Appendix A. We complete this section enumerating 

some properties of the compositional canonical biplots obtained. For a treatment of 

compositional biplots, see also Section 5.4 of Pawlowsky-Glahn et al. (2015).

1. Biplot origin. The origin of the biplot represents the vector of geometric means 

of the n compositions. In FsGp′ scaling the origin corresponds to the geometric 

mean vector of the X compositions, whereas in FpGs′ scaling, the origin 

corresponds to the geometric mean vector of the Y compositions. This can be 

seen from equations U = XcclrA and V = YcclrB. If the double centring operation 

is applied to the vector of geometric means, a zero vector is obtained, and 

consequently the values of the canonical variables are zero. At the same time, the 

origin of the biplot is also the point from which the biplot vectors representing 

the clr components emanate.

2. Biplot vector (ray) length. Due to the symmetric nature of CCO, we can assume 

Dx ≤ Dy without loss of generality. The length of variable vectors plotted in 

standard coordinates is, for the smallest composition (the one with fewer parts), 

in the full space of the solution, equal to the standard deviation of the 

corresponding clr transformed part. This follows from

FsSs
′ = SxxAA′Sxx = Sxx, (24)
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where the last equality follows from the fact that AA′ is the Moore-Penrose 

inverse of Sxx. If a two-dimensional biplot is used as an approximation of the 

data set, the ray length will underestimate the observed sample standard 

deviation. It also follows that the length of a biplot vector can never exceed the 

sample standard deviation of the corresponding clr component. For the larger 

composition (the one with more parts), we have, in the full r dimensional space

GsGs
′ = SyyBB′Syy ≈ Syy, (25)

where the left hand side has rank r, but Syy has rank Dy – 1 ≥ r. Thus, for the 

larger composition, the length of the rays will be smaller than the standard 

deviation of the corresponding clr transformed part. Finally, biplot rays of parts 

that are plotted in principal coordinates are shrunk with respect to the standard 

coordinates due to the postmultiplication by the canonical correlations (see Eqs. 

(3) and (4)) and will always fall short of the observed sample standard deviation, 

and give a worse approximation to it compared with the standard coordinates. 

This is consistent with previous work (Graffelman, 2005), where it was shown 

that the within-set covariance matrices are better approximated with biplot 

vectors in standard coordinates.

3. Inner products between biplot vectors. It follows from Eq. (24) that the inner 

product between two biplot vectors of the same set (again in the full space, using 

standard coordinates, and correspondingly the set with the smaller composition) 

equals the covariance of the corresponding clr components. Inner products of 

biplot vectors between subsets (one set in standard and the other set in principal 

coordinates) approximate the between-set covariance matrix of clr transformed 

parts. This is justified by

FsGp
′ = SxxADB′Syy = Sxy . (26)

This approximation is optimal in the generalized least squares sense as 

guaranteed by the s.v.d in Eq. (22), and it is the same in both biplot scalings, and 

in fact the focus of the analysis.

4. Cosine of angle between two biplot vectors. The cosine of the angle between the 

two vectors within sets (again referring to the standard coordinates of the smaller 

composition) equals the sample correlation of the clr components in the full 

space. In a two-dimensional subspace this will be “approximately so”, being it 

unknown if the approximation is optimal in some sense. Cosines of angles of 

biplot vectors between subsets will exaggerate the correlations between 

transformed clr components of the two subsets, even in the full space of the 

solution. This is because the ray lengths of the larger composition underestimate 

the standard deviation of the corresponding part (see the previous point 2). 

Importantly, the approximation to the correlations offered by using cosines 

depends on the biplot scaling. It is not the same in the FsGp′ and the FpGs′ 
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scaling. This is because the length of the biplot vectors in the rows of Gp and Fp 

fall short of the corresponding standard deviation to a different extent.

5. Link length. A biplot link is the difference vector of two biplot rays. In CoDA 

biplot interpretation, the links are very important because they represent the log-

ratio of the connected parts. For the composition that is represented in standard 

coordinates, the length of a link in the full space of the solution equals the 

standard deviation of the corresponding log-ratio. Let fi and fj represent the rays 

of parts i and j respectively (rows of Fs). The squared length of their link is given 

by

‖fi − fj‖2 = fi
′fi + fj

′fj − 2fi
′fj

= Var(clr(xi)) + Var(clr(xj)) − 2Cov(clr(xi), clr(xj))
= Var ln xi

gm(x) − ln xj
gm(x) = Var ln xi

xj
.

(27)

Under the considered scaling, the links of the larger composition will necessarily 

be represented in principal coordinates. Let gi and gj represent the rays of parts i 
and j respectively (rows of Gp). The squared length of their link is given by

‖gi − gj‖2 = gi′gi + gj′gj − 2gi′gj
≈ Var(clr(yi)) + Var(clr(yj)) − 2Cov(clr(yi), clr(yj))
= Var ln yi

gm(y) − ln yj
gm(y) = Var ln yi

yj
.

(28)

This shows there is no corresponding full space result for the length of the links 

in principal coordinates (note the use of ≈ in the last equation). As argued above, 

the terms gi′gi and gj′gj underestimate the corresponding standard deviation, 

even in the full space. The principal links will equal the corresponding standard 

deviations in the full space only in the case of equally sized compositions (p = q) 

and all canonical correlations equal to 1.

6. Inner products between links. Since the focus of the analysis is on relationships 

between the log-ratios of the two sets, inner products and angles between X and 

Y links are of interest. Links are vectors of differences, and the inner product 

between two links corresponding to the log-ratios ln(xi/xj) and ln(yr/ys) is, in full 

space, the covariance between the two corresponding log-ratios because

(fi − fj)′(gr − gs) = fi
′gr − fi

′gs − fj
′gr + fj

′gs
= Cov(clr(xi), clr(yr)) − Cov(clr(xi), clr(ys))
− Cov(clr(xj), clr(yr)) + Cov(clr(xj), clr(ys))
= Cov ln yr

ys
, ln xi

xj
.

(29)

This equation is exact in the full space and has interesting implications. Since all 

four clr covariances are optimally approximated in the analysis, the implication 

is that the covariances between log-ratios of the X set and the Y set are also 
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optimally approximated. An alternative way to construct a CoDA-CCO biplot is 

then to depict only links as arrows emanating from the origin and leave the clr 

components out of the biplot (e.g. see Figs. 2A and 3A in the Examples section, 

where the links in Fig. 2A are identified as the rays in Fig. 3A), this gives 

precisely the CoDA-CCO biplot obtained in the pairwise log-ratio approach (see 

Subsection 2.2.2).

