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G E O L O G Y

Orographic evolution of northern Tibet shaped 
vegetation and plant diversity in eastern Asia
Shu-Feng Li1,2,3*, Paul J. Valdes3, Alex Farnsworth3, T. Davies-Barnard3,4,5, Tao Su1,2,  
Daniel J. Lunt3, Robert A. Spicer1,6, Jia Liu1, Wei-Yu-Dong Deng1,7, Jian Huang1, He Tang1,7, 
Andy Ridgwell3,8, Lin-Lin Chen1,7, Zhe-Kun Zhou1,9*

The growth of the Tibetan Plateau throughout the past 66 million years has profoundly affected the Asian climate, 
but how this unparalleled orogenesis might have driven vegetation and plant diversity changes in eastern Asia is 
poorly understood. We approach this question by integrating modeling results and fossil data. We show that 
growth of north and northeastern Tibet affects vegetation and, crucially, plant diversity in eastern Asia by altering 
the monsoon system. This northern Tibetan orographic change induces a precipitation increase, especially in the 
dry (winter) season, resulting in a transition from deciduous broadleaf vegetation to evergreen broadleaf vegeta-
tion and plant diversity increases across southeastern Asia. Further quantifying the complexity of Tibetan orographic 
change is critical for understanding the finer details of Asian vegetation and plant diversity evolution.

INTRODUCTION
Mountain uplift can markedly alter climate systems, potentially driv-
ing vegetation dynamics and species diversification, and may be 
fundamental for creating exceptional biodiversity (1). During the 
Cenozoic (the past 66 Ma), Tibetan orographic changes profoundly 
modified regional and global climate (2), potentially altering large-scale 
vegetation and biodiversity over Asia (3). This region of unparalleled 
Cenozoic orogenesis today hosts globally extraordinary biodiversity 
(4), making it ideal for exploring in more detail the links between 
orographic evolution, climate, vegetation, and biodiversity.

Rich sedimentary and fossil records indicate a broad arid climate 
zone extended east-west across China throughout the Paleogene 
(5, 6). This arid belt was superseded by a more humid zone during 
the Neogene, with some gradual drying toward the present (5, 6). 
Consequently, vegetation changed from deciduous broadleaf forest 
to evergreen broadleaf forest in southeastern Asia (fig. S1 and data 
S1), and the arid/semiarid vegetation belt retreated to the northwest 
of eastern Asia (fig. S2 and data S1) (5, 6). Recent phylogenetic ad-
vances also indicate that many plant lineages in eastern China only 
diversified after the start of the Miocene (~23 Ma), and modern 
plant diversity only became established there in the late Cenozoic 
(7, 8). Previous studies argue that the rise of the Tibetan Plateau 
intensified the Asia monsoon system (9–11) and potentially drove 
species diversification and vegetation change (3, 7, 8). However, 
because the history of Tibetan orogenic growth and by extension 
the Asian climate system is now known to be more complex than 
simple monolithic plateau uplift [Fig. 1; (11–13)], the underlying mech-

anisms of how Tibetan orogeny affected climate and associated veg-
etation/biodiversity changes in eastern Asia remain unresolved.

Numerical modeling is a powerful tool for exploring links be-
tween long-term orogenesis, climate change, and associated vegeta-
tion dynamics. However, classic climate sensitivity simulations 
treat Tibet as a single geological unit with no spatial complexity 
changing its height against a background of present- or paleogeog-
raphy (14–17). Some studies have simulated complex regional uplift 
histories (10, 18), but very few modeling studies have directly exam-
ined the impact of Tibetan development on vegetation (19, 20) and 
none on biodiversity. Therefore, the links between the evolution of 
Tibetan topography and vegetation/biodiversity changes across eastern 
Asia are still poorly understood.

Three key issues are unsolved in this context: (i) In what ways 
did successive Tibetan orogenic events affect climate? (ii) Why did 
vegetation and biodiversity change in eastern Asia so markedly from 
the late Paleogene to early Neogene? (iii) How were these changes 
coupled to Tibetan orogeny?

