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A B S T R A C T   

To develop a modified predictive model for severe COVID-19 in people infected with Sars-Cov-2. We developed 
the predictive model for severe patients of COVID-19 based on the clinical date from the Tumor Center of Union 
Hospital affiliated with Tongji Medical College, China. A total of 151 cases from Jan. 26 to Mar. 20, 2020, were 
included. Then we followed 5 steps to predict and evaluate the model: data preprocessing, data splitting, feature 
selection, model building, prevention of overfitting, and Evaluation, and combined with artificial neural network 
algorithms. We processed the results in the 5 steps. In feature selection, ALB showed a strong negative correlation 
(r = 0.771, P < 0.001) whereas GLB (r = 0.661, P < 0.001) and BUN (r = 0.714, P < 0.001) showed a strong 
positive correlation with severity of COVID-19. TensorFlow was subsequently applied to develop a neural 
network model. The model achieved good prediction performance, with an area under the curve value of 0.953 
(0.889–0.982). Our results showed its outstanding performance in prediction. GLB and BUN may be two risk 
factors for severe COVID-19. Our findings could be of great benefit in the future treatment of patients with 
COVID-19 and will help to improve the quality of care in the long term. This model has great significance to 
rationalize early clinical interventions and improve the cure rate.   

1. Introduction 

In 2019, an outbreak of very contagious pneumonia began in Wuhan, 
China. The disease and the virus causing the disease were named 
coronavirus disease 2019 (COVID-19) and severe acute respiratory 
syndrome coronavirus two (SARS-COV-2), respectively. Mild COVID-19 
has a self-limiting course with a low mortality rate, and patients with 
mild symptoms are reported to recover after one week. On the other 
hand, severe cases are reported to experience progressive respiratory 
failure due to alveolar damage from the virus, which may lead to death. 
Proinflammatory responses play a role in the pathogenesis of severe 
COVID-19. In vitro experiments have shown that delayed release of 
cytokines and chemokines occurs in respiratory epithelial cells, den
dritic cells, and macrophages during the early stages of SARS-CoV2 
infection. Later, the cells secrete low levels of antiviral factors, such as 
interferons, and high levels of proinflammatory cytokines, such as 
interleukin (IL)-1β, IL-6, and tumor necrosis factor, and chemokines, 

such as C-C motif chemokine ligand (CCL)-2, CCL-3, and CCL-5.(Law 
et al., 2005; Cheung et al., 2005; Lau et al., 2013) The rapid increase in 
cytokines and chemokines attracts inflammatory cells, such as neutro
phils and monocytes, resulting in excessive infiltration of inflammatory 
cells into the lung tissue, leading to lung injury. Serum cytokine and 
chemokine levels are significantly higher in patients with severe COVID- 
19 compared with those with mild and moderate COVID-19.(Yang et al., 
2020) Elevated serum cytokine and chemokine levels in COVID-19 pa
tients are associated with a high number of neutrophils and monocytes 
in the lung tissues and peripheral blood, suggesting that these cells may 
play a role in lung pathology.(Yang et al., 2020) Onset COVID-19 is 
usually concealed and it is difficult to predict severe COVID-19, despite 
knowing its causes. While studies have reported ways of predicting 
COVID-19, these have mostly explored the linear relationship between 
each feature and COVID-19 severity to identify independent risk factors. 
However, some of the factors related to the severity of COVID-19 are 
nonlinear. Classical linear prediction methods do not take nonlinear 
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phenomena into account. Therefore, a heuristic methodology for the 
epidemic forecast could help to resolve this problem, and we set sights 
on the artificial neural network (ANN). An artificial neural network can 
integrate the linear and nonlinear relationships of each feature to obtain 
prediction results, adding to the credibility of the forecast results. Since 
years, Artificial neural network has been widely applied in medical 
studies. Because the hidden neurons are unnecessary for linearity, the 
input and output are not required to be linearly related either. This 
approach could make the prediction more flexible.(Borzouei et al., 
2020) If the selected input variables are sufficient and representative, 
and there is neither a closed correlation between them, the network 
could reveal their complex relationship and show the advantages in 
extrapolation. This view has been supported by Schonenberger, et al. 
(Schonenberger et al., 2020) Furthermore, this methodology has been 
applied to the prediction of the SARS epidemic by Bai and Jin (2005) 
(Yanping Bai, 2005). A highlighted characteristic of the neural network 
is training, this study has proved its strong associative and rational 
ability under large and non-linear conditions in the theoretical and 
practical aspects. Due to 4 ways of controlling the capacity, the network 
can prevent overfitting, which is one of the typical problems that the 
linear regression model has faced.(Konaté, 2019) In conclusion, this 
method is opted for in this study. 