7. Cosines of angles between links. Eqs. (27), (28) and (29) show that, in the full 

space, cosines of angles between links are “close to” the correlations of the 

corresponding log-ratios. However, because of the aforementioned inexact nature 

of Eq. (28), cosines of angles will not equal sample correlations between log-

ratios exactly.

Up to this point, CoDA-CCO has been developed using a covariance-based approach, 

mainly because all clr transformed parts have the same log-ratio scale. This implies that 

inner products in the CoDA-CCO biplots (Eqs. (24) through (26)) represent covariances 

between clr transformed parts as well. Covariances are only indicative of the nature of the 

relationship (direct or indirect) but not about the strength of the observed relationship. For 

the latter purpose, correlations are far more useful. From the foregoing it is clear that in 

CoDA-CCO the approximation of the correlations by cosines is problematic for two reasons: 

first, for being inexact in the full space (when the larger composition is considered, or when 

principal coordinates are involved), and second, for having no justification that 

approximations in low-dimensional biplots are optimal. In order to avoid these problems, 

one might therefore consider to standardize the clr transformed data, such that the inner 

products in Eqs. (24) through (26) will approximate the correlations. This however, yields a 

biplot that approximates correlations between clr transformed parts, which do not seem 

particularly interesting. Note that the covariance on the right hand side of Eq. (29) is not 
converted into a correlation by standardizing the clr data. Potentially more interesting 

biplots, tightly related to the clr approach exposed here, are obtained in the pairwise log-

ratio approach in the next section.

2.2.2. The pairwise log-ratio (plr) approach—An alternative approach to CoDA-

CCO is to use the pairwise log-ratios (plr for short) of the X-set and the Y-set, and to submit 

these to a canonical analysis. First, we define two matrices Xplr and Yplr with all possible 

log-ratios for the X and Y set respectively, having dimensions n × 1
2Dx(Dx − 1) and 

n × 1
2Dy(Dy − 1) respectively. We column-centre these matrices to obtain

Xcplr = HcXplr, Ycplr = HcYplr . (30)

CoDA-CCO is now performed by the s.v.d. of the transformed between-set covariance 

matrices of Xcplr and Ycplr, that is, by applying Eq. (22) to the covariance matrices of the 

newly defined data matrices. Because of the structural singularity of Sxx and Syy, again the 

Moore-Penrose inverse of the latter two is used. It is immediately clear that the clr-approach 

and plr-approach are “equivalent” to a large extent. Any pairwise log-ratio is a linear 

combination of the clr transformed parts because
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ln xi
xj

= ln xi
gm(x) − ln xj

gm(x) . (31)

It therefore follows that Xplr and Yplr have the same rank as Xclr and Yclr respectively, and 

the number of dimensions with non-zero singular values is the same in both analysis. 

Moreover, Eq. (29) already showed that the covariances of the plr data are linear 

combinations of the covariances of the clr data. Canonical correlation analysis is known to 

be invariant under linear transformations of the data. It is thus clear that the canonical 

correlations and the canonical variables obtained are the same in both types of analysis. The 

canonical coefficients are however, not invariant, and this implies, by virtue of Eqs. (3) and 

(4), that the biplot is affected. In the plr approach, biplots will generally be crowded with 

more rays, n × 1
2Dx(Dx − 1) and n × 1

2Dy(Dy − 1), respectively, for each set. These biplot 

vectors now directly represent the pairwise log-ratios. In the plr approach, biplot properties 

are straightforward to infer using the results in Subsection 2.2.1. We express these therefore 

more concisely, but emphasize some novelties.

1. Biplot origin. The origin of the biplot now represents the mean of each pairwise 

log-ratio, both for the pairwise log-ratios of the X set and the Y set.

2. Biplot vector (ray) length. The length of a variable vector plotted in standard 

coordinates is, for the smallest composition, in the full space of the solution, 

according to Eq. (24) now equal to the standard deviation of the corresponding 

log-ratio. Correspondingly, ray lengths in standard coordinates for the larger 

composition will underestimate the standard deviation of the corresponding log-

ratio. Also correspondingly, biplot rays of parts plotted in principal coordinates 

give poorer approximations of the corresponding standard deviations of the log-

ratios.

3. Inner products between biplot vectors. Eq. (24) now shows, with again the same 

conditions (full space, standard coordinates, the smaller composition), that the 

inner product between two biplot vectors of the same set equals the covariance of 

the corresponding log-ratios. Inner products of biplot vectors between subsets 

approximate the between-set covariance matrix of log-ratios, the latter being 

optimal in the generalized least squares sense.

4. Cosine of angle between two biplot vectors. The cosine of the angle between the 

two vectors within sets (standard coordinates, the smaller composition, full 

space) equals the sample correlation between two log-ratios. Cosines of angles of 

biplot vectors between subsets exaggerate the correlations between the log-ratios 

of the two subsets and depend on the biplots scaling for reasons previously 

described.

5. Links. A biplot link now becomes the difference vector of two log-ratios. If the 

two log-ratios share a part, having it both in the numerator, or both in the 

denominator, the link is another log-ratio because
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ln xi
xj

− ln xi
xk

= ln xk
xj

. (32)

Representing this link is superfluous, as the biplot already shows all pairwise 

log-ratios as vectors emanating from the origin. If the two log-ratios don’t share 

parts, we have

ln xi
xj

− ln xk
xl

= ln xi
xk

− ln xl
xj

= ln xixj
xkxl

, (33)

showing that the biplot will have identical, duplicated links, to be interpreted as 

“differences in log-ratios”. If the two log-ratios share a part, one having it in the 

numerator and one having it in the denominator, we have

ln xi
xj

− ln xk
xi

= ln xi2

xjxk
. (34)

Eq. (32) is a simple log-ratio, whereas Eqs. (33) and (34) are examples of 

balances (Egozcue and Pawlowsky-Glahn, 2005; Pawlowsky-Glahn et al., 2015). 

Balances can be very useful and can have substantive interpretation depending on 

the context of the data being analysed. At this point we refrain from developing 

inner products and cosines for links in the pairwise approach, and will focus 

mainly on the rays (pairwise log-ratios) for interpretation.

