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Abstract

Acute myocardial infarction (AMI) is lethal and causes myocardial necrosis via time-depen-

dent ischemia due to prolonged occlusion of the infarct-related artery. No effective therapy

or potential therapeutic targets can prevent myocardial ischemia/reperfusion (I/R) injury.

Targeted temperature management (TTM) may reduce peri-infarct regions by inhibiting the

extracellular release of high mobility group box-1 (HMGB1) as a primary mediator of the

innate immune response. We used a rat left anterior descending (LAD) coronary artery liga-

tion model to determine if TTM at 33˚C and 36˚C had similar myocardial protective effects.

Rats were divided into sham, LAD I/R+37˚C normothermia, LAD I/R+33˚C TTM, and LAD I/

R+36˚C TTM groups (n = 5 per group). To verify the cardioprotective effect of TTM by specif-

ically inhibiting HMGB1, rats were assigned to sham, LAD I/R, and LAD I/R after pre-treat-

ment with glycyrrhizin (known as a pharmacological inhibitor of HMGB1) groups (n = 5 per

group). Different target temperatures of 33˚C and 36˚C caused equivalent reductions in

infarct volume after myocardial I/R, inhibited the extracellular release of HMGB1 from infarct

tissue, and suppressed the expression of inflammatory cytokines from peri-infarct regions.

TTM at 33˚C and 36˚C significantly attenuated the elevation of cardiac troponin, a sensitive

and specific marker of heart muscle damage, after injury. Similarly, glycyrrhizin alleviated

myocardial damage by suppressing the extracellular release of HMGB1. TTM at 33˚C and

36˚C had equivalent myocardial protective effects by similar inhibiting HMGB1 release

against myocardial I/R injury. This is the first study to suggest that a target core temperature

of 36˚C is applicable for cardioprotection.
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Introduction

Coronary heart disease is the leading cause of death worldwide, and acute myocardial infarc-

tion (AMI) is the most severe manifestation of this disease [1, 2]. In AMI, prolonged occlusion

of the infarct-related artery leads to high levels of myocardial necrosis as a time-dependent

ischemic process. To minimize myocardial necrosis, blood flow to the infarct-related artery

must be restored by mechanical reperfusion using a coronary artery stent and thrombolytic

therapy as rapidly as possible [3, 4]. Although the door to balloon time has been significantly

decreased, overall in-hospital mortality has not significantly declined in patients with ST eleva-

tion myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention

(PCI) [1, 5]. To achieve safe and effective therapeutic benefits, reperfusion therapy should be

performed within 12 h of symptom onset as the therapeutic window [6]. Paradoxically, timely

myocardial reperfusion is the cornerstone of therapy for acute STEMI [7]. However, this pro-

cess leads to myocardial injury and cardiomyocyte death, known as myocardial reperfusion

injury, which disrupts the therapeutic effects of reperfusion [7, 8]. Currently, no effective ther-

apies or potential therapeutic targets are available for preventing reperfusion injury in STEMI

[7, 9]. Therefore, the application of active adjunctive therapy to extend the critical therapeutic

window and prevent reperfusion injury may improve clinical outcomes in patients with AMI.

As the extent of myocardial salvage is an important determinant of the final infarct size in

AMI, attenuation of ischemic/reperfusion (I/R) injury is critical for novel therapeutic strate-

gies [10].

Targeted temperature management (TTM, which involves therapy hypothermia (TH) or

prophylactic controlled normothermia) has been widely used as a gold standard treatment for

minimizing secondary brain damage and improving neurologic outcomes in survivors of sud-

den cardiac arrest [11–14]. Although mild therapeutic hypothermia of TTM at 32–34˚C

improves the survival and neurologic outcomes of patients who have been successfully resus-

citated after cardiac arrest, a study comparing TTM at 33˚C and 36˚C after cardiac arrest

showed that TTM at 33˚C was not beneficial compared to TTM at 36˚C in patients with out-

of- hospital cardiac arrest of presumed cardiac aetiology [11, 12]. As a new concept regarding

TTM, the 2015 American Heart Association Guidelines for Cardiopulmonary Resuscitation

and Emergency Cardiovascular Care recommended selecting and maintaining a constant tar-

get temperature of 32–36˚C over a duration of at least 24 h in patients with return of sponta-

neous circulation after cardiac arrest [14]. TTM may be a promising strategy for improving

myocardial salvage and cardiac function [15]. Several studies showed that a core temperature

of <35˚C during reperfusion limits the infarct size. However, this goal core temperature is

not always achieved [16]. Therapeutic hypothermia commonly induces harmful effects,

including bradycardia, atrial and ventricular arrhythmia, decreased cardiac output, and mild

diastolic dysfunction [17]. The optimal target temperature and duration are unknown in

established post-cardiac arrest care [14]. Considering all of the expected benefits and disad-

vantages according to the target temperatures during TTM, determining the optimal target

temperature that clinically improves the outcomes of patients with myocardial I/R injury

remains challenging.