Our study aimed to introduce a neural network predictive model to 
predict the severity of COVID-19 using the results from routine exami
nations. A neural network is a simplified model of how the human brain 
processes information. There are typically three parts in a neural 
network: an input layer, with units representing the input fields; one or 
more hidden layers; and an output layer, with a unit or units repre
senting the target field(s). The units are connected with varying 
connection strengths (or weights). Input data are presented to the first 
layer, and values are propagated from each neuron to each neuron in the 
next layer. Eventually, a result is delivered from the output layer. 
Finally, we built the predictive model and the model achieved good 
prediction performance, with area under the curve (AUC) values of 
0.953 (0.889–0.982). 

2. Materials and methods 

2.1. Patient and public involvement 

Data were collected from the Tumor Center of Union Hospital affil
iated with Tongji Medical College of Huazhong University of Science 
and Technology, Hubei, China. All participants gave verbal consent to 
take part in the study. 

2.2. Data collected 

Data from consecutive patients with COVID-19 were collected be
tween January 26, 2020, and March 20, 2020. Data were obtained at 
admission (Table 1). Inclusion criteria were patients with a confirmed 
diagnosis of SARS-COV-2 infection (according to Diagnosis and Treat
ment Protocol for Novel Coronavirus Pneumonia Version 7(Chin. Med. 
J., 2020)). Exclusion criteria were patients with existing severe or crit
ical COVID-19 at the time of admission. A detailed description of the 
criteria is described in Table 2. 

2.3. Software used 

Scikit-learn: Scikit-learn is a software machine learning library for 
the Python programming language. It has a powerful data preprocessing 
function (https://scikit-learn.org/stable/). 

② TensorFlow: TensorFlow is a framework for data stream-oriented 
programming, which is widely used in machine learning (https://gith 
ub.com/tensorflow/tensorflow). 

③ Scipy.stats: Scipy.stats contains a large number of probability 
distributions as well as a growing library of statistical functions. (https 
://docs.scipy.org/doc/scipy/reference/stats.html). 

2.4. Study design 

The study consisted of the following phases: 

2.4.1. Data preprocessing 
Cases with missing and invalid values were deleted. Next, data were 

normalized using the median normalization, and the qualitative variable 
was coded as dummy variables to eliminate their effect on the model 
(using scikit-learn package in Python software). 

2.4.2. Data splitting 
The data set was randomly split into three parts:training set，veri

fication set，and test set. For the training set and verification set, the 
split ratio was 9:1 (ten-fold cross-validation). 

2.4.3. Feature selection 
Pearson correlation coefficient was used to analyze correlations of 

quantitative data, and Kendall correlation coefficients were used to 
analyze the correlations of qualitative data. Statistically significant (P <
0.05) features were extracted as the input for the neural network model 
(using the Scipy.stats package in Python software). 

2.4.4. Model building 
The training set was used for training and tuning the parameters, the 

validation set was for preventing the overfitting problem, and the test set 
was used to evaluate the performance (using the TensorFlow package in 
Python software). Four parameters need to be set in modeling: learning 

Table 1 
Data collected.  

Data type Parameter 

Quantitative Age, RBCs, Hb, WBCs, TP, ALB, GLB, CREA, BUN, mycoplasma IgM, 
mycoplasma IgG, chlamydial IgM 

Categorical Patient condition (mild cases, moderate cases, severe cases, and 
critical cases), sex, diabetes, diabetes with complications, acquired 
immune deficiency syndrome, cancer, history of lung disease, solitary 
patchy foci, multiple patchy foci, solitary ground-glass opacity, 
multiple ground-glass opacity, diffuse interstitial change, solitary 
interstitial change, solitary pulmonary consolidation, multiple 
pulmonary consolidations, solitary infiltrate, multiple infiltrates, 
chronic kidney diseases (>3 months) 

Ordinal Hypertension classification†, cardiac functional grading (according to 
New York Heart Association functional classification) 

ALB, albumin; BUN, blood urea nitrogen; GLB, globulin; CREA, creatinine; Hb, 
hemoglobin; IgG, immunoglobulin G; IgM, immunoglobulin M; RBCs, red blood 
cells; TP, total protein; WBCs, white blood cells. 