We argued above that in the clr approach standardization of the data did not seem very 

useful. In the plr approach, standardization can be highly useful, and it is probably often to 

be recommended. The reason is that standardization of the pairwise log-ratios now converts 

Eqs. (24), (25) and (26) into correlation matrices. In particular, Eq. (26) implies the biplot 

can now efficiently visualize the correlation structure of the pairwise log-ratios, and that 

optimal low-dimensional approximations to this correlation structure can be obtained. This 

was not possible in the clr approach given in Section 2.2.1.

3. Examples

In this section we present two examples of a compositional canonical correlation analysis. 

The first example concerns two synthetic 3-part compositions registered for the same set of 

subjects. The advantage of this example is that the between-set covariance matrix is of rank 

two, and that everything can be represented without error in two-dimensional space. The 

second example is geological and concerns the chemical composition (major oxides and 

trace elements) of European floodplain sediments.

3.1. Two sets of compositions of three parts

We show 100 observations on two 3-part compositions, x and y, in the ternary diagrams in 

Fig. 1. The ternary diagram of the X-set reveals a clear pattern, having an approximately 

constant x1/x2 ratio, whereas the Y-set shows, at first sight, no clear structure. These ternary 
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plots only reveal marginal information on the X and Y compositions, and are not informative 

about the relationships between the X-set and the Y-set.

We compute the centred log-ratio transformation of compositions x and y separately, and 

perform the clr-based compositional canonical correlation analysis developed in the previous 

section. Table 1 shows the classical numerical output of a CCO analysis. Initially, we use a 

covariance-based analysis, because all variables are in a commensurable log-ratio scale.

Table 1 shows that the first canonical correlation is very high, 0.94, implying that the two 

variable sets share a large part of their variation. All of the variance of clr(x) and clr(y), also 

known as total variance of the X and Y compositions, respectively, is accounted for by the 

two canonical variables, as expected. The goodness-of-fit of the between-set covariance 

matrix Sxy is also 100 percent, as predicted. Considering only one dimension, it is 0.9442/

(0.9942 + 0.1292) = 0.982. This suggests there is only one important dimension. The 

cumulative adequacy coefficients (Ry ∣ u
2 ) show that a two-dimensional FsGp′ biplot explains 

100% of the total variance of the X composition, and 36.3% of the total variance of the Y 
composition. Most of the variance of the clr transformed parts is accounted for by the first 

dimension of the analysis. This dimension accounts for 91.3% of the variance of the X 
composition and for 35.3% of the variance of the Y composition. The first canonical variate 

U1 correlates strongly with all X parts, and V1 correlates strongly with y1 and y2. The 

second canonical correlation is small, and nonsignificant in a permutation test (see below). 

Log-ratio CoDA-CCO biplots are shown in various scalings in Fig. 2. Biplots have been 

overplotted with the canonical variables (multiplied by a single convenient scaling factor, 

using the rows of matrix U in Fig. 2A and C, and the rows of matrix V in Fig. 2B and D) in 

order to represent the original compositions in the biplot. The variable labels Xi,Yj in the 

plot actually represent the clr transformed parts. A link between rays i and j within a subset 

represents the corresponding log-ratio ln(xi/xj). The key point of these biplots is to look for 

parallel links of each subset that run parallel to a canonical variable with a high correlation. 

The canonical variables “channel” the correlation structure of the variables and represent the 

most correlated feature of the data. Fig. 2A shows parallel links between (clr(x1), clr(x2)) 

and (clr(y2), clr(y3)), implying that the log-ratios ln(x1/x2) and ln(y2/y3) are correlated. 

However, the corresponding link is not parallel to the first canonical variable, and these log-

ratios have only weak correlation. Moreover, Fig. 2B, C and D does not show this 

parallelism, suggesting that it is accidental. More interestingly, Fig. 2A also shows long 

parallel links through (clr(x2), clr(x3)) and through (clr (y1), clr(y2)) that run parallel to the 

first canonical variate, suggesting that the log-ratios ln(x2/x3) and ln(y1/y2) are highly 

correlated. These interpretations are confirmed by the sample correlations between these 

log-ratios; r(ln(x1/x2),ln(y2/y3)) = −0.14 and r(ln(x2/x3),ln(y1/y2)) = −0.94. Correlations 

inferred from the biplot can be corroborated by making a scatterplot matrix of all possible 

log-ratios, as is shown in Supplementary Fig. S1. An additional approximately parallel pair 

of links with some inclination is observed in Fig. 2A between (clr (x1), clr(x3)) and (clr(y1), 

clr(y3)). The corresponding log-ratios have a correlation of −0.56. The presence of the 

samples in the biplot aids interpretation and illustrates the observed correlations: the 

compositions projecting high onto the link through (clr(x2), clr(x3)) also project high onto 
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the link through (clr(y1), clr(y2)) and so confirm the correlated nature of the corresponding 

log-ratios.

An alternative biplot for the same data, using the FpGs′ scaling from Eq. (3), is shown in 

Fig. 2B. This biplot explains 81.5% of the variance of the clr transformed X parts, and 100% 

of the variance of the clr transformed Y parts. The goodness-of-fit of the between-set 

covariance matrix is the same as in Fig. 2A (100%). However, the biplot in Fig. 2B seems to 

be the more interesting option if the original compositions are added to the biplot, because 

overall it accounts for more variability of the clr transformed data. Note that the links 

corresponding to the log-ratios ln(x1/x2) and ln(y2/y3) are now not far from orthogonal, 

whereas in Fig. 2A they were virtually parallel. This shows that one needs to be cautious 

when interpreting the biplot, and that parallelism of links does not necessarily imply strong 

correlation of the corresponding log-ratios. Also note that the links corresponding to the log-

ratios ln(x2/x3) and ln(y1/y2) are close to parallel in the direction of the first canonical 

variate, and that this is observed in both biplots A and B in Fig. 2. This is the most salient 

relationship between the two compositions. Fig. 2B also shows almost horizontal parallel 

links through (clr(x1), clr(x3)) and (clr(y1), clr(y2)), and more clearly reveals the correlation 

between the corresponding log-ratios. Fig. 2C and D shows CoDA-CCO biplots of the same 

data, but with the clr-data standardized prior to the canonical analysis. In these plots, inner 

products between the biplot vectors of both sets correspond to correlations between the clr 

components of each set. These plots resemble Fig. 2A and B, but with rescaled rays. This is 

precisely what is expected as a consequence of the invariance of CCO under linear 

transformations. Note that the goodness-of-fit of the between-set covariance matrix and the 

between-set correlation matrix is the same as expected. However, plots C and D in Fig. 2 do 

add value to the previous graphs in two ways: firstly, due to the presence of the unit circle it 

is possible to infer that the clr transformed X components are perfectly represented in Fig. 