Although the pathophysiology of myocardial I/R injury is very complex and poorly under-

stood, inflammatory response and apoptotic cell death are known to play an important role in

the development of ischemic heart damage by myocardial I/R injury [18, 19]. Apoptosis is an

important mechanism in I/R injury, and therapeutic hypothermia reduces apoptosis in myo-

cytes. Therapeutic hypothermia-induced myocardial protection is significantly associated

with beneficial modifications in apoptotic signal pathways [18]. High mobility group box-1

(HMGB1), which is involved in the structural organization of DNA in eukaryotic cells, serves
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as a primary mediator of the innate immune response after release by necrotic cells or active

release during sterile injury [20]. HMGB1 is rapidly released upon I/R injury and is elevated

after 30 min of ischemia [21]. Extracellular HMGB1 binding to Toll-like receptor 4 enhances

the inflammatory response to myocardial damage after I/R and induces cardiomyocyte apo-

ptosis [19, 20]. Therefore, synergistic interactions between HMGB1 and inflammatory factors

amplify inflammatory responses and increase damage after I/R injury [19]. Plasma levels of

HMGB1 are independently associated with increased mortality of STEMI patients treated with

PCI [22]. Intravenous administration of glycyrrhizin, which attenuates extracellular release of

HMGB1, significantly reduces the infarct size and decreased the levels of serum HMGB1,

tumour necrosis factor (TNF)-α, and interleukin (IL)-6 [23]. In a previous study using a

middle cerebral artery occlusion rat model, both glycyrrhizin-mediated inhibition of HMGB1

and intracerebroventricular neutralizing antibody treatment significantly reduced the infarct

volume [24]. Thus, HMGB1 is a valuable molecular target for new adjunctive therapies

that extend the critical therapeutic window by blocking sterile inflammation during early

myocardial damage after I/R injury. The exact mechanism by which hypothermia attenuates

myocardial damage due to ischemia and reperfusion remains unknown [25]. It is critical to

understand the direct functional and mechanistic relationships between TTM and HMGB1 in

a clinically relevant model of AMI.

We previously demonstrated that TTM at both 33˚C and 36˚C equivalently helped rescue

ischemic penumbra from exacerbated ischemic injury by attenuating pro-inflammatory cyto-

kine production via HMGB1 blockade in a clinically relevant middle cerebral artery occlusion

rat model [24, 26]. Although TTM at 36˚C is advantageous for ameliorating hypothermia-

induced cardiac arrhythmia, shivering, and rewarming damage, whether core temperatures of

36˚C and 33˚C are equally effective in our preclinical model of left anterior descending (LAD)

coronary artery ligation remains unclear.

We hypothesized that TTM could attenuate the inflammatory response in peri-infarct

regions by inhibiting the extracellular release of HMGB1 using a rat LAD coronary artery liga-

tion model and subsequently reduce the myocardial infarcted area, resulting in increased myo-

cardial protection after I/R injury. We investigated whether TTM at 36˚C has a myocardial

protective effect via the same mechanism.

Methods

Preparation of experimental animals

Healthy, age-matched, adult male Wistar rats weighing 400–430 g were acquired from a single

source breeder at Orientbio (Seongnam, Republic of Korea). All experiments and animal care

were conducted in strict accordance with guidelines and protocols approved by the Institu-

tional Animal Care and Use Committee of the Yonsei University Health System (2016–0043)

and National Institutes of Health.

Experimental rat model of myocardial I/R injury

Before surgery of the experimental rat model, anaesthesia was induced with 5% isoflurane in

a mixture of 0.7 L/min nitrous oxide and 0.3 L/min oxygen and maintained using 2% isoflur-

ane in the same gas mixture. After anaesthesia, tracheostomy was conducted using a midline

neck incision and intravenous catheter (4712-020-116. I.V Catheter 16G, Sewoon Medical

Co., Cheon-An, Korea). Mechanical ventilation (tidal volume, 3.0 mL; respiratory rate, 50/

min) was supported by a rodent ventilator (SAP-830/AP, CWE, Inc., Ardmore, PA). The

heart was exposed by left vertical thoracotomy and pericardiectomy. Ligation of the LAD cor-

onary artery was performed on rats as described previously [27]. An LAD coronary artery
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was ligated at the mid portion between the pulmonary artery and apex through a 6–0 ethilon

suture. Immediately before ligation, the PE-10 tube (polyethylene tube, OD 0.61 mm) was

placed between the LAD and suture. The suture was ligated with the PE-10 tube. Ischemia

was confirmed, with cyanosis and dyskinesia of the myocardium supplied by LAD observed

to be developed after ligation. Reperfusion was induced by removing the PE-10 tube after 30

min of LAD ligation and was sustained for 3 h 30 min. The skin was closed with 4–0 nylon

sutures after reperfusion. The same surgical procedures were performed in sham animals

except for ligation [27]. After 4 hours of LAD ligation, anaesthesia was performed with 5%

isoflurane in a mixture of 0.7 L / min nitrous oxide and 0.3 L / min oxygen by inhalation. and

euthanasia was carried out.

Experiment protocol

We divided the present study into two main experiments. To assess the effects of myocardial

protection exerted by TTM at 33˚C and 36˚C, the rats were randomly divided into four experi-

mental groups: sham + 37˚C (n = 5), sham + 33˚C TTM (n = 5) sham + 36˚C TTM (n = 5),

LAD I/R + 37˚C normothermia (n = 5), LAD I/R + 33˚C TTM (n = 5), and LAD I/R + 36˚C

TTM (n = 5). The target core temperature was monitored in the rectum of rats and maintained

during all experiments using a feedback-controlled heating pad (HB 101, Harvard Apparatus,

Holliston, MA, USA). In the sham and normothermic groups, the target core temperature

temperatures were maintained at 37.0 ± 0.5˚C. In the TTM groups with target temperatures of