† Measured according to the 2017 edition of American College of Cardiology/ 
American Heart Association guidelines for hypertension. 

Table 2 
Criteria for assessing COVID-19 severity.  

Severity Criteria 

Mild Minimal symptoms without pulmonary involvement in chest imaging 
studies 

Moderate Fever and/or respiratory symptoms; multiple limited patchy shadows 
and interstitial changes in chest imaging 

Severe Dyspnea with a respiratory rate > 30 breaths per minute; resting 
oxygen saturation < 95% or arterial blood oxygen partial pressure/ 
oxygen concentration ≤ 300 mmHg (1 mmHg = 0.133 kPa); 
multilobular disease or lesion progression >50% within 48 h; SOFA 
≥2 points; pneumothorax and/or other 

Critically 
ill 

Respiratory failure requiring mechanical ventilation; septic shock; 
additional organ failure 

SOFA, sequential organ failure assessment. 
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rate, epochs, the number of nodes, and the number of layers in the 
hidden layer. We describe the approaches of adjustment parameters in 
detail below. 

2.4.4.1. Learning rate. The learning rate is a hyperparameter that deter- 
mines how much the model should change concerning the error each 
time the model parameters are updated. It is important to tune the 
learning rate properly because a too small learning rate, as shown in 
Fig. 1(a), may result in a very long and very slow training process that 
may get stuck, whereas a too-large learning rate value, as shown in Fig. 1 
(c), may result in diverging away from the optimal point rather than 
converging towards it. 

However, there is currently no algorithm to obtain the optimal value 

of the learning rate. The learning rate can be determined through ex
periments.(Konar et al., 2020) Experiments have shown that starting the 
learning rate from 0.1 gives a relatively good performance, we used the 
same method in this study. If setting the learning rate to 0.1 does not 
give good accuracy then we choose another constant number based on 
experiments again, options are 0.01, 0.001, 0.0001, 0.00001. 

2.4.4.2. Epochs. For the number of epochs, the residual error decreases 
with an increase in the number of epochs and finally tended to be stable, 
but it needs a much longer training time. To find the optimal quantity of 
epochs, we recorded the residual error (cross-entropy) of each epoch. 
When the residual error tends to stabilize, the optimal quantity of epochs 
was determined. 

Fig. 1. The impact of learning rate on the model performance.  

Fig. 2. Data preprocessing.  
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2.4.4.3. The number of nodes and layers in the hidden layer. Kolmogor
ov’s theorem stating that any continuous function defined on an n- 
dimensional cube can be represented by sums and superpositions of 
continuous functions of one variable. Hecht-Nielsen imported this the
orem later in neurocomputing by proving that any continuous function 
can be represented by a neural network that has only one hidden layer 
with exactly 2n + 1 nodes, where n is the number of input nodes. 
(Nielsen, 1987) But Hecht-Nielsen stated that the 2n + 1 rule is not for 
all classes of activation functions. Therefore, Kurkova suggested that 
two hidden layers should be used to compensate for lost efficiency when 
using regular activation functions.(Kurkova, 1992) So we used two 
hidden layers (each layer consists of 2n + 1 nodes) in this study. 

2.4.5. Prevention of overfitting 
The 10-fold internal cross-validation was used to prevent overfitting 

of the data. In the 10-fold cross-validation, the original sample was 
randomly partitioned into 10 equal-sized subsamples. Of the 10 sub
samples, a single subsample was retained as the validation data for 
testing the model, and the remaining nine subsamples were used as 
training data. The cross-validation process was then repeated 10 times, 

using each of the 10 subsamples once as the validation data. An average 
of the 10 results was then taken to produce a single estimation.(Victor 
et al., 2012) The 10-fold cross-validation tested the model’s ability to 
predict new data that was not used in the estimation of flag problems, 
such as overfitting. This method was effective in preventing overfitting. 

2.4.6. Evaluation indexes of the model 
The performance of the model was evaluated using receiver oper

ating characteristics (ROC) curve analysis(Feinstein, 2001) and AUC. 