We conduct 18 sensitivity experiments (fig. S3 and data S2) 
using different Tibetan topographies representing various late Pa-
leogene to early Neogene conditions, which test almost all possible 
Tibetan orographic evolution scenarios (3, 12, 13, 21–23). We use 
the atmosphere model, HadAM3 [specifically HadAM3B-M2.1aD 
as described by Valdes et al. (24), with a resolution of 3.75° × 2.5° 
longitude and latitude], and use the Chattian baseline paleogeogra-
phy [the Late Oligocene, 27.8 to 23.0 Ma, described by Lunt et al. 
(25)]. Using a fully coupled atmosphere-ocean general circulation 
model (GCM), Lunt et al. (19) have shown that the sea surface tem-
peratures (SSTs) to the east and south of Asia are essentially insen-
sitive to Tibetan orogeny, so ocean circulation variations caused by 
topographic changes can be excluded. Therefore, to focus on differ-
entiating topography-induced climatic changes, we use the atmo-
spheric HadAM3 model with prescribed SSTs from previous fully 
coupled atmosphere GCM simulations (11). We use the GCM to 
drive the Sheffield dynamic global vegetation model (SDGVM) (26) 
for vegetation simulations and the Jena Diversity-Dynamic Global 
Vegetation Model (JeDi-DGVM) (27) to explore plant diversity 
(represented by functional richness; see Materials and Methods). 
We select four simulations (see Supplementary Text for details) 
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for the purpose of comparing the simulated SDGVM results (fig. S4) 
with paleobotanical data (fig. S1 and data S1) (5, 6) to examine the con-
sequences of orographic development in key parts of Tibet (Fig. 1).

RESULTS AND DISCUSSION
Our results reveal a fundamental linkage between Tibetan orographic 
evolution, climate, and the development of vegetation/plant diver-
sity in eastern Asia (here, we mainly focus on China because of its 
rich Cenozoic fossil record). The simulated SDGVM results show 
when the Gangdese Mountains and Lhasa Terrane were high (Fig. 2, 
A1 and A2, and fig. S3, J and K), deciduous broadleaf forests cov-
ered large areas of eastern Asia, and evergreen broadleaf taxa oc-
curred only sparsely (Fig. 2, B1 and B2, and fig. S4, J and K). This 
outcome is similar to the simulated SDGVM results for low Tibet 
scenarios (fig. S4, B to D and G). Under these conditions, plant 
diversity remained quite low in eastern Asia (Fig. 2, C1 and C2). By con-
trast, when northern (Qiangtang) and northeastern (Songpan-Ganzi) 
terranes (Fig. 2, A3 and A4, and fig. S3, L to O) were elevated, vegeta-
tion changed markedly from deciduous broadleaf to evergreen broad-
leaf across a large region of eastern Asia (around 20°N to 35°N; Fig. 2, 
B3 and B4, and fig. S4, L to O). Functional richness increased corre-
spondingly in southeastern Tibet and southeastern Asia when Tibet 
grew northeastward (Fig. 2, C1 to C4). Specifically, the rise of the 
Songpan-Ganzi Terrane produced the greatest plant diversity increase 
in east China (Fig. 2, C4) and an eastern Asia plant diversity pattern 

resembling that of today (4). Note that when the central part of Tibet 
is elevated above 3000 m (fig. S3, E, F, H, and I), a threshold-like 
transition from deciduous broadleaf to evergreen broadleaf vegeta-
tion presented in southeastern Asia (fig. S4, E, F, H, and I).

The simulated vegetation and plant diversity change patterns re-
semble closely fossil, geologic, and phylogenetic data (figs. S1 and 
S2, and data S1). The reconstructed vegetation types as defined in 
the SDGVM derived from pollen and megafossil records indicate 
deciduous broadleaf vegetation types covered large areas of south-
eastern Asia during the Paleogene, while the evergreen broadleaf 
vegetation dominated across southeastern Asia in the Neogene (fig. 
S1). In the northeast China, the reconstructed vegetation maps 
show the dominant vegetation was deciduous broadleaf type so 
broadly consistent with the simulated results. Although large areas 
of evergreen broadleaf vegetation appeared in the Paleocene in 
northeast China (fig. S1A), this is not present in the low Tibet sim-
ulations (fig. S4, B to D and G). In the northwest part of eastern 
Asia, paleobotanical records show that vegetation was mainly com-
posed with a mixed grassland and deciduous broadleaf types (fig. 
S1), generally matching the simulations (fig. S4).