33˚C and 36˚C, external surface cooling was started at 15 min after LAD coronary ligation by

placing ice packs on the animal’s torso. The TTM target temperatures of 33˚C and 36˚C were

maintained at 33.0 ± 0.5˚C and 36.0± 0.5˚C, respectively. To prevent shivering caused by

TTM, vecuronium (0.9 mg/kg) was injected intramuscularly into all animals. Glycyrrhizin is a

pharmacological inhibitor of HMGB1 and has been suggested to prevent HMGB1 release from

cells by directly binding to HMGB1 [27–29]. To verify the cardioprotective effect of TTM by

specifically inhibiting HMGB1 in our animal model, rats were randomly assigned to three dif-

ferent experimental groups: sham (n = 5), LAD I/R (n = 5), and LAD I/R after pre-treatment

with glycyrrhizin (n = 5). Glycyrrhizin (100 mg/kg) was injected intraperitoneally into the rats

at 30 min before the ligation of the LAD coronary artery.

Assessment of infarct volume

To assess myocardial infarction, 2,3,5-triphenyltetrazolium chloride (TTC) (T8877, Sigma-

Aldrich, St. Louis, MO, USA) staining was performed. The chest of anesthetized rats was re-

opened at 4 h after sham treatment or LAD I/R surgery. The heart was quickly removed and

sectioned into 2-mm-thick slices in a pre-chilled coronal matrix device (HSRA001-1, Zivic

Instruments, Pittsburgh, PA, USA). Coronal sections were immersed for 30 min in a 1% TTC

solution in sterile distilled water at 37˚C and then fixed in 4% paraformaldehyde in phosphate-

buffered saline for 48 h. Each stained section was scanned with a flatbed scanner (PERFEC-

TION V800 PHOTO, EPSN, Nagano, Japan). To measure the infarct volume, heart tissue

between 0 and 8 mm from the apex of the heart was used. We measured the infarcted area in

the anterior and posterior sides of each 2-mm-thick slice using ImageJ 1.48v software. To

determine the infarct volume in each slice, the average value of the infarct area on the anterior

and posterior sides was multiplied by the thickness (2mm) [thickness × (top area + bottom

area)/2]. In addition, the total infarct volume was calculated as the sum of the infarct volume

per slice.
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Immunohistochemistry analysis

For immunohistochemistry analysis, 2,3,5-TTC staining was performed to confirm the peri-

infarct area in the left ventricle [28]. Next, 2-mm-thick slices between 4 and 6 mm from the

apex of the rat heart were selected, fixed with a 4% paraformaldehyde solution and embedded

in paraffin. Between 4 and 6 mm from the apex of the rat heart was chosen because the peri-

infarcted region was easily observable given that it was properly mixed with normal and infarct

tissue after TTC staining. Using a microtome (LEICA RM 2335, Wetzlar, Germany), the heart

sections were cut at 4 μm thickness on New Silane III-coated microslides (Muto Pure Chemi-

cal, Tokyo, Japan) from a region including the infarct area. The sections were permeabilized

and blocked with citrate buffer, 3% H2O2, and 5% bovine serum albumin in Tris-buffered

saline (TBS) for 1 h at room temperature (RT). The sections were incubated in TBS containing

Tween 20 and anti-HMGB1 polyclonal primary antibody overnight at 4˚C (1:100, ab18256;

Abcam, Cambridge, UK). The sections were washed three times with TBS for 5 min and incu-

bated for 1 h at RT with fluorescent secondary antibodies conjugated to Alexa-fluor 594

(1:100, A11032; Invitrogen, Carlsbad, CA, USA). The sections were washed three times with

TBS and mounted with ProLong™Diamond Antifade Mountant containing DAPI (P36962,

Invitrogen). The peri-ischemic areas of stained sections were observed with a confocal micro-

scope (LSM 700; Carl Zeiss GmbH, Jena, Germany).

Enzyme-linked immunosorbent assay (ELISA) for cardiac troponin T

(cTnT) and HMGB1

To obtain serum samples from rats, blood was drawn from the right atrium at 4 h after ligation

of the LAD coronary artery with a 22-gauge needle. One millilitre of collected blood was trans-

ferred into a Z Serum Sep Clot Activator (Greiner Bioone, Kremsmunster, Austria), followed

by centrifugation for 15 min at 3,000 rpm. The cTnT concentrations were determined using

an cTnT ELISA kit (MBS2024997, MyBioSource, San Diego, CA, USA) and and HMGB1 con-

centrations were determined using the Rat HMGB1 ELISA kit (Solarbio, Beijing, China).

Real-time polymerase chain reaction (RT-PCR)

To prepare peri-infarcted myocardium tissue, 2,3,5-TTC staining was conducted to confirm

the peri-infarct area in the left ventricle [29]. Tissue RNA was isolated using a Hybrid-R kit

(305–010, GeneAll Biotechnology, Seoul, Korea). PrimerQuest (IDT, Skokie, IL, USA) was

used to design primers for glyceraldehyde-3-phosphate dehydrogenase, TNF-α, IL-1β, and IL-

6. Single-stranded cDNA was synthesized from 500 ng of total RNA using the PrimeScript 1st

strand cDNA Synthesis Kit (6110A, Takara Bio, Shiga, Japan) (S1 Table). Quantitative PCR

was performed using a 7500 ABI system (Applied Biosystems, Foster City, CA, USA) utilizing

the SYBR-Green reagent (Q5602, Gendepot, Katy, TX, USA).