3. Results 

3.1. Data preprocessing 

A total of 166 cases were included in the study, although 15 cases 
were excluded due to missing data. The remaining 151 COVID-19 pa
tients comprised 59 males and 92 females with a mean age of 62.4 ±
16.12 (range 18–96) years. There were 58 mild and moderate cases, 88 
severe cases, five critical cases (age 84, 84, 69, 65, and 34 years), one 
case of chronic kidney disease, 21 cases of diabetes (10 with complica
tions), none were human immunodeficiency virus-infected, 11 patients 
had a history of cancer, and 20 had a history of lung disease (Fig. 2). 

3.2. Feature selection 

The feature set of the present study consisted of 33 features. After 
feature selection, six eligible features were used for modeling: a history 
of lung disease, age, hemoglobin (Hb), albumin (ALB), globulin (GLB), 
and blood urea nitrogen (BUN) (Table 3). The data distribution of these 
features is illustrated in Fig. 3. For the correlation analysis, a correlation 
coefficient P ≥ 0.8 was considered a very strong correlation, P =
0.60–0.79 was strong, P = 0.4–0.59 was moderate, P = 0.20–0.39 a 
weak correlation, and P ≤ 0.19 was negligible. In the present study, ALB 
showed a strong negative correlation (r = 0.771, P < 0.001) whereas 
GLB (r = 0.661, P < 0.001) and BUN (r = 0.714, P < 0.001) showed a 
strong positive correlation with severity of COVID-19. Furthermore, age 
showed a weak positive correlation (r = 0.266, P < 0.001), Hb showed a 
weak negative correlation (r = − 0.231, P = 0.021), and history of lung 
disease shows a negligible positive correlation (r = 0.137, P = 0.011) 
with severity of COVID-19. 

3.3. Model building 

The total data were divided into a training set (99 cases) and a 
verification set (11 cases) and a test set (41 cases). 

The number of nodes in the hidden layer: According to the results 
of data pre-processing, the number of nodes in the input layer is six. So 
the number of nodes in the hidden layer is thirteen. 

② Learning rate: In this study, the optimal value of the learning rate 
is 0.001 through experiments. 

③ Epochs: The residual error tends to stabilize in 200, as shown in 
(Fig. 4). So the number of epochs was set to 200. 

After adjusting for parameters, the final predictive model made up an 
input layer (six units), two hidden layers (13 units), and an output layer 
(one unit: severe COVID-19 or non-severe COVID-19). Hidden layer 
nodes use the ReLU (rectified linear unit) activation function (Eq. a), the 
output node uses the Sigmoid activation function (Eq. b), and the cost 
function was minimized using the adaptive moment estimation method 
(Fig. 5). 

ReLU(x) = max(0, x) (1)  

sigmoid(x) = σ =
1

1 + e− x (2)  

ADAM, adaptive moment; ReLU, rectified linear unit. 

Table 3 
Correlation analysis.   

Features Correlation 
coefficient 

P- 
value 

Significance 
level 

Kendall 
correlation 
coefficient 

Sex − 0.031 0.754  
Hypertension 
classification 

− 0.011 0.722  

Chronic kidney 
diseases 

0.123 0.200  

Cardiac functional 
grading 

0.107 0.052  

Diabetes − 0.124 0.875  
AIDS – –  
Cancer 0.091 0.072  
History of lung 
disease 

0.137 0.011 <0.05 

Solitary patchy foci − 0.058 0.141  
Multiple patchy foci − 0.032 0.717  
Solitary ground- 
glass opacity 

0.076 0.954  

Multiple ground- 
glass opacity 

0.033 0.231  

Solitary interstitial 
change 

0.064 0.132  

Diffuse interstitial 
change 

0.026 0.223  

Solitary pulmonary 
consolidation 

− 0.040 0.852  

Multiple pulmonary 
consolidations 

0.160 0.162  

Solitary infiltrate − 0.136 0.149  
Multiple infiltrates − 0.136 0.472  

Pearson 
correlation 
coefficient 

Age 0.266 0.007 <0.05 
WBC 0.145 0.153  
RBC − 0.111 0.272  
Hb − 0.231 0.021 <0.05 
TP − 0.075 0.459  
ALB − 0.771 0.000 <0.05 
GLB 0.661 0.000 <0.05 
CREA 0.069 0.497  
BUN 0.714 0.000 <0.05 
Mycoplasma 
immunoglobulin M 