2C and the Y-parts in Fig. 2D. Secondly, Fig. 2C and D provides optimal approximations of 

the between-set correlation structure of the clr transformed components, whereas Fig. 2A 

and B do not. Because of the small size of the miniature example, and because Dx = Dy = 3, 

cosines of angles in Fig. 2A and B do coincide with the between-set sample correlations, but 

for larger compositions with Dx ≠ Dy this will generally not be the case.

CoDA-CCO biplots that are based on the analysis of pairwise log-ratios are shown in Fig. 3. 

Now, each biplot vector represents a log-ratio. Due to the aforementioned invariance, 

goodness-of-fit of the covariance and correlation matrices of the log-ratios is the same as in 

the previous clr-based approach. Note that in Fig. 3A and B, each biplot vector equals the 

sum or difference of the other two vectors of its set, which is a consequence of Eq. (32).

In all biplots in Fig. 3 the log-ratios ln(x2/x3) and ln(y1/y2) virtually coincide with the first 

canonical variate. Indeed, the first canonical variate can be interpreted as the difference 

between these two log-ratios, and confirms this is the most correlated aspect of the data. 

Results obtained with standardization of log-ratios shown in Fig. 3C and D do leave angles 

between vectors unaltered, but this is only because Fig. 3 represents full space results with 

Dx = Dy. Between-set inner products in panels C and D are now correlations and identify 

ln(y2/y3) as uncorrelated with all log-ratios except ln(y1/y3).
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3.2. The composition of European floodplain sediments: major and minor components 
versus trace elements

The analysed data base is given by the chemical composition of floodplain sediments and is 

drawn from the FOREGS Geochemical Baseline Mapping Program initiated in 1998 to 

provide high quality environmental geochemical baseline data in Europe (http://weppi.gtk.fi/

publ/foregsatlas/). The data set consists of 747 samples, stratified by European country and 

represents an interesting example to test the management of parallel sets of compositions 

obtained by using different experimental conditions and/or different portions of the same 

whole sample. A range of elements were determined by wavelength dispersive X-ray 

fluorescence spectrometry (WD-XRFS) and energy dispersive polarised X-ray fluorescence 

spectrometry (ED(P)XRFS). The instruments used were Philips PW1480 and PW2400 WD-

XRFs, with W and Rh anode X-ray tubes respectively, and a Spectro X-LAB 2000 ED-XRF 

with a Pd anode X-ray tube. In practice, data for MgO, P2O5, K2O, CaO, TiO2, V, Cr, MnO, 

Cs, and Ba was taken from the ED technique; data from the WD technique was used for all 

other elements. Further details of the full range of elements are given on the FOREGS 

website. The concentrations, expressed as weight % for 10 major oxides (SiO2, Al2O3, 

Na2O, MgO, P2O5, K2O, CaO, TiO2, MnO, Fe2O3) and in ppm for 18 trace elements (V, Cr, 

Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Zr, Nb, Sn, Cs, Ba, Pb, Th, U), were analysed as two parallel 

compositions with the aim to point out coherent geochemical behaviours for components 

characterized by different abundance. XRF spectrometry is one of the most widely used and 

versatile of all instrumental analytical techniques for bulk chemical analysis of materials in 

several fields (Fitton, 1997). An XRF spectrometer uses primary radiation from an X-ray 

tube to excite secondary X-ray emissions from the sample. The radiation emerging from the 

sample includes the characteristic X-ray peaks of major and trace elements present in the 

sample. Samples were prepared by mixing with a binder, then pressing into pressed powder 

pellets. Usually the technical apparatus and standards used for major oxides are not the same 

for trace elements, so that XRF analysis produces different compositional data sets for the 

same powdered sample. We applied CoDA-CCO to the XRF data set in order to investigate 

the relationships between the major and minor oxide compositions (%) and the trace element 

compositions (ppm). The relationship between major oxides and trace elements has been 

studied in various contexts, as well as using different techniques, thus remarking its interest 

(e.g. Tolosana-Delgado and McKinley, 2016). The use of different units in the major oxides 

(%) (X-composition) and the trace elements (ppm) (Y-composition) can draw the attention 

of a geologist, since traditional (non-compositional) analyses studying relationships between 

major oxides and trace elements require to have them in the same units. In the log-ratio 

approach to CoDA, a multiplicative change of units, like translating % of oxides into ppm, is 

a perturbation in the simplex, representing a shift or translation of the composition (e.g. 

Pawlowsky-Glahn et al., 2015). A shift does, as is typical for most statistical procedures, not 

influence variability measures. The same holds for compositional data (Pawlowsky-Glahn 

and Egozcue, 2001, Proposition 6); as CoDA-CCO deals with the variability of 

compositions, the change of units does not influence the results of the analysis. A 

mathematical demonstration of this statement is given in Appendix B. Our choice about the 

units of measurement follows the structure of the data of the FOREGS repository and the 

technical sheets associated with each oxide or element to interpret geochemical behaviour in 

solid materials. Before doing any biplot interpretation, we first comment the numerical 
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output of the analysis given in Table 2. This validation is important, because patterns 

detected in a biplot are unreliable when the overall goodness-of-fit is low, or if the involved 

variables are poorly represented. The full space of the solution of this data set has 9 

dimensions, and Table 2 provides the numerical output for the first three dimensions of the 

analysis. The first three canonical correlations are high. This means that the two 

measurement domains, centred log-ratios of oxides and of trace elements, share variation to 

a large extent. The statistical significance of the canonical correlations was assessed by 

means of a permutation test. Such a test is performed by keeping one matrix fixed, say X, 

and randomly permuting the rows of Y. The permuted data set is analysed by CoDA-CCO, 

and the canonical correlations are registered. This procedure is repeated 10,000 times and in 

this way the distribution of the canonical correlations under the null hypothesis of no 

association between X and Y is generated. The observed canonical correlations of the 

original data set are compared against the generated distribution, and a p-value is calculated 

as the percentage of times the generated values exceed the observed canonical correlations. 

