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The ToxCast in vitro screening program has provided concentration-response bioactivity data across more than a thousand assay
endpoints for thousands of chemicals found in our environment and commerce. However, most ToxCast screening assays have
evaluated individual biological targets in cancer cell lines lacking integrated physiological functionality (such as receptor signaling,
metabolism). We evaluated differentiated HepaRG™ cells, a human liver-derived cell model understood to effectively model
physiologically relevant hepatic signaling. Expression of 93 gene transcripts was measured by quantitative polymerase chain
reaction using Fluidigm 96.96 dynamic arrays in response to 1060 chemicals tested in eight-point concentration-response. A
Bayesian framework quantitatively modeled chemical-induced changes in gene expression via six transcription factors including:
aryl hydrocarbon receptor, constitutive androstane receptor, pregnane X receptor, farnesoid X receptor, androgen receptor, and
peroxisome proliferator-activated receptor alpha. For these chemicals the network model translates transcriptomic data into
Bayesian inferences about molecular targets known to activate toxicological adverse outcome pathways. These data also provide
new insights into the molecular signaling network of HepaRG™ cell cultures.
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INTRODUCTION

Untested chemicals in commerce and the environment present a
large and growing problem for public health risk assessment'™:
Which chemicals should be tested? Which should be of concern?
Given this demand, numerous regulatory bodies worldwide have
committed to evaluating and using new approach methodologies
(NAMs) that are predictive of in vivo endpoints observed in
traditional animal-based toxicity tests with the ultimate goals of
increasing the efficiency of chemical hazard evaluation and
reducing the reliance on animal testing®. Collins et al.> write that
the integration of in vitro high-throughput screening (HTS) into
chemical decision-making may transform “toxicology from a
predominantly observational science at the level of disease-
specific models in vivo to a predominantly predictive science
focused on broad inclusion of target-specific, mechanism-based,
quantitatively relevant biological observations in vitro”.> Over the
last 10 years massive amounts of data have been generated using
primarily in vitro-based HTS>™2, Early skeptics argued about the
utility and relevancy of the data to traditional apical endpoints;
however, subsequent data streams, tools, and methods which
incorporated toxicokinetics and exposure science strengthened
the case for the value of HTS data leading to the hallmark
replacement of the in vivo rat uterotrophic assay by a combination
of in vitro assays as part of the U.S. Endocrine Disruptor Screening
Program®. However, endocrine signaling is relatively one of the
better-covered biological pathways for existing HTS methods'®"2,
For HTS methods to succeed, they must cover a sufficient portion
of biological space to allow the identification of all relevant in vivo
effects (that is, toxicity pathways) in vitro'>.

Two factors have been identified to increase the predictive
capacity of the repertoire of existing HTS data produced by
programs like U.S. EPA’s ToxCast (Toxicity Forecaster)” and the U.S.
Federal Tox21 consortium'® (1) using more physiologically
relevant cell culture systems'®> and (2) increasing coverage in
biological response space. This study is an attempt to address
both factors combining highly differentiated in vitro liver models
with low density array transcriptomics.

The lack of physiologically relevant cell systems, in particular
ones modeling liver effects on recognition and biotransformation
of xenobiotic chemicals, has been criticized in many in vitro-based
toxicity testing strategies'®2°. The insufficiency or lack of
metabolic competence in these in vitro systems can lead to
potential mischaracterization of chemical hazard through both
false positive (if the chemical is detoxified in vivo), as well as false
negative (if the chemical is bioactivated in vivo) results. The
widespread acknowledgment of this issue has prompted calls
from the Organisation for Economic Co-operation and Develop-
ment (OECD) and others for improved in vitro methods that
provide liver functionality?' %,

Previous efforts within the ToxCast program used human
primary hepatocytes which express the full suite of enzymes and
transporters involved in hepatic metabolism?>. The variability
observed in the cells from different donors paired with the finite
availability of human liver cells from an individual donor hampers
the feasibility of using primary human hepatocytes to meet the
functional and reproducibility needs of large in vitro screening
efforts>>?” Although immortalized hepatoma-derived cell lines,
such as HepG2, have met the needs of the ToxCast and
Tox21 screening efforts by providing limitless supply and less
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phenotypic variability, these cells do not have a full repertoire of
xenobiotic sensing receptors, metabolizing enzymes and trans-
porters, deeming them potentially less effective for extrapolation
to in vivo end-points, particularly for compounds known to be
bioactivated or detoxified metabolically?®. Here we used the
HepaRG™ cell culture model, derived from a human liver tumor®,
which recapitulates numerous hallmarks of hepatocyte function-
ality in a model enabling year-over-year screening within a
consistent genetic background?%2°3",

To expand the biological coverage, transcriptomics analysis was
pursued®?. Since toxicity is often accompanied by measurable
changes at the transcriptional level, capturing the perturbations in
gene expression elicited by chemical exposure at a cellular or
tissue level provides a rich data source to interrogate pathway-
based effects of adversity®>°, HTS was initially developed for
drug discovery and typically used initial screening at single
concentrations®°. Adapting the technology to toxicology
required concentration-response testing to minimize false nega-
tive results and therefore posed a bioinformatic challenge (many
more data points per chemical) that has been largely over-
come***”°_ Transcriptomics is very attractive to increase cover-
age of biological response space, for any one concentration-
response experiment, numerous transcription outputs may be
examined to both screen more widely and deduce interactions
caused by chemical perturbations'®*%3741"%* Managing the
expansion of data posed by concentration-response transcrip-
tomics on thousands of chemicals is a new bioinformatics
challenge®?.

Here we have used the principles of the adverse outcome
pathway (AOP) framework®® in an integrated approach to testing
and assessment (IATA) to evaluate existing data (for example,
nuclear receptor activation) to selectively gain valuable informa-
tion on downstream key events to strengthen our predictions of
pathway-level perturbations that may result in adverse pheno-
types in whole tissues®®. The gene transcription responses
examined here do not directly demonstrate receptor activation,
but do allow for inference of activation, potentially informing
AOPs. Each AOP begins with a “molecular initiating event”, in this
case receptor activation. We assume that each receptor is “switch-
like”; activating a receptor sets the same transcriptional machinery
in motion regardless of the chemical that causes the activation.
Thus, here the receptor-mediated pattern of transcriptional
activation/deactivation is assumed to be consistent across all
chemical activators of a receptor. The patterns from multiple,
simultaneously activated receptors are assumed to be additive or
subtractive