Figure S2 indicates a latitude-parallel broad expanse of arid or 
semiarid vegetation extending across China during the Paleogene, 
while in the Neogene eastern China hosted humid forests (5, 6). Be-
cause precipitation is a key factor determining the growth and, par-
ticularly, the phenology of plants and the distribution of vegetation 
in middle and low latitudes of east Asia (~20°N to 35°N) (28), deciduous 

Fig. 1. Modern major tectonic terranes and features of the Himalaya-Tibetan Plateau regions and Asian climate system. From north to south Tibet comprises the 
Qilian, Kunlun-Qaidam, Songpan-Ganzi, Qiangtang, and Lhasa terranes (including the Gangdese Mountains) separated by suture zones, with the Himalaya to the south. 
The Asian climate system encompasses the East Asian summer monsoon (EASM), Indian summer monsoon (ISM), Asian winter monsoon (AWM), and westerlies.



Li et al., Sci. Adv. 2021; 7 : eabc7741     27 January 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 12

broadleaf forest can be reasonably treated as arid/semiarid vegeta-
tion type and the predominance of evergreen broadleaf plants as 
reflecting humid/semi-humid conditions in southeastern Asia. How-
ever, in northeast China, the winter temperature is more important 
than precipitation for plants, and cold plays an important role in 
determining whether leaves are retained year-round or not (28). In 
that region, deciduous broadleaf forests normally represent humid/
semihumid vegetation types, but where frozen soils limit plant ac-
cess to water in winter and as indicated by fossil records (5, 6) and 
present climate conditions. On the basis of the above discussion, the 
present results reveal that the two different reconstructed vegeta-
tion results (figs. S1 and S2) are generally consistent. Sedimentary 
records similarly show the environment of eastern China changed 
across the Paleogene to Neogene transition from arid as indicated 
by red beds and evaporites, including gypsum, halite, and glauberite 
to humid as represented by oil shales and coals (5, 6). Recent ad-
vances in phylogenetic reconstructions have indicated that many 

plant taxa (including numerous essential elements in subtropical 
evergreen broadleaf forests such as Fagaceae, Theaceae, Magnoliaceae, 
and Lauraceae) in eastern China diversified after the Oligocene/
Miocene boundary, and modern plant diversity arose in the late 
Cenozoic (7, 8, 29). This phylogenetic pattern generally agrees with 
the simulated plant diversity changes showing that the plant func-
tional types increased progressively as the Tibet developed northeast-
ward (Fig. 2, C1 to C4).

These Neogene changes in diversification and vegetation mod-
ernization in eastern Asia contrast with a growing body of evi-
dence that shows earlier changes in southwestern China. Previous 
studies (5–8) have argued that vegetation and biodiversity changes 
were simply driven by changes in the summer monsoon caused by 
the unified rise of Tibet at the Oligocene/Miocene boundary. 
However, some parts of the Tibetan region were already high be-
fore the Oligocene (12, 13, 21, 23, 30, 31), and it is in some parts of 
southwestern China that we see vegetation and biodiversity patterns 

Deciduous needleleaf

Deciduous broadleaf
Evergreen broadleaf

Evergreen needleleaf
C4 grass
C3 grass
Barren

Functional richness (types)PFTs (based on SDGVM model)Orgoraphic height (m)