We found all nine canonical correlations to be highly significant with vanishingly small p-

values. Results of the permutation test are given for all nine dimensions in Supplementary 

Fig. S2. Test results suggest all nine dimensions potentially could have a geological 

interpretation, though for reasons of space we limit ourselves to interpreting the first two 

dimensions.

Inspection of Table 2 shows that the oxides SiO2, K2O, Fe2O3 and TiO2 and the trace 

elements V, Co, Rb, Ga, Zr, Nb and Th are important contributors to the first dimension of 

the analysis. For the second dimension these are the oxides CaO and TiO2, trace Sr, and to a 

lesser extent trace elements Zr, Ni, Nb, Ba, Co and Ga. We focus on parts with canonical 

coefficient above 0.25 in absolute value. Often, though not always, these parts also have 

large canonical loadings. When interpreting the biplot, we will mainly focus on links 

involving these components. The biplot of the analysis is shown in Fig. 4A (major oxides in 

standard coordinates) and B (trace elements in principal coordinates). Plots A and B in Fig. 

4 can be overlaid, but are presented separately to avoid an overcrowded display. We again 

look for links that run parallel to the canonical variables, which are represented by the 

perpendicular coordinate axes. Such links, representing approximately the standard 

deviation of the logarithm of ratios, can be expected to have particular strong correlations. 

The first three canonical correlations are 0.94, 0.89 and 0.81. Numerical output of the 

CoDA-CCO indicates that the two dimensional biplot accounts for 44% of the variation in 

the between-set covariance matrix of the clr transformed compositions, accounting, in the 

scaling used, for 46% of the total variance of the oxide composition, and 23% of the total 

variance of the trace composition. Log-ratios of the oxides that have large correlation with 

the first canonical variate are ln(K2O/Fe2O3), ln(K2O/TiO2), and ln(SiO2/Fe2O3), while for 

the trace elements these are ln(Rb/V), ln(Rb/Co), and ln(Ba/Co). The association among 

K2O, SiO2, Rb and Ba for negative values of the first canonical variate has a well defined 

geochemical meaning. They trace the behaviour of lithofile elements that follow Potassium 

geochemistry and the relative increase in Silica content (mainly presence of K-Feldspars) in 

the bedrock nature across Europe. On the other hand, positive values associated with Fe2O3, 

TiO2, V and Co point out the presence of mafic and ultramafic lithologies (relative 

decreasing Silica content) as well as mineralizations and presence of clay-rich soil with 
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relatively high Al2O3 contents. The second canonical variate points out the association 

among Ca and Sr versus that of TiO2, Fe2O3, MnO, Nb, Ga and Ba. This shows the presence 

of carbonatic lithologies versus the presence of mafic and ultramafic rocks, felsic crystalline 

rocks or clay-rich soils with high Al2O3 contents, as well as the presence of mineralization 

or pollution (i.e. Ba). We confirmed the relationships between log-ratios inferred from the 

biplot by making a scatterplot matrix, where the most prominent log-ratios are shown (see 

Supplementary Fig. S3 for log-ratios related to the first canonical variate). The canonical 

variates show clusters when represented in a geographical map (see Fig. S5). This shows, for 

instance, that the second canonical variate is large in the Mediterranean region, which has 

high values for log-ratios that carry CaO or Sr in the numerator. This result is comparable 

with the maps of CaO and Sr reported in the FOREGS repository (See weppi.gtk.fi/publ/

foregsatlas/text/Ca.pdf or Sr.pdf), and describes the outcropping of calcareous lithologies 

and potential contributions from anthropogenic activities (addition of phosphate fertilisers or 

lime). When the canonical correlation analysis is stratified on a country-wise basis (biplots 

and tables not reported), using countries where a sufficient numbers of samples is available, 

interesting features emerge that can be related to general geochemical laws. In fact, the 

major oxides K2O and Rb are closely related to the first canonical variate across all 

countries (ignoring Austria and Poland because of small sample size), while Al2O3 and Sr 

are quite related to the second one. The result describes well the geochemical affinity 

between K2O and Rb. Both the elements pertaining to group 1 of the periodic table and the 

Rb+ ion (ionic radius 152 pm) substitute for K+ (138 pm) in several minerals, thus tracing its 

geochemical distribution in outcrops across all Europe. The association between Al2O3 and 

Sr appears to point out sedimentary processes, where the distribution of Sr may be affected 

by strong adsorption on clay minerals containing Al2O3. The 747 samples can be projected 

onto the biplot in Fig. 4 and this can aid interpretation (Graffelman, 2005). Supplementary 

Fig. S4 shows this more dense biplot. This plot shows some French samples (top-right) 

which are relatively high in Sr, MgO and CaO, a set of Spanish samples relatively high in Sr 

(in the Murcia region in south-east Spain, where there is widespread strontianite 

mineralization), and a set of Polish samples which are relatively low on the first canonical 

variate (low K2O and Rb occurs over the glacial drift covered region extending from north 

Germany to Poland). However, in general, the samples of the different countries overlap to a 

large extent.

CoDA-CCO biplots based on a pairwise log-ratio approach are shown in Fig. 5, where 

oxides (panels A and C, in standard coordinates) and traces (panels B and D, in principal 

coordinates) are presented separately. Fig. 5A and B shows the covariance-based analysis, 

whereas Fig. 5C and D shows the correlation-based analysis. Panels A and B should be 

overlaid for interpretation, and panels C and D too. We emphasize that between-set inner 

products of the biplot vectors in Fig. 5A and B approximate between-set covariances, 

whereas between-set inner products of biplot vectors in Fig. 5C and D approximate 

correlations. Because of the large canonical correlations, there is little difference between 

the use of standard and principal coordinates. Because there are so many pairwise log-ratios, 

the pairwise log-ratios in Fig. 5 were filtered by goodness-of-fit, and only those log-ratios 

that have 75% or more of their variance accounted for are shown. For log-ratios in principal 

coordinates, this threshold was lowered to 60%, as the goodness-of-fit in this scaling is 
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typically worse. We summarize the main relationships uncovered by these biplots: 

ln(K2O/TiO2) and ln(K2O/Fe2O3) are positively correlated, and have strong negative 

correlation with two log-ratios involving Rb, ln(Co/Rb) and ln(V/Rb). Samples with high 

values on the latter two log-ratios have low values on the log-ratios ln(K2O/TiO2) and 

ln(K2O/Fe2O3). This is the most salient feature of the dataset uncovered by the first 

canonical variate. These relationships were also uncovered in the previous clr-based 

analysis. The second canonical variable is associated with at least six log-ratios that all 

involve CaO, and at the same time with at least eight traces that all involve Sr. The biplots in 

Fig. 5 represent in fact two approximately orthogonal sets, if CaO and Sr are consistently 

placed in the numerators (or denominators) of all involved log-ratios. Most of the high Sr 

values in floodplain sediments are due to its release from crystalline rocks, due to the 

weathering of feldspar, and from calcareous rocks, thus showing a strong relationship with 

Ca.