TUNEL assay

Apoptotic cells were detected by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP

nick end labeling (TUNEL) using DeadEndTM Fluorometric TUNEL system (Promega, WI,

USA) according to the manufacturer’s instructions. A confocal microscope (LSM700, Carl

Zeiss GmbG, Jena, Germany) was used to identify the stained sections. One slide from each

animal was selected and stained. The two peri-ischemic areas of the stained sections were

observed with a confocal microscope (LSM 700; Carl Zeiss GmbH, Jena, Germany). The aver-

age values of TUNEL-positive cells in the peri-infarct area were derived from two areas on the
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stained sections. Numbers of TUNEL-positive cells in the infarct area were normalised using

the numbers from the hearts of sham animals.

Statistical analysis

All experimental results are expressed as the mean ± standard deviation of the mean. Statistical

analyses were performed using unpaired t-test or by one-way analysis of variance (ANOVA)

followed by Bonferroni post hoc tests for multiple comparisons between groups. Differences

with P< 0.05 were considered as significant.

Results

Target temperatures of 33˚C and 36˚C equivalently reduce infarct volume

in myocardial I/R injury

The core target temperatures of 33˚C ± 0.5˚C and 36˚C ± 0.5˚C were reached within 13 ± 0.80

and 5 ± 0.49 min after the onset of TTM. In the present study, the average values of the core

temperature on reperfusion were 33.2˚C ± 0.07˚C in the 33˚C group and 35.8˚C ± 0.05˚C in

the 36˚C groups (Fig 1A and 1B). Infarct volumes were assessed by TTC staining after 4 h of

ischemic injury (Fig 1C and 1D). In the normothermic group, the mean ratio of the infarcted

area after myocardial I/R was 15.7 ± 3.55% compared to the total area between 0 and 8 mm

from the apex, whereas the mean ratio of the infarcted area at 33˚C and 36˚C of TTM was

6.9 ± 1.66% and 6.28 ± 3.05%, respectively. There was a significant difference between the nor-

mothermic group and TTM groups (P = 0.001).

To detect differences in myocardial protective effects at 33˚C and 36˚C in TTM after myo-

cardial I/R injury, we compared the degree of reduction of the infarct volume in the 33˚C and

36˚C TTM groups. There was no significant difference between the infarct volumes of the

33˚C TTM group and the 36˚C TTM group (P = 0.999). These results suggest that application

of TTM at both 33˚C and 36˚C has significant myocardial protective effects and that these

temperatures lead to equivalent protection against myocardial I/R injury.

Different target temperatures of 33˚C and 36˚C TTM similarly suppress

extracellular release of HMGB1 from peri-infarct tissue after myocardial

I/R injury

When ischemic damage to the myocardium is induced by LAD ligation of the heart, HMGB1

is released from the nucleus of myocardial cells [30, 31].

We found that the HMGB1 immunoreactivity was significantly decreased in the myocar-

dium after ligation of LAD in rats. To investigate whether TTM at 33˚C and 36˚C significantly

reduced the release of extracellular HMGB1 following I/R injury, we compared HMGB1

immunoreactivity between the normothermia and TTM groups after LAD ligation. We found

that 21.15 ± 7.29% of 4,6-diamidino-2-phenylindole (DAPI)-positive cells in the peri-ischemic

myocardium of LAD ligation rats were HMGB1-positive. However, we also found that target

temperatures of 33˚C and 36˚C similarly restored the number of HMGB1-positive cells in

post-infarct tissues. The percentages of HMGB1-positive cells were 81.28 ± 5.21% and

76.68 ± 6.27% for TTM at 33˚C and 36˚C, respectively. While significant increases for the pro-

portion of HMGB1-positive cells were observed for TTM at 33˚C and 36˚C compared to the

normothermic group (P< 0.001), there was no significant difference between the 33˚C and

36˚C groups (P = 0.999). This suggests that both 33˚C and 36˚C TTM cause similarly signifi-

cant reductions in the extracellular release of HMGB1 after ischemic myocardial damage

(Fig 2A and 2B).
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TTM at 33˚C and 36˚C similarly inhibited inflammatory cytokine

expression from peri-infarct regions

Cardiac mRNA expression of three major inflammatory cytokines (i.e., TNF-α, IL-1β, and IL-

6) was assessed by quantitative RT-PCR in the peri-infarcted myocardium 4 h after LAD liga-

tion. In normothermic rats maintained at 37˚C after myocardial I/R, the expression levels of

TNF-α (3.28 ± 1.62, P = 0.001), IL-1β (36.15 ± 18.5, P< 0.001), and IL-6 (1055.89 ± 185.63,

P< 0.001) were significantly increased. Compared to the normothermic I/R group, TTM

treatment at 33˚C was closely associated with lower expression of inflammatory cytokines in

the peri-infarcted myocardium (TNF-α (0.67 ± 0.23, P = 0.001), IL-1β (2.67 ± 1.33, P< 0.001),

IL-6 (98.43 ± 42.12, P< 0.001) (Fig 2C, 2D, and 2E)). TTM at 36˚C also decreased the expres-

sion of these cytokines in the peri-infarcted myocardium (TNF-α (0.67 ± 0.19, P = 0.001), IL-

1β (3.49 ± 1.31, P< 0.001), IL-6 (98.68 ± 50.89, P< 0.001)). First, there were no significant dif-

ferences in the mRNA expression of three inflammatory cytokines between the 33˚C and 36˚C