A1 B1 C1

A2 B2 C2

A3 B3 C3

A4 B4 C4

40°N

20°N

0

40°N

20°N

0

40°N

20°N

0

40°N

20°N

0

40°N

20°N

40°N

20°N

0

40°N

20°N

40°N

20°N

0

40°N

20°N

40°N

20°N

0

40°N

20°N

40°N

20°N

0

60°E 80°E 100°E 120°E 140°E 60°E 80°E 100°E 120°E 140°E 60°E 80°E 100°E 120°E 140°E

0

250

750

1250

1750

2500

3500

4500

6000
50 200 600 1000 1400400 800 1200

Fig. 2. Four different Tibetan topographic conditions, simulated vegetation and plant diversity. Paleotopographies (data S2) are shown in (A1) to (A4). (B1) to (B4) 
show simulated vegetation results from the SDGVM. (C1) to (C4) show simulated plant diversity results from the JeDi-DGVM. The white dashed boxes indicate the East 
Asia region (100°E to 120°E, 20°N to 35°N) discussed in the main text. The brown arc in A1 represents the Gangdese Mountains, which existed before the rise of the Himalaya 
(21). See Supplementary Text for more details for the selection of four simulations.
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(Fig. 2, B1, B2, C1, and C2) modernizing before the end of the 
Paleogene (32).

The key driver of the transition from deciduous broadleaf to ev-
ergreen broadleaf vegetation in eastern Asia is the dry season pre-
cipitation. The driest season [December, January, and February (DJF), 
winter] and wettest season [June, July, and August (JJA), summer] 
precipitation increased as northern Tibet rose (Fig. 3). The largest 
percentage increase is in the dry season, resulting in a generally de-
crease in monsoon seasonality index (MSI) (see Materials and 
Methods; fig. S5), although MSI slightly increased when southern 
Tibet rose comparing to the Gangdese mountains uplifted simula-
tion. Temperatures altered very little in eastern Asia as northern 
Tibet rose (fig. S6), so compared to precipitation, temperature 
seems contribute very little to vegetation and plant diversity change. 
The above analysis indicates that, although summer precipitation 
changes may have contributed somewhat, winter precipitation in-
crease was the most important factor in determining substantial 
changes in vegetation and plant diversity in eastern Asia.

In some parts of the north Indochina Peninsula (10°N to 20°N), 
the simulated results show dry winter precipitation (Fig. 3, A1 to 
A4) but evergreen broadleaf forests (Fig. 2, B1 to B4), especially 

in the northwest region around the Sundarbans delta. This region 
indicates higher soil moisture in deep layers (40 to 200 cm) for both 
low and high Tibetan experiments, even in the dry season, com-
pared to southeast Asia with similar dry winter conditions (fig. 
S7). The low elevation of this delta generally means saturated soils 
year round. Because deep soil moisture is vital for evergreen forest 
transpiration during the dry season in tropical monsoon Asia, it is 
an important process imbedded in SDGVM (27); therefore, the 
simulated evergreen broadleaf forest was promoted because of 
high deep soil moisture predicted in the climate simulations. Other 
factors such as vapor pressure deficit and relative humid condi-
tions could also have contributed to the difference of simulated 
vegetation types under the similar precipitation conditions.

The critical role of winter precipitation for determining subtrop-
ical vegetation in eastern Asia is further supported by physiological and 
paleobotanical studies (33, 34). Most of the evergreen broadleaf species 
produce desiccation-sensitive (recalcitrant) seeds (33). Many of these 
species cannot survive a severe/prolonged dry season (33). For exam-
ple, most species of evergreen oak (Quercus section Cyclobalanopsis), 
a dominant component in tropical and subtropical Asia, produce 
desiccation-sensitive seeds (34). Precipitation during the dry season 
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Fig. 3. Simulated precipitation results from selected four experiments with different Tibetan Plateau topographies. Panels (A1) to (A4), (B1) to (B4), and (C1) to 
(C4) show driest season (DJF), wettest season (JJA) precipitation, and monsoon seasonality index (see Materials and Methods for the definition) for different experiments, 
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thus plays a critical role in determining the distribution of these des-
iccation sensitive taxa. The fossil floral data also indicate a large region 
of south China was exceptionally warm and humid in winter during 
the Miocene (5). This provided a favorable climate for evergreen 
broadleaf forests and, leading their expansion during the Miocene.