− 0.069 0.496  

Mycoplasma 
immunoglobulin G 

− 0.138 0.171  

Chlamydial 
immunoglobulin M 

− 0.107 0.291  

Chlamydial 
immunoglobulin G 

− 0.137 0.177  

AIDS, acquired immunodeficiency syndrome’ ALB, albumin; BUN, blood urea 
nitrogen; GLB, globulin; CREA, creatinine; Hb, hemoglobin; RBCs, red blood 
cells; TP, total protein; WBCs, white blood cells. 
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3.4. Evaluation of the model 

In verification set，the results of 10-fold cross-validation: 0.999, 
0.998, 0.997, 0.894, 0.916, 0.960, 0,986, 0.999, 0.940, 0.999. Mean 
value was 0.969. In test set, the F1-Score reaches 96.4%, the AUC of the 
model was 0.953(0.889–0.982)(Fig. 6), the Specificity and sensitivity 
values of this model were selected at 85.7% and 100%, respectively. 
Results showed a good prediction of the model. 

4. Discussion 

The present study included a total of 151 cases. At the data pre
processing stage, 33 features among all cases were subjected to relat
edness analyses, and six features were extracted for modeling (P < 0.05). 
Our results show that the AUC of the model was 0.953 (0.889–0.982), 
and the model had a perfect fit and accuracy. Our study aimed to predict 
the severity of COVID-19 using the results from routine examinations. 
Routine laboratory variables are extremely meaningful as they are 
readily accessible at the initial diagnosis, which helps early prediction. 

Correlation analysis revealed that age showed a weak positive 

correlation (r = 0.266, P < 0.001), ALB showed a strong negative cor
relation (r = − 0.771, P < 0.001), and GLB (r = 0.661, P < 0.001) and 
BUN (r = 0.714, P < 0.001) showed a strong positive correlation with 
severity of COVID-19, whereas Hb showed a weak negative correlation 
(r = − 0.231, P = 0.021) and history of lung disease showed a negligible 
positive correlation (r = 0.137, P = 0.011). 

Previous studies have reported that age is a risk factor for severe 
COVID-19.(Cheung et al., 2005; Ramtohul et al., 2020; Nawar et al., 
2020) Fei Zhou et al. analyzed 191 patients with severe COVID-19 
requiring hospitalization. In this cohort, patients had a median age of 
56.0 years.(Zhou et al., 2020) ALB is an acidic, hydrophilic, and highly 
stable globular protein that is synthesized specifically in the liver. Our 
study showed that decreased ALB levels were a risk factor. Several 
studies have shown a negative correlation between ALB and the severity 
of COVID-19,(Lau et al., 2013) which parallels the findings of the pre
sent study. A meta-analysis of 90 cohort studies that evaluated hypo
albuminemia as a prognostic biomarker in acutely ill patients showed 
that each 10-g/L decrease in serum albumin concentration was associ
ated with a 137% increase in odds of death, 89% increase in morbidity, 
and 71% increase in the length of hospital stay. Thus, there is a clear 
association between albumin level and severity of the insult Based on the 
existing literature, we speculated three reasons for this phenomenon. 
First, low albumin levels can influence pharmacokinetics. Albumin 
transports multiple endogenous and exogenous substances; therefore, 
changes in albumin concentration during critical illness can have 
potentially marked effects on drug delivery and efficacy in a systematic 
review, Ulldemolins et al. reported that protein binding of antibacterials 
was frequently decreased in critically ill patients with hypo
albuminemia, notably with increased volume of distribution and drug 
clearance. These changes could result in suboptimal treatment. Second, 
low albumin levels can change the acid-base balance in the human body. 
The balance of acidic to basic residues on albumin makes it a weak acid 
in physiological concentrations, and a decrease in albumin concentra
tion increases the anion gap. This massively increases bicarbonate 
concentration. Third, low albumin levels could affect endothelial cell 
function since albumin is a crucial part of the endothelial surface layer. 
However, experiments in isolated organs have shown that the 

Fig. 3. Data distribution.  

Fig. 4. Changes in residual error.  
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endothelial surface layer appears to function well until the albumin 
concentration falls to values as low as 10 g/L. Hence, the major insult 
when the vascular barrier fails to function due to severe acute illness is 
likely not the low albumin level, but the breakdown of the molecular 
structure of the endothelial glycocalyx due to hypervolemia or 
ischemia/reperfusion injury and other forms of systemic inflammation. 