TTM groups (P< 0.999, P = 0.999, P< 0.999, respectively). Thus, the application of TTM pre-

vents the aggravation of damage by suppressing the production of inflammatory cytokines in

Fig 1. Targeted temperature management at 33˚C and 36˚C similarly reduces infarct volume in myocardial I/R injury. A. Experimental

schedule. B. Changes in rat body temperature after LAD ligation (the number of animals: n = 5, respectively). C. Representative image of

2,3,5-triphenyltetrazolium chloride (TTC) staining. D. Volume of myocardial infarction stained with TTC (the number of animals: n = 5,

respectively). ���P< 0.001, comparison of myocardial I/R with normothermia and hypothermia (33˚C and 36˚C), Statistical analyses were

performed by one-way analysis of variance (ANOVA) followed by Bonferroni post hoc tests for multiple comparisons between groups.

https://doi.org/10.1371/journal.pone.0246066.g001

PLOS ONE Inhibiting HMGB1 in myocardial I/R injury

PLOS ONE | https://doi.org/10.1371/journal.pone.0246066 January 27, 2021 7 / 19

https://doi.org/10.1371/journal.pone.0246066.g001
https://doi.org/10.1371/journal.pone.0246066


Fig 2. Hypothermia suppresses extracellular release of HMGB1 after myocardial I/R injury and inflammatory

cytokine expression in peri-infarct regions. A. Representative immunohistochemistry results for 33˚C and 36˚C

targeted temperature management after myocardial I/R injury. B. Immunohistochemistry results (the number of animals:

n = 5, respectively), ���P< 0.001, comparing myocardial I/R with normothermia and hypothermia (33˚C and 36˚C),

one-way analysis of variance (ANOVA), followed by Bonferroni post hoc test. C. Quantification of tumour necrosis

factor-α (TNF-α) expression by RT-PCR (the number of animals: n = 5, respectively), ��P< 0.01, comparison of

myocardial I/R with normothermia and hypothermia (33˚C and 36˚C) by one-way analysis of variance (ANOVA)

followed by Bonferroni post hoc test. D. Quantification of interleukin-1β (IL-1β) expression by RT-PCR (the number of

animals: n = 5, respectively), ��P< 0.01. Comparison of myocardial I/R with normothermia and hypothermia (33˚C and
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the peri-infarct area after myocardial I/R injury (Fig 2C, 2D, and 2E). This indicates that the

different target temperatures of 33˚C and 36˚C TTM similarly attenuate inflammatory cyto-

kine expression after cardiac I/R injury.

TUNEL assay

After myocardial I/R, TUNEL-positive apoptotic cells, which appear as light green dots under

the confocal microscope, were significantly increased in the normothermic group (81.7 ±
16.11) compared to the 33˚C (19.4 ± 7.19; P< 0.001) and 36˚C (13.7 ± 5.12; P< 0.001) TTM

groups. However, there was no significant difference between the number of TUNEL-positive

cells of the two TTM groups (P = 0.676) (Fig 3). These results also imply that application of

TTM at both temperatures has significant myocardial protective effects by reducing apoptosis

and that these core temperatures lead to equivalent protection against myocardial I/R injury.

Glycyrrhizin alleviates myocardial damage by suppressing the extracellular

release of HMGB1 in myocardial I/R injury

Glycyrrhizin is a pharmacological HMGB1 inhibitor that binds directly to HMGB1 and pre-

vents the extracellular release of HMGB1 to block its cytokine function [32–34]. We compared

the effects of glycyrrhizin treatment on infarct volume, extracellular release of HMGB1,

expression of inflammatory cytokines, and plasma level of cTnT in our animal model. In the

myocardial I/R group treated with an intra-peritoneal injection of glycyrrhizin, the infarct vol-

ume was significantly decreased (7.5 ± 3.81%) compared to that in the normothermic myocar-

dial I/R group (15.3 ± 5.17%, P = 0.04) ((Fig 4A and 4B). Glycyrrhizin also significantly

increased the proportion of HMGB1-positive cells in the I/R injured myocardium (21.52 ±
3.94% in normothermic rats after myocardial I/R versus 86.61 ± 3.65% in glycyrrhizin-treated

myocardial I/R rats, P< 0.001) (Fig 4C and 4D). In glycyrrhizin–treated AMI rats, TNF-α
(2.18 ± 0.77, P< 0.001), IL-1β (4.59 ± 0.95, P< 0.001), and IL-6 (145.78 ± 107.26, P< 0.001)

levels were decreased compared to those in the myocardial I/R group (TNF-α; 6.18 ± 3.42,

IL-1β; 63.78 ± 25.36, and IL-6; 2565.74 ± 707.31, respectively) (Fig 5A, 5B, and 5C). Addition-

ally, cTnT levels were significantly lower in the glycyrrhizin-treated myocardial I/R group

(0.80 ± 0.12 ng/mL) than in the normothermic group after myocardial I/R (2.39 ± 0.83 ng/mL,

P = 0.001) (Fig 5E).