The mechanism that increased winter precipitation is a relatively 
simple one in which the East Asia winter monsoon winds (the east-
ward and southward cold air flows caused by Siberia-Mongolia 
high-pressure systems) were deflected by the topography of north-
ern Tibet (Fig. 4). Mean sea level pressure decreased significantly 
over the northwest of China (fig. S8) as northern Tibet rose, allow-
ing the southerly winds to invade the northern part of eastern Asia 
(fig. S9, A, C, and E). Meanwhile, the vertical velocity (mean value 
of 80°E to 110°E) in winter around latitudes of ~30°N changed from 
positive to negative values as northern Tibet rose, indicating that 
ascending air can reach to higher levels in the atmosphere (around 
250 hPa; fig. S10, A and C). The convergent flows and upward 
movement can, therefore, substantially enhance moisture supply in 
winter. When Tibet rose, summer southeasterly winds increased 
over southeastern Asia (fig. S9, B, D, and F), and the vertical veloc-
ity decreased relatively around 20°N to 35°N (fig. S10, B and D), 
implying that the intertropical convergence zone moved further 
north. This intensifies the summer monsoon due to the strengthen-

ing of the differential heating of land and ocean produced by high 
topography in the Tibetan region (35). These effects thus generated 
relatively strong ascending air, increasing summer rainfall in this 
region.

The vast majority of previous modeling studies have focused on 
sensitivity tests associated with present day geographies, and this 
may lead to a misleading interpretation for past changes. This is 
because we have shown that the mechanism is related to the inter-
action between Tibet and the circulation, and both are potentially 
shifted in latitude compared to the modern. Even a small change in 
latitude could shift patterns, and hence, modern sensitivity tests 
may have limited value for interpreting past changes. Existing mod-
eling has shown that a unitary rise of Tibet generally brings wetter 
summers to southeast Asia due to an intensified summer monsoon 
(9–11, 14, 15, 36), although most modeling works mainly focus on 
drying trends in the Asian interior (10, 14, 18, 36). However, these 
kinds of simulations have produced variable results with regard to 
the winter monsoon. An earlier atmospheric GCM experiment pro-
duced a winter monsoon over eastern Asia as a unitary Tibet rose, 
but winter precipitation changed very little in southeastern China 
(36). An et al. (10) showed that the growth of the northern and eastern 
margins of Tibet enhanced winter monsoon rains in East Asia and 
produced a dry climate in central Asia, but there was no evidence of 

Fig. 4. Simplified Tibet uplift stages, climate, and vegetation changes from the Paleogene to Neogene. (A and B) When the Gangdese Mountains and Lhasa Terrane 
uplifted, respectively, the strong Asian winter monsoon caused dry climate, producing deciduous broadleaf forest and shrub in eastern Asia. (C) When the Qiangtang and 
Songpan-Ganzi terranes uplifted, the weak Asian winter monsoon and invaded southeasterly winds enhanced winter precipitations, resulting in evergreen broadleaf 
forest in southeastern Asia. The topographies of (A) to (C) are modified from Fig. 2 (A1, A2, and A4, respectively).
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change in southeastern China. Zhang et al. (18) conducted eight 
experiments based on modern, not paleo-, geography using the 
National Center for Atmospheric Research Community Atmosphere 
Model (Community Atmosphere Model 4). The results indicated 
rises of central-southern and northern Tibet increased the Siberian 
High and thus enhanced East Asian winter monsoon, causing drier 
winters in eastern Asia.

While this result conflicts with our findings, other modeling 
experiments support our results. Kutzbach et al. (14) conducted 
sensitivity experiments with three different Tibetan Plateau topog-
raphies using the Community Climate Model, showing winter pre-
cipitation increased to the south and east of the plateau when the 
Tibet was elevated (14). In different experiments, the same model 
produced wetter winters along the east Asian coast when there was 
plateau uplift in southern Asia and the American West (37). Re-
cently, Sha et al. (38) applied the same model as Zhang et al. (18) but 
at higher resolution. Their results demonstrated that, with an ele-
vated Tibet, East Asian winter monsoon increased in northern China 
but decreased in southeastern China, inducing substantial winter 
precipitation increase over southeastern Asia (38). Zoura et al. (17) 
also showed winter monsoon changes similar to our results, although 
they use a very similar model. The notable strengthening of the 
southerly winds and increasing of precipitation in dry season in 
southeastern China is consistent with our results. The disparities be-
tween models need to be explored in future works but using real 
paleogeographies rather than interpreting present day sensitivity tests.