(Chappell et al., 2009) However, these are only speculations, and 
definitive conclusions cannot be drawn. Therefore, it remains unclear 
whether the effect of hypoalbuminemia on the outcome is a cause and 
effect relationship or whether hypoalbuminemia is a marker of serious 
disease. 

ALB (r = − 0.771) and GLB (r = 0.661) showed similar relevant in
tensity in our study, and an increase in GLB may be a risk factor for 
COVID-19 severity. GLB and ALB are commonly used as markers for 
assessing patient hepatic function, and low levels of ALB and high levels 
of GLB could indicate impaired liver function.(Jawahar et al., 2020) 
Thus, the deterioration of COVID-19 patients maybe is correlated with 
damage to liver function. Furthermore, it is also important to consider 
the impact of BUN on the severity of COVID-19. Elevated BUN is a key 
indicator of kidney malfunction. This seems to indicate that renal 
impairment may result in the deterioration of COVID-19. This specula
tion is consistent with our statements concerning ALB. The antioxidant 
and anti-inflammatory effects of ALB properties can mediate renopro
tective effects.(Iglesias et al., 1999) However, it is worth noting that the 
present study only included one case with chronic kidney disease. This 
means that BUN had likely already resulted in a harmful impact on 
patients with COVID-19 before BUN reached the level of renal damage. 
Studies have indicated basic disease as a risk factor for COVID-19 
exacerbation.(Dantzer et al., 2020; Montoya-Barthelemy et al., 2020; 
Nowak-Wegrzyn et al., 2020; Hwee et al., 2020; Schultz and Wolf, 2020) 
On the other hand, our results showed that the correlation between basic 

Fig. 5. The final model.  

Fig. 6. ROC curve of our model.  

Fig. 7. Imaging manifestations of severe COVID-19 (a) before treatment, (b) during treatment, and (c) after treatment.  

J. Kang et al.                                                                                                                                                                                                                                    



Infection, Genetics and Evolution 90 (2021) 104737

7

diseases and the severity of COVID-19 was not significant. May be due to 
a low number of cases with the basic disease in our cohort. 

An independent analysis of various imaging manifestations of 
COVID-19 was performed in the present study. Our results showed a 
very weak (r < 0.2) correlation between imaging manifestations and 
severe COVID-19. This may be because predicting severe COVID-19 
needs to observe dynamic changes of imaging manifestations (Fig. 7) 
rather than a single imaging manifestation.(Guan et al., 2020; Lee et al., 
2020) 

Artificial neural network technology, which is widely implemented 
in various fields of science, was used in the establishment of our model. 
(Jaganathan et al., 2019; Pan et al., 2019; Stokes et al., 2020; Zeiser 
et al., 2020) This model has good accuracy as long as there is a suitable 
parameter adjustment. Thus, the neural network model is extremely 
useful for complex diseases. This test result has shown its outstanding 
performance in prediction, with an area under the curve value of 0.953 
(0.889–0.982). It could be utilized to monitor the training and predict
ing process. This has further significance for the rationalization of 
clinical interventions. And the scientific findings in this study could be of 
great benefit in the future treatment of patients with COVID-19 and will 
help to improve the quality of care in the long term. 

Whereas our model showed good results in the test set, there are 
several other limitations to our study. First, although we examined our 
model in an internal population, we did not validate it in an external 
population, and its generalizability needs to be confirmed. Second, the 
data of our study was not comprehensive enough. Yong Gao et al. re
ported that IL-6 and D-dimer were closely connected with the occur
rence of severe COVID-19 in adult patients.(Gao et al., 2020) Hongyi 
Zhang et al. reported that patients with severe COVID-19 had a signifi
cant reduction in granulocytes compared with patients with mild 
COVID-19.(Zheng et al., 2020) We did not collect information on these 
factors. Third, the verification of our model using prospective testing 
with a larger sample size is warranted. Our sample size was relatively 
small and we are currently collecting recent data from a larger sample 
size to validate further and improve the current models. Fourth, the 
operational process of the artificial neural network model is compli
cated, as the neural activity of the human brain. Therefore, there is 
currently no quantitative indicator that can express the relevance be
tween predictors and forecast results in the artificial neural network 
model. This is a limitation of this study, as well as difficulties with 
machine learning.(Gao et al., 2020; Zheng et al., 2020) 

CRediT authorship contribution statement 

Jianhong Kang: Conceptualization, Writing- Original draft prepa
ration, revision, Methodology. Ting Chen: Software, Writing- Original 
draft preparation, Visualization. Honghe Luo: revise, Proofreading, 
Supervision. Yifeng-Luo: revise, Proofreading, Professional technical 
support. Guipeng-Du: Collecting data. 