Effects of 33˚C and 36˚C TTM on cTnT and HMGB1 levels in the plasma

To examine the myocardial protective effects of 33˚C and 36˚C TTM on cTnT levels reflecting

myocardial damage, we measured cTnT levels in the plasma. The levels of cTnT were higher in

the normothermia group after LAD ligation compared to those in the sham-operated group

(1.75 ± 0.53 and 0.10 ± 0.05 ng/mL, respectively; P< 0.001). However, rats subjected to either

33˚C or 36˚C TTM showed lower cTnT levels than those in the normothermia group

(0.33 ± 0.08 in 33˚C and 0.19 ± 0.07 ng/mL in 36˚C TTM group). There was no significant dif-

ference in plasma cTnT at 33˚C and 36˚C TTM (P = 0.999), indicating that both target core

temperatures for TTM equivalently reduced myocardial damage (Fig 5D) Next, we performed

an ELISA to measure HMGB1 levels in serum samples obtained at 4 h after the onset of

36˚C) by ANOVA followed by Bonferroni post hoc test. E. Quantification of IL-6 expression by RT-PCR (the number of

animals: n = 5, respectively), ���P< 0.01. Comparison of myocardial I/R with normothermia and hypothermia (33˚C

and 36˚C) by ANOVA followed by Bonferroni post hoc test. All statistical analyses were performed by one-way analysis of

variance (ANOVA) followed by Bonferroni post hoc tests for multiple comparisons between groups.

https://doi.org/10.1371/journal.pone.0246066.g002
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ischemia. As expected, the level of circulating of HMGB1 was increased after I/R injury, but

this increase was significantly attenuated by TTM at 33˚C and 36˚C (normothermic group

after myocardial I/R, 367.08 ± 83.58 pg/mL, 33˚C TTM after myocardial I/R, 67.15 ± 15.55 pg/

mL and 36˚C TTM after myocardial I/R, 66.30 ± 7.43 pg/mL, P< 0.001) (Fig 6).

Discussion

Our results suggest that TTM at both 33˚C and 36˚C reduces myocardial injury following

acute myocardial I/R injury by suppressing the extracellular release of HMGB1. We found that

Fig 3. Quantitative analysis of apoptotic cell death by TUNEL assay. A. Representative TUNEL assay results for 33˚C and 36˚C targeted temperature management

after myocardial I/R injury. B. TUNEL assay results (the number of animals: n = 5, respectively), ♠♠♠ P< 0.001, comparing sham with normothermia and hypothermia

(33˚C and 36˚C), ���P< 0.001, comparing myocardial I/R with normothermia and hypothermia (33˚C and 36˚C); Statistical analyses were performed by one-way

analysis of variance (ANOVA) followed by Bonferroni post hoc tests for multiple comparisons between groups.

https://doi.org/10.1371/journal.pone.0246066.g003

PLOS ONE Inhibiting HMGB1 in myocardial I/R injury

PLOS ONE | https://doi.org/10.1371/journal.pone.0246066 January 27, 2021 10 / 19

https://doi.org/10.1371/journal.pone.0246066.g003
https://doi.org/10.1371/journal.pone.0246066


Fig 4. Glycyrrhizin reduces infarct volume in myocardial I/R injury and glycyrrhizin suppresses extracellular release of HMGB1 in myocardial I/R injury. To

verify the cardioprotective effect of TTM by specifically inhibiting HMGB1, rats were assigned to sham, LAD I/R, and LAD I/R after pre-treatment with glycyrrhizin

(known as a pharmacological inhibitor of HMGB1) groups. A. Representative image for 2,3,5-triphenyltetrazolium chloride (TTC) staining comparing myocardial I/R

injury with normothermia and glycyrrhizin pre-treatment. B. Quantification of TTC staining results in A (the number of animals: n = 5, respectively). ���P< 0.001

comparing myocardial I/R injury with and without glycyrrhizin, unpaired t-test. C. Quantification of immunohistochemistry results in D (the number of animals:

n = 5, respectively). D. Representative images showing HMGB1 immunoreactivity from myocardial I/R injury with and without glycyrrhizin B treatment.
���P< 0.001, comparing myocardial I/R injury with and without glycyrrhizin by one-way analysis of variance (ANOVA) followed by Bonferroni post hoc test.

https://doi.org/10.1371/journal.pone.0246066.g004
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TTM attenuated the increase in infarct size, apoptosis, extracellular release of HMGB1, and

pro-inflammatory effect against the propagation of injury in rats with AMI. We also showed

that TTM at both 33˚C and 36˚C significantly attenuated the elevation of cardiac troponin,

which is a sensitive and specific marker of heart muscle damage, after myocardial I/R injury.

Fig 5. Inflammatory cytokine expression in myocardial I/R injury with and without glycyrrhizin treatment and levels of cardiac troponin T (cTnT) in plasma.

A. Quantification of tumour necrosis factor-α (TNF-α) expression by RT-PCR comparing myocardial I/R injury with and without glycyrrhizin treatment (the number

of animals: n = 5, respectively), ���P< 0.001, comparing myocardial I/R injury with and without glycyrrhizin by one-way analysis of variance (ANOVA) followed by

Bonferroni post hoc test B. Quantification of interleukin-1β (IL-1β) expression by RT-PCR comparing myocardial I/R injury with and without glycyrrhizin (the

number of animals: n = 5, respectively), ���P< 0.001, comparing myocardial I/R injury with and without glycyrrhizin treatment by one-way ANOVA followed by

Bonferroni post hoc test C. Quantification of interleukin-6 (IL-6) expression by RT-PCR comparing myocardial I/R injury with and without glycyrrhizin treatment

(the number of animals: n = 5, respectively), ���P< 0.001, comparing myocardial I/R injury with and without glycyrrhizin treatment by one-way ANOVA followed by

Bonferroni post hoc test. D. Quantification of serum TnT level by ELISA comparing myocardial I/R with normothermia and hypothermia (33˚C and 36˚C) (number of

animals: n = 5), ���P< 0.001, comparison of myocardial I/R with normothermia and hypothermia (33˚C and 36˚C) by one-way analysis of variance (ANOVA)

followed by Bonferroni post hoc test. E. Quantification of serum TnT level by ELISA with comparing myocardial I/R injury with and without glycyrrhizin pre-

treatment (number of animals: n = 5), ���P< 0.001, comparing myocardial I/R injury with and without glycyrrhizin pre-treatment by one-way ANOVA followed by

Bonferroni post hoc test.

https://doi.org/10.1371/journal.pone.0246066.g005
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TTM at 36˚C showed similar myocardial protective effects against myocardial I/R injury as

TTM at 33˚C in our rat AMI model.