It is not just the elevation of Tibet that influences Asian climate. 
Other orographic highs to the north and west of present Tibetan 
Plateau, such as the Tian Shan Mountains, the Pamir Plateau, and 
the Mongolia Plateau experienced substantial topographic change 
during the Cenozoic (39–42). These topographic changes could ex-
ert prominent climate effects on eastern Asia. A recent sensitivity 
experiment indicated that when the Tian Shan Mountains and the 
Pamir Plateau were elevated, the East Asian winter monsoon inten-
sified (38). There was obvious strengthening of northerly winds 
and reduction of precipitation in northeastern China, but south-
ern China showed little change (38). A rise of Mongolia slightly 
increased the winter monsoon, but the vertical velocities changed 
little in southeastern China (43). Overall, uplift of the Tian Shan 
mountains, the Pamir Plateau, and the Mongolia Plateau can inten-
sify the East Asian winter monsoon in northeastern Asia, but the 
climate effects across southeastern Asia are weak. These topographic 
changes cannot, therefore, be the main factor driving the increase in 
winter precipitation in southeastern China (38, 43–45).

Our results imply that the topographic growth in northern Tibet 
has greater vegetation and plant diversity impacts than rises in the 
south. Any rise of the north and northeastern parts of Tibet causes 
a weakening of the winter monsoon, resulting in much more promi-
nent increased winter precipitation over eastern Asia, a sharp tran-
sition to a more humid climate, major changes in vegetation patterns, 
and an increase in plant diversity (Fig. 4). These changes are seen in 
fossil records near the end of the Paleogene. We infer that, although 
southern Tibet was already high long before the Oligocene, the rise of 
northern and eastern Tibet was ongoing throughout the Paleogene- 
Neogene transition as evidenced by recent fossil data (22, 46–48), 
and there is a strong case for revisiting existing stable isotope paleo-
altimetry due to the complexity of fractionation that must have re-
sulted from air parcel trajectory changes during the piecemeal 
growth of Tibet (13, 49). Our research highlights that, when using 

climate models to evaluate proxy data and the history of Tibet, it is 
important to use realistic representations of the complex Tibetan 
orographic history and not treat Tibet as a simple monolithic 
plateau.

MATERIALS AND METHODS
Cenozoic vegetation maps of China
We reconstruct two different Cenozoic vegetation maps based on 
paleobotanical data in China. The first reconstructed vegetation 
map (fig. S1) is derived from the primary literatures and reported 
fossil taxa, interpreted according to the SDGVM criteria (26). For 
instance, the deciduous broadleaf and shrub, deciduous broadleaf 
mixed with conifers, deciduous broadleaf mixed with evergreen 
broadleaf, etc., are mainly composed of deciduous broadleaf taxa. In 
most cases, we assign these floras to deciduous broadleaf types. 
However, the evergreen broadleaf taxa mixed with deciduous broad-
leaf taxa, evergreen broadleaf mixed with deciduous broadleaf and 
shrub taxa, evergreen broadleaf mixed with shrub and grass taxa, etc., 
normally indicate a large portion of evergreen broadleaf taxa in the 
floras. In these cases, we assign these floras to evergreen broadleaf 
dominated floras.

The second reconstructed map shows the boundaries between 
arid and humid conditions. The arid, semi-arid, humid, and semi- 
humid vegetation types are derived from the primary literatures 
based on the fossil taxa as interpreted by Sun and Wang (5) and 
sedimentation data. These interpretations are well respected. For 
instance, if Ephedripites pollen grains exceed 15%, then the palyno-
logical assemblage may indicate arid or semiarid environments. 
Other taxa—such as Nitraria, Artemisia, Asteraceae, Chenopodiaceae, 
Poaceae, Zygophyllaceae, etc.—generally imply open vegetation 
and a dry climate (5). The presence of megafossils, such as leaves, 
representing Palibinia also always indicates arid and semiarid cli-
mates (5). Therefore, we can assign the vegetation types according 
to these xerophytic plants in fossil floras.