Note that the results are consistent with the clr-based analysis, where CaO and Sr had the 

longest biplot vectors and therefore many long links involving these components. The 

goodness-of-fit of the between-set covariance and correlation matrices in Fig. 5 is 44.4%, 

and coincides with the goodness-of-fit of the between-set clr covariances in Fig. 4. We note 

that the analysis in this section might have been performed by using the cation composition 

instead of the major oxide composition. Conversion of oxides to cations corresponds to a 

perturbation of the oxide composition. In Appendix B we show that the analysis is invariant 

under such perturbation, and therefore a cation-based analysis would have given the same 

results as the ones presented here.

4. Conclusions and discussion

Compositional canonical correlation analysis (CoDA-CCO) has been presented as a 

technique for analysing two compositional datasets, an X set and a Y set, potentially 

measuring different kinds of compositions, e.g. X may refer to a microbial composition and 

Y to the biochemical composition of the same set of subjects. We note that the method 

presented here has a wider scope of application, because it can also be applied to two 

subcompositions (that do not share parts) built from the same sample. The method will then 

act as a magnifying glass focusing on the relationships between the two subcompositions, 

allowing the investigation of geochemical paths on different concentration scales.

Canonical correlation analysis provides the best approximation, in the generalized least 

squares sense, to the between-set covariance matrix. In the context of compositional data, as 

treated in this paper, the CoDA-CCO biplot gives the optimal approximation for the 

between-set covariance matrix of the clr transformed parts in the clr-based approach, and the 

optimal approximation for the between-set covariance matrix of the pairwise log-ratios in 

the plr based approach. The same goodness-of-fit is obtained for both covariance matrices, 

as justified by Eq. (24), and as could be observed in both examples. Biplots in both 

approaches are fully equivalent if data are not standardized. If all within-set links in the clr-

based biplot are “extracted” by calculation of all possible difference vectors, and plotted as 

vectors emanating from the origin, then the biplot of the pairwise log-ratio approach will be 

obtained. This property holds for any chosen dimensionality. Because the representation of 
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the links is explicitly optimized in the pairwise approach, it follows that the links are also 

optimally displayed in the clr-based biplots. This equivalence is clearly visible by comparing 

the full space solutions in Fig. 2A and B with Fig. 3A and B, but it also holds for 

approximate solutions like the ones given in Figs. 4A, B and 5A, B respectively.

The aforementioned equivalence between the clr and plr biplot may suggest the latter to be 

superfluous, but in our opinion this is not the case for several reasons. First, the clr-based 

approach is limited in the sense that links always represent pairwise log-ratios. In the plr 

approach, links between pairwise log-ratios correspond to balances, and the pairwise 

approach may uncover the existence of balances, or even correlations between balances, so 

allowing for a richer and more refined analysis. If the analysis is limited to the clr biplot, 

potentially interesting balances that invoke more than two parts may go unnoticed. Second, 

in the clr-based approach correlations between log-ratios are not optimally displayed, 

whereas they can be optimally represented in the pairwise approach. By standardization of 

the pairwise log-ratios by division by their standard deviation prior to canonical analysis, 

biplots with an optimal approximation to the correlation structure of the pairwise log-ratios 

are obtained. In the latter plots, unit circles are illustrative, as the goodness-of-fit of the 

pairwise log-ratios can be inferred from the ray's length. We note that these considerations 

carry over to compositional biplots made by principal component analysis as well.

Biplots are not unique, and in practical data analysis it may be daunting to choose the most 

appropriate plot for representing a given data set. This is particularly true for the rich family 

of compositional canonical biplots proposed in this paper. The analyst is confronted with at 

least three decisions in the analysis: a) whether to use a clr or plr based approach, b) to 

standardize the data prior to analysis or not and c) whether to use standard coordinates for 

rows and principal coordinates for columns or the other way around. We present some 

considerations on these issues, hoping this will help analysts to make a sensible choice.

The clr-based approach has the advantage of producing less dense plots having fewer rays. 

In principle, all pairwise log-ratios are present in this biplot by means of the links. The 

analyst will have to make the mental effort to search for interesting links, in particular by 

looking at links that run parallel to canonical variables with a high correlation. 

Standardization by division by the standard deviation of the clr transformed data, prior to the 

canonical analysis, will differentially scale the columns of the clr transformed data. This 

complicates the interpretation of the links, and seems therefore generally not indicated. 

Regarding the biplot scaling, if there is particular interest in representing the within-set 

correlation of one set, that set should be represented in standard coordinates to enhance the 

representation of its correlation structure. If both sets are equally important, then a pragmatic 

rule is to choose that scaling that explains most of the total variance of the data, as expressed 

by the adequacy and redundancy coefficients. For instance, biplot A in Fig. 2 of the artificial 

data in Section 3.1 explains 100% and 36.3% of the variance of the X and Y data in FsGp′ 
scaling, but respectively 81.5% and 100% in FpGs′ scaling. The latter may be preferred for 

giving, overall, a better approximation to the transformed data matrices. To safeguard against 

erroneous interpretations, we recommend always to explore the data using both biplot 

scalings used in this paper (Eqs. (3) and (4)). Patterns like parallel links that show up in both 
biplots are more likely to be real, and not an artifact due to the projection.
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The pairwise log-ratio biplot has the advantage that pairwise log-ratios are directly displayed 

as rays in the biplot. With large compositions the number of links can be prohibitive, and 

produce very dense biplots. However, as shown in the geological example in Subsection 3.2, 

by removing all links with a low goodness-of-fit, these plots can be improved, and salient 

features of the data can be made visible.