The inflammatory cascade in myocardial injury and infarction is significantly associated

with debris removal and scar formation [9]. Despite the fundamental role of inflammation in

wound healing after AMI, an overwhelming inflammatory response can lead to devastating

effects on cardiomyocytes [9]. The onset of cell death begins within 30 min to 1 h after the ces-

sation of blood flow through a combination of necrosis and apoptosis. Inflammation, which

contributes to lethal myocardial injury, is initiated during ischemia and is sustained over sev-

eral hours after reperfusion [35]. Inhibiting the inflammatory process can provide a potential

therapeutic window for cardioprotection [35]. HMGB1 is known to subsequently act as a pro-

inflammatory cytokine that activates inflammatory cells by its extracellular release from

necrotic cells in the pathophysiology of various diseases [20, 36, 37]. The serum concentration

of HMGB1 is significantly associated with infarct size and residual left ventricular function in

patients with STEMI [38]. Furthermore, extracellular HMGB1 mediates inflammation and

Fig 6. Quantification of levels of HMGB1 in plasma. Quantification of serum HMGB1 level by ELISA comparing myocardial I/R with normothermia, hypothermia

(33˚C and 36˚C), and glycyrrhizin pre-treatment (number of animals: n = 5), ���P< 0.001, Statistical analyses were performed by one-way analysis of variance

(ANOVA) followed by Bonferroni post hoc tests for multiple comparisons between groups.

https://doi.org/10.1371/journal.pone.0246066.g006
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enhances the regeneration of damaged tissues. Takahashi et al. reported that HMGB1 has ben-

eficial effects at low concentrations and deleterious effects at high concentrations [36].

HMGB1 levels are significantly increased within 1 h and maintained for up to 24 h during I/R

injury [39, 40]. Therefore, it is important to prevent the action of HMGB1 to alleviate ischemic

injury of the myocardium [20, 41]. Nevertheless, HMGB1 plays dual roles in cardiac injury. In

the initial stage of cerebrovascular and cardiovascular diseases, HMGB1 is released from the

cell to participate in the cascade amplification reaction of inflammation, causing vasospasm

and apoptosis [20, 41, 42]. In the recovery stage of disease, HMGB1 can promote tissue repair,

regeneration, and remodelling [20, 41, 42]. It is necessary to investigate whether the newly gen-

erated HMGB1 plays a role in propagating inflammatory detriment or repairing damages over

time after injury. The interaction between extracellular HMGB1 and Toll-like receptor 4

enhances the inflammatory response to myocardial damage after I/R by activating the release

of pro-inflammatory cytokines, such as TNF-α from macrophage/monocytes [20]. TNF-α
influences the production of other pro-inflammatory cytokines, such as IL-1 β and IL-6, result-

ing in a negative cycle of pro-inflammatory cytokine production and aggravation of injury

after myocardial infarction [43, 44]. We also demonstrated that TTM attenuated myocardial I/

R-induced apoptosis. Temperatures of 33˚C or 36˚C in TTM induced equivalent myocardial

protection by attenuating apoptosis after I/R injury.

Our previous study demonstrated that therapeutic application of TTM helps alleviate peri-

infarct damage from the propagation of ischemic injury in an ischemic stroke model by reduc-

ing inflammatory cytokines through the blockage of HMGB1 release [24, 26]. This is the first

study to show a direct mechanistic and functional link between HMGB1 and TTM in a clini-

cally relevant AMI animal model. Interestingly, myocardial I/R injured rats treated with gly-

cyrrhizin showed equivalent myocardial protection as myocardial I/R rats that underwent

TTM. This suggests that the extracellular release of HMGB1 is critical for the propagation of I/

R injury by increasing the expression of proinflammatory cytokines in the peri-infarct myocar-

dium and that TTM helps attenuate this propagation of I/R injury by inhibiting HMGB1 after

I/R injury. In addition, we demonstrated that the serum HMGB1 level was lower in the TTM

group than in the group without TTM, revealing a correlation between TTM and HMGB1.

However, there is a lack of data regarding the link between HMGB1 and I/R injury and direct

mechanisms in our study. In the case of the AMI animal model, we could not confirm the rela-

tionship between HMGB1 and I/R injury because HMGB1 neutralizing antibodies could not

be injected locally. Instead, we indirectly revealed the association of HMGB1 with I/R injury

by using glycyrrhizin as a pharmacological HMGB1 inhibitor and via experiments using our

middle cerebral artery occlusion model [24, 26]. However, these analyses with glycyrrhizin

and neutralizing antibodies only demonstrated that the extracellular release of HMGB1 is a

key factor in the cardiac damage after I/R injury. There is no evidence that the blockade of the

HMGB1 release is direct mechanism of the TTM-induced cardiac protection after I/R injury.