HadAM3 experiments
The UK Hadley Centre Climate Model [HadAM3B-M2.1aD, using 
the nomenclature of Valdes et al. (24)] is used for these paleogeo-
graphic sensitivity simulations. The model resolution is 3.75° × 2.5° 
for longitude and latitude and 19 levels in the vertical. We conduct 
18 paleogeography sensitivity experiments to investigate the de-
tailed role of Tibetan orogeny on climate using the control run. The 
SSTs, topography, geography, and land-sea boundary conditions 
are prescribed as in previous Chattian simulations (50). All the sim-
ulations are run for 100 years and reached equilibrium. The last 
30 years of simulated data are extracted for climate analysis and 
vegetation/biodiversity simulations. The prescribed partial pressure 
of CO2 (PCO2) for all the simulations is 560 parts per million by volume 
(ppmv) (51).

Although ocean-atmosphere–coupled GCM models can fully 
explore ocean and atmosphere feedbacks, the uncoupled model 
tests large-scale climate affected by different topographies. A previ-
ous work using a general circulation model (UK Met Office GCM, 
HadCM3L) (19) has shown that Tibetan uplift had relatively minor 
impacts on the SSTs in the South China Sea, western Pacific, and 
Indian Ocean; thus, the ocean circulation caused by topographic 
changes can be excluded in the simulations, which allows us to fo-
cus on the effects of Tibetan orographic development. Other factors 
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such as the Paratethys Sea retreat, the land-sea boundary changes, 
vegetation dynamics, and CO2 concentration changes are not eval-
uated here. The Chattian geography, topography, and ice sheets are 
derived from the Getech Group plc Paleogeographies collected from 
numerous geologic studies (25).

Topographic boundary conditions
We conduct 18 sensitive experiments on different Tibet uplift to-
pographies from the late Paleogene to early Neogene based on recent 
geological and fossil data (fig. S3 and data S2) (12, 13, 21–23, 52, 53). 
Several theories have been proposed to explain Tibetan Plateau de-
velopment history including: (i) the whole “soft Tibet” markedly 
rose above its present altitude (30, 54, 55), (ii) outward growth from 
a higher proto-Tibetan upland (23, 56, 57) or existence of an east-
west trending Tibetan central valley system (22), and (iii) Tibetan 
uplift progressed stepwise northeastward (12, 52, 53). Although 
there is still debate about the orographic history of Tibet, most of 
the recent studies agree that Tibetan terranes separated by the su-
ture zones from north to south were uplifted asynchronously. The 
core of Tibet including the Lhasa, Qiangtang, and Songpan-Ganzi 
terranes likely uplifted early during the Paleogene and early Neo-
gene. Other parts of Tibet and surrounding regions including the 
Himalaya, Kunlun-Qaidam basin, and the Qilian Mountains likely 
uplifted during the late Neogene (12, 52, 53, 58). The Gangdese 
Mountains reached an elevation of 4500 m in the Paleocene-Eocene 
(21); therefore, we also consider high elevation of the Gangdese 
Mountains, to explore the impacts of high Gangdese Mountains on 
climate and vegetation/biodiversity.

We change the Tibetan region (71.25°E to 105°E, 20°N to 40°N) 
to different topographies based on a Chattian orography (provided 
by Getech Group plc) (25). We set up different Tibetan Plateau re-
gions based on constituent Tibetan terranes (3, 12, 13, 21–23). To 
reconstruct roughly comparable range of different Tibetan regions 
for the late Oligocene and present, the locations of different ter-
ranes are transferred to the Chattian paleogeographic framework 
based on the modern coordinates using the Getech Group plc plate 
model (25). The site 160 (see data S1) is regarded as from the India 
Plate in the Getech Group plc plate model, so we correct the paleo-
coordinates of this site using the gplates model (http://portal.
gplates.org).