Declaration of Competing Interest 

The authors declared that they have no conflicts of interest in this 
work. 

References 

Borzouei, S., Mahjub, H., Sajadi, N.A., Farhadian, M., 2020. Diagnosing thyroid 
disorders: comparison of logistic regression and neural network models. J. Family 
Med. Prim. Care 9 (3), 1470–1476. 

Chappell, D., Westphal, M., Jacob, M., 2009. The impact of the glycocalyx on 
microcirculatory oxygen distribution in critical illness. Curr. Opin. Anaesthesiol. 22 
(2), 155–162. 

Cheung, C.Y., Poon, L.L., Ng, I.H., et al., 2005. Cytokine responses in severe acute 
respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance 
to pathogenesis. J. Virol. 79 (12), 7819–7826. 

Diagnosis and treatment protocol for novel coronavirus pneumonia (Trial Version 7). 
Chin. Med. J. 133 (9), 2020, 1087–1095. 

Dantzer, R., Heuser, I., Lupien, S., 2020. Covid-19: an urgent need for a 
psychoneuroendocrine perspective. Psychoneuroendocrinology 104703. 

Feinstein, A.R., 2001. Principles of Medical Statistics. CRC Press. 
Gao, Y., Li, T., Han, M., et al., 2020. Diagnostic utility of clinical laboratory data 

determinations for patients with the severe COVID-19. J. Med. Virol. 92 (7), 
791–796. 

Guan, W., Liu, J., Yu, C., 2020. CT findings of coronavirus disease (COVID-19) severe 
pneumonia. AJR Am. J. Roentgenol. W1–W2. 

Hwee, J., Chiew, J., Sechachalam, S., 2020. The impact of coronavirus disease 2019 
(COVID-19) on the practice of hand surgery in Singapore. J. Hand. Surg. [Am.] 45 
(6), 536–541. 

Iglesias, J., Abernethy, V.E., Wang, Z., Lieberthal, W., Koh, J.S., Levine, J.S., 1999. 
Albumin is a major serum survival factor for renal tubular cells and macrophages 
through scavenging of ROS. Am. J. Phys. 277 (5), F711–F722. 

Jaganathan, K., Kyriazopoulou Panagiotopoulou, S., McRae, J.F., et al., 2019. Predicting 
splicing from primary sequence with deep learning. Cell 176 (3), 535–548 (e24).  

Jawahar, A., Gonzalez, B., Balasubramanian, N., Adams, W., Goldberg, A., 2020. 
Comparison of computed tomography hepatic steatosis criteria for identification of 
abnormal liver function and clinical risk factors, in incidentally noted fatty liver. 
Eur. J. Gastroenterol. Hepatol. 32 (2), 216–221. 

Konar, J., Khandelwal, P., Tripathi, R., 2020. Comparison of Various Learning Rate 
Scheduling Techniques on Convolutional Neural Network. 2020 IEEE International 
Students’ Conference on Electrical,Electronics and Computer Science (SCEECS), 
2020 22–23 Feb, 2020, pp. 1–5. 
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Corrigendum to: Machine Learning Predictive Model for Severe COVID-19 
(Infection, Genetics and Evolution, volume 90, article number 104737). 

Jianhong-Kang a, Ting-Chen b, Honghe-Luo a,*, Guipeng-Du c, Mia Jiming-Yang d 

a Department of Thoracic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China 
b Chengdu Medical College, Chengdu, China 
c The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China 
d Medicine Campus Oberfranken, University of Bayreuth, Bavaria, Germany 

Description of the original text: In 2019, an outbreak of very con
tagious pneumonia began in Wuhan, China. The disease and the virus 
causing the disease were named coronavirus disease 2019 (COVID-19) 
and severe acute respiratory syndrome coronavirus two (SARS-COV-2), 
respectively. 

Change to: In 2019, an outbreak contagious form of pneumonia was 

named coronavirus disease 2019(COVID-19), and the virus that caused 
it was named severe acute respiratory syndrome coronavirus two (SARS- 
COV-2). 

The authors and the Publisher regret the error that appeared in their 
paper. 

DOI of original article: https://doi.org/10.1016/j.meegid.2021.104737. 
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