Further studies are needed to identify the direct mechanisms underlying, and the link between,

HMGB1 release and the action of TTM after I/R injury. In addition, Liu et al. identified several

classes of agents that potently induce the nucleo-cytoplasmic relocation and subsequent cellu-

lar release of HMGB1 [45]. To clarify whether TTM can attenuate the inflammatory response

in peri-infarct regions by inhibiting the extracellular release of HMGB1 after I/R injury, fur-

ther studies are needed to verify ischemic damage using pharmacological agents that induce

HMGB1 release during TTM after I/R injury in the AMI model.

Induced hypothermia may increase the rates of lethal arrhythmia, hypotension, shivering,

infection, impaired coagulopathy, and rewarming injury and significantly alter the pharmaco-

kinetics [46]. Its intrinsic adverse effects can significantly diminish the hypothermic benefits

throughout the body [46]. TTM at 36˚C may be preferred to TTM at 33˚C in patients with
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cardiac arrest for several reasons [26]. In clinical practice, TTM consists of three phases: induc-

tion, maintenance, and rewarming [47]. TTM should be initiated as soon as possible according

to international guidelines [46]. Moreover, rapidly induced hypothermia is important for

modulating the efficacy of hypothermia in the clinical setting because minimizing the door to

balloon time and reaching the target temperature within that at pre-reperfusion are critical for

salvaging cardiac muscles [48]. As TTM at 36˚C is close to the lower margin of the normal

body temperature, it has the advantage of quickly achieving the target core temperature [46].

Clinical management to control shivering and minimize the risk of the devastating complica-

tions of TTM should be considered to maximize the benefits [47]. Shivering, as a major

adverse effect of TTM, leads to extremely uncomfortable and massive increases in the meta-

bolic demand and systemic energy consumption [47]. TTM at 36˚C may be preferred to mini-

mize the risk of shivering in the induction and rewarming phases because peripheral

vasoconstriction and shivering are triggered at 36.5˚C and 35.5˚C in healthy humans [47]. In

the rewarming phase, a small temperature change between the maintenance and rewarming

periods can be beneficial for reducing the increased risk of secondary damage due to the

adverse consequences of rewarming on the whole body. TTM at 33˚C is generally recom-

mended as the safer margin for the target core temperature in critically ill patients because

temperatures below 32˚C can induce serious cardiac arrhythmia. Application of TTM at 36˚C

to AMI patients also helps ameliorate the risk of several adverse effects. Unlike patients who

are resuscitated after cardiac arrest, most patients with AMI remain awake and breathe sponta-

neously during acute management [47]. Simple and well-tolerated TTM at 36˚C is more feasi-

ble during the acute period of AMI. In this experiment, we did not study the rewarming phase

when applying 33˚C and 36˚C TTM. Rewarming treatment of the 33˚C TTM group is likely to

be more damaging than 36˚C TTM group. However, due to the technical problems of our

study, it was difficult to implement rewarming experiments. In future studies, additional

rewarming treatments will be necessary because they can provide more meaningful interpreta-

tions compared to actual clinical practice.

TTM has been shown to be safe and feasible in clinical practice, and there were no differ-

ences in mortality or neurological outcomes between patients who underwent TTM at 33˚C

and those who underwent TTM 36˚C after out-of-hospital cardiac arrest in recent multi-centre

clinical trials [49]. Recently, the target temperature of TTM tends to change accordingly from

33–34˚C to 36˚C during post-resuscitation care [49]. However, previous animal studies dem-

onstrated that rapid application of therapeutic hypothermia at 32–34˚C prior to reperfusion

significantly reduced the myocardial infarct size [25, 50, 51]. Although the infarct size in TTM

at 35˚C is decreased, Dash et al. demonstrated that TTM at 32˚C is superior to TTM at 35˚C

and normothermic porcine after AMI [48]. Several clinical trials of TTM after AMI have

shown inconsistent results with the major findings of many experimental studies.

This may be because of interspecies variability among animal models and differences in the

immune response to I/R injury. Additionally, clinical outcomes may also be affected by dis-

ease- or organ-specific characteristics and molecular biological differences among organs [16,

17]. To reduce the gap between the TTM beneficial effects for cardiac arrest and AMI, we

investigated whether TTM at 36˚C has a potent myocardial protective effect. Our study

showed that target temperatures of 33˚C or 36˚C in TTM similarly inhibited HMGB1 release

and induced equivalent myocardial protection in terms of the infarct size in myocardial I/R

injury in a rat model. This is the first study to suggest that a target core temperature of 36˚C is

applicable for cardioprotection in myocardial I/R injury. However, we compared the effects of

two different temperatures in rats intubated with ventilation support, adequate sedation, and

strict shivering control by vecuronium, mimicking the features of cardiac arrest. Therefore,

further studies are needed to clarify the cardioprotective effects of both 33˚C and 36˚C TTM
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and the critical roles of HMGB1 in patients with AMI who are awake and exhibit spontaneous

breathing. Finally, the importance of this study is that whilst there are many described path-

ways known to protect against I/R injury due to TTM, here we identified a novel pathway that

inhibits the release of HMGB1.

Conclusion

We describe a new mechanistic and clinical link showing that TTM at 36˚C is a therapeutic

candidate that should be investigated in future clinical trials by reducing the propagation of

myocardial damage to effectively inhibit the extracellular HMGB1 release after myocardial I/R

injury.
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