In compositional data analysis, several log-ratio transformations are in use. In particular, the 

isometric log-ratio (ilr) transformation is increasing in popularity, as it provides Cartesian 

coordinates to represent the compositions. We show in Appendix A that a CoDA-CCO of the 

ilr transformed compositions will yield the same canonical correlations and the same 

canonical variables. An advantage of using ilr coordinates is that the singularity of the 

covariance matrices is avoided, which frees one from the need to calculate generalized 

inverses. For biplot construction however, a clr based or plr based analysis seems to be the 

most straightforward approach to CoDA-CCO. Given that the clr, plr and ilr transformations 

are linearly related to each other, the proposed compositional biplots could also be derived 

from a canonical analysis of ilr transformed compositions.

5. Software

Functions that perform compositional canonical analysis have been developed for the R 

environment (R Core Team, 2017), and are included in the R-package ToolsForCoDa.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Appendix A

In this appendix we show the invariance of the canonical correlations and the canonical 

variables when the ilr transformation is used instead of the clr transformation.

The singular value decomposition in Eq. (22) can be rewritten as an equivalent eigenvalue 

decomposition:

(Syy
clr)+Syx

clr(Sxx
clr)+Sxy

clrB = BD2 = BDλ, (35)

where Dλ contains the eigenvalues (squares of the singular values) of the spectral 

decomposition. The clr and ilr coordinates are linearly related by the following expressions 

(Egozcue et al., 2003)
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Xclr = XilrUx and Xilr = XclrUx′ , (36)

where Ux is a Dx – 1 × Dx matrix with orthonormal rows, satisfying UxUx
′ = I and 

Ux′ Ux = I − 1
Dx

11′. We use the Ux notation in order to follow the usual notation in CoDA 

(Egozcue et al., 2003), but put a bar in order not to create confusion with the previously 

defined canonical X variables (U), and use a subindex x to show that it applies to the X 

composition. Note that Ux
′Ux is an idempotent centring matrix. The analogous 

transformation for the Y variables is given by a Dy – 1 × Dy matrix Uy, as the X and Y set 

may not have the same number of parts. By substitution we obtain straightforward 

expressions for the relationships between ilr and clr within-set and between-set covariance 

matrices of the X and Y compositions, given by:

Sxx
clr = Ux

′Sxx
ilr Ux, Sxy

clr = Ux
′Sxy

ilr Uy, Syy
clr = Uy

′Syy
ilr Uy, Syx

clr = Uy
′Syx

ilr Ux . (37)

Premultiplication by Ux and postmultiplication by Ux
′ (or Uy and Uy

′, as corresponds) allows 

us to obtain the ilr covariance matrices from the clr covariance matrices:

Sxx
ilr = UxSxx

clr Ux
′ , Sxy

ilr = UxSxy
clr Uy

′, Syy
ilr = UySyy

clr Uy
′, Syx

ilr = UySyx
clr Ux

′ . (38)

Substituting Eq. (37) in Eq. (35) gives

(Uy
′Syy

ilrUy)+Uy
′Syx

ilr Ux(Ux
′Sxx

ilr Ux)+Ux
′Sxy

ilr UyB = BDλ . (39)

At this point we note that Ux has rank D – 1, and that the rows of Ux are linearly 

independent. In that case, the Moore-Penrose inverse of Ux is given by

Ux
+ = Ux

′(UxUx
′)−1 = Ux

′ .

Similarly, we also have Uy
+ = Uy′ . Eq. (39) can now be simplified to

Uy
′(Syy

ilr)+Syx
ilr (Sxx

ilr )+Sxy
ilr UyB = BDλ . (40)

Since the covariance matrices of the ilr coordinates are invertible, premultiplying by Uy this 

can be rewritten as

Syx
ilr (Sxx

ilr )−1Sxy
ilr (Syy

ilr)−1Bilr = BilrDλ . (41)

with Bilr = UyB, satisfying Bilr′Syy
ilrBilr = I. Eq. (40) is the eigenvalue-eigenvector 

decomposition corresponding to a canonical correlation analysis of X and Y compositions in 
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ilr coordinates. Finally, canonical variables obtained in the clr based and in the ilr based 

approach will be identical because V = HYclrB = HYilrUyB = HYilrBilr. Eq. (40) shows that a 

clr-based and ilr-based CoDA-CCO yield the same canonical correlations, yield canonical 

coefficients that are related by a linear transformation, and yield the same canonical 

variables. Eqs. (40) and (41) show that in the clr-based approach the canonical coefficients 

of one canonical variate (columns of matrices A and B) sum to zero. Since U satisfies 

UU′ = I and U′U = I − 1
D11′ we have that 1′U′ = 0′. From Eq. (40) it follows that the columns 

of B sum to zero. By using a spectral decomposition analogous to Eq. (35) with A as 

eigenvectors, the same property can also be shown for A.

Appendix B

In this appendix we show that the results of the analysis are invariant with respect to the 

multiplication of the parts of the compositions by a scalar, using a different scalar for each 

part. This operation is, when followed by closure, known as a perturbation in CoDa 

(Aitchison, 1986b).

Let x = (x1,x2,…,xD)′ be the original composition, written as a column vector. If, for 

instance, oxides are to be translated into cations, each element of the composition is 

multiplied by a corresponding constant ai. We so obtain a new data vector x, given by 

x = (a1x1, a2x2, …, aDxD)′ and we define the coefficient vector a = (a1,a2,…,aD)′. Prior to 

canonical analysis we log-transform the data followed by a double-centring operation (see 

Eq. (20)), such that first

ln(x) = (ln(a1x1), ln(a2x2), …, ln(aDxD))′
= (ln(a1) + ln(x1), ln(a2) + ln(x2), …, ln(aD) + ln(xD))′
= ln(a) + ln(x)
= aℓ + ln(x),

where aℓ is the log-transformed coefficient vector. In matrix terms, with X a matrix having 

compositions in its rows, and Xℓ its log-transform, this amounts to

Xℓ = Xℓ + Aℓ,

where Aℓ = 1aℓ′ . Next, we double-centre this matrix, as in Eq. (20), obtaining

Xcclr = HcXℓHr = HcXℓHr + HcAℓHr = HcXℓHr = Xcclr,

with Hc = I − 1
n1n1n

′ and Hr = I − 1
D1D1D

′ , as defined previously. The second term on the 

right hand side vanishes because

HcAℓHr = I − 1
n1n1n′ 1naℓ

′ I − 1
D1D1D

′ = (1n − 1n)aℓ′ I − 1
D1D1D

′ = O .
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Consequently, the matrix that enters into CCO is the same, whether an elementwise 

rescaling has been applied or not.
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Fig. 1. 
Ternary diagrams of two compositions, x and y, of three parts.
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Fig. 2. 
CoDA-CCO clr biplots of two three-part compositions using different scalings. Rays 

represent clr-transformed parts. Links (clr(x1), clr(x2)), (clr(x2), clr(x3)), (clr(y1), clr(y2)), 