The SDGVM
The SDGVM is used to assess relative importance of climate (e.g., 
temperature and precipitation) with forcings derived from different 
model simulations and predicts plant functional types (26). The 
input variables for the SDGVM including monthly temperature, 
precipitation, relative humidity, cloudiness data, and prescribed 
soil texture are derived from 18 sensitivity simulations. Seven plant 
functional types are designed in the SDGVM model, including bar-
ren (bare ground or desert), C3 grasses and shrubs, C4 grassland, 
evergreen broadleaf trees, evergreen needleleaf trees, deciduous 
broadleaf trees, and deciduous needleleaf trees (26).

The JeDi-DGVM
The JeDi-DGVM is a recently developed plant traits-based vegetation/
plant diversity model (27). The plant diversity can be represented 
by simulated functional richness, which is defined as the value of 
surviving growth strategies in a simulated grid divided by the max-
imum value of surviving growth strategies in simulated grids (27). 

The input variables (derived from four selected simulations) include 
unit plant available water capacity, temperature, net longwave radi-
ation at the surface, downward shortwave radiation at the surface, 
and daily total precipitation (27).

Validation of the SDGVM and JeDi-DGVM
We simulate the SDGVM and JeDi-DGVM results based on prein-
dustrial conditions using a coupled atmosphere-ocean general cir-
culation model [HadCM3, using the nomenclature of Valdes et al. 
(24); see the details in data S2]. We compare the simulated results 
with modern vegetation derived from terrestrial ecoregions of the 
world (59) and native vascular plant diversity derived from Ellis et al. 
(60). The results show the simulated SDGVM is generally consist-
ent with the observed SDGVM in Asia (fig. S11). The south part 
of eastern Asia is mainly covered by evergreen broadleaf forest, 
while the north part is covered by deciduous broadleaf forest. The 
evergreen broadleaf forests in the south Himalaya Mountains are 
not presented by the model, which could be due to the low resolu-
tion of the model, which cannot detect the steep topography of this 
narrow range. The simulated evergreen broadleaf area in the pre-
industrial simulation (fig. S11B) in eastern Asia is smaller than that 
in the experiments with high plateau (fig. S4, E, F, H, I, and O to R). 
This could be due to the very different boundary conditions between 
the late Oligocene and present. The prescribed PCO2 for the late 
Oligocene simulations is 560 ppmv, while for the preindustrial, it is 
280 ppmv (data S2). The low CO2 simulations could result in low 
temperature and precipitation in southeastern Asia (11), consequently, 
reduce distribution of the evergreen broadleaf forest in this region. 
Other factors such as the relative positions of the continents, oceanic 
ridges, and mountains and the condition of ice sheets are also very 
different. These differences can fundamentally perturb the atmosphere 
and ocean circulation, and thus global energy fluxes, which may 
produce very different climate and vegetation results in East Asia.

To make a clearer comparison, we normalize both modern plant 
diversity and simulated plant diversity to [0 to 1] by dividing the 
maximum plant diversity value, respectively. The simulated plant 
functional diversity of preindustrial conditions basically agrees with 
the observed data (fig. S12). Both modeling results and observed 
data show increasing trend of plant diversity from north to south of 
Asia, although there is a difference in some regions. Pavlick et al. 
(27) point that the simulated functional richness is significantly 
(R2  =  0.71) correlated with observed plant species richness, con-
firming that the JeDi-DGVM simulated plant diversity is reliable. 
In southeastern Asia and northern Asia, the observed plant diversity 
is lower than the simulated one, which may be because the highest 
value in the observed one is particularly high in other regions, 
resulting a relatively low scaled value in these regions. In the south 
Himalaya Mountains and India peninsula, the simulated result and 
observed data are not matched well that may be due to the low res-
olution of the model.

The monsoon seasonality index
The MSI is defined as the difference between local summer and local 
winter precipitation (i.e., JJA minus DJF precipitation in the north-
ern hemisphere and DJF minus JJA in the southern hemisphere).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/5/eabc7741/DC1

http://portal.gplates.org
http://portal.gplates.org
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