(clr(y2), clr(y3)) are indicated by dotted lines. Panels A (FsGp′ scaling) and B (FpGs′ 
scaling) are biplots made with a covariance-based analysis. Panels C (FsGp′ scaling) and D 

(FpGs′ scaling), with unit circle, are biplots made with a correlation-based analysis.
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Fig. 3. 
CoDA-CCO biplots using pairwise log-ratios of two three-part compositions using different 

scalings. Rays represent log-ratios. Panels A (FsGp′ scaling) and B (FpGs′ scaling) are 

biplots made with a covariance-based analysis. Panels C (FsGp′ scaling) and D (FpGs′ 
scaling), with unit circle, are biplots made with a correlation-based analysis.
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Fig. 4. 
CoDA-CCO biplot of major oxides (in standard coordinates) and trace elements (in principal 

coordinates). Rays represent clr-transformed parts.
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Fig. 5. 
CoDA-CCO biplot of major oxides (in standard coordinates) and trace elements (in principal 

coordinates). Rays represent pairwise log-ratios. Panels A and B show a covariance-based 

analysis, whereas C and D show a correlation-based analysis.
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Graffelman et al. Page 32

Table 1

Canonical correlations (r1,r2), canonical weights, canonical loadings (between parentheses), adequacy 

coefficients (Rx ∣ u
2 , and cumulative Rx ∣ u

2 ) and redundancy coefficients (Rx ∣ v
2 , and cumulative Rx ∣ v

2 ) obtained 

in a CoDA-CCO of two sets of clr transformed compositions of three parts.

r1 = 0.944 r2 = 0.129

U1 U2

clr(x1) 0.001 (−0.886) 3.847 (0.464)

clr(x2) −0.799 (−0.983) −3.447 (−0.184)

clr(x3) 0.798 (0.994) −0.401 (−0.109)

Rx ∣ u
2 0.913 0.087

Rx ∣ u
2 0.913 1.000

Rx ∣ v
2 0.813 0.001

Rx ∣ v
2 0.813 0.815

V1 V2

clr(y1) 0.762 (0.852) −0.050 (−0.523)

clr(y2) −0.717 (−0.610) −0.521 (−0.793)

clr(y3) −0.046 (−0.303) 0.572 (0.953)

Ry ∣ v
2 0.397 0.603

Ry ∣ v
2 0.397 1.000

Ry ∣ u
2 0.353 0.010

Ry ∣ u
2 0.353 0.363
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Table 2

Canonical correlations (r1,r2,r3), canonical weights, canonical loadings (between parentheses), adequacy 

coefficients (Rx ∣ u
2 , and cumulative Rx ∣ u

2 ) and redundancy coefficients (Rx ∣ v
2 , and cumulative Rx ∣ v

2 ) obtained 

in a CoDA-CCO of major oxides and trace elements of European floodplain sediments. Major oxides and trace 

elements with a canonical coefficient larger than 0.25 in absolute value are marked in bold for the first two 

dimensions.

r1 = 0.936 r2 = 0.895 r3 = 0.814

U1 U2 U3

SiO2 −0.253 (−0.653) 0.092 (−0.366) −1.501 (−0.556)

Al2O3 0.110 (−0.056) 0.092 (−0.446) 0.401 (0.372)

Na2O −0.057 (−0.344) 0.263 (−0.234) 0.438 (0.439)

MgO 0.145 (0.415) 0.083 (0.357) 0.071 (0.426)

P2O5 0.017 (0.001) 0.028 (−0.016) −0.140 (−0.328)

K2O −1.524 (−0.812) −0.145 (−0.481) 1.314 (0.190)

CaO −0.033 (0.112) 0.551 (0.918) −0.096 (−0.227)

TiO2 0.738 (0.236) −1.069 (−0.838) −0.840 (−0.094)

MnO −0.054 (0.302) −0.244 (−0.404) −0.180 (−0.263)

Fe2O3 0.910 (0.628) 0.350 (−0.488) 0.532 (−0.019)

Rx ∣ u
2 0.193 0.269 0.110

Rx ∣ u
2 0.193 0.463 0.572

Rx ∣ v
2 0.169 0.216 0.073

Rx ∣ v
2 0.169 0.385 0.458

V 0.579 (0.693) −0.114 (−0.053) 0.426 (0.334)

Cr −0.067 (0.467) 0.106 (0.191) −0.144 (−0.182)

Co 0.372 (0.700) −0.399 (0.032) 0.180 (0.154)

Ni 0.012 (0.577) 0.266 (0.324) −0.215 (−0.042)

Cu −0.046 (0.450) 0.074 (0.284) −0.125 (−0.158)

Zn 0.144 (0.281) −0.006 (−0.016) −0.239 (−0.289)

Ga 0.541 (−0.110) −0.214 (−0.104) 0.858 (0.670)

As 0.091 (0.181) 0.038 (−0.201) −0.133 (−0.231)

Rb −1.848 (−0.762) 0.138 (−0.189) 1.309 (0.517)

Sr −0.137 (−0.153) 1.200 (0.859) −0.087 (0.108)

Zr −0.443 (−0.463) −0.218 (−0.292) −1.236 (−0.441)

Nb 0.622 (−0.046) −0.544 (−0.284) −0.220 (0.102)

Sn 0.089 (−0.046) −0.067 (−0.091) −0.011 (−0.012)

Cs −0.057 (−0.502) −0.107 (−0.151) −0.303 (−0.195)

Ba −0.140 (−0.507) −0.450 (−0.265) 0.105 (0.162)

Pb −0.097 (−0.168) 0.114 (−0.109) −0.017 (−0.307)

Th 0.401 (−0.410) 0.191 (−0.222) −0.275 (0.208)
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r1 = 0.936 r2 = 0.895 r3 = 0.814

U1 U2 U3

U −0.016 (−0.351) −0.007 (−0.141) 0.126 (0.342)

Ry ∣ v
2 0.194 0.078 0.088

Ry ∣ v
2 0.194 0.272 0.360

Ry ∣ u
2 0.170 0.062 0.058

Ry ∣ u
2 0.170 0.233 0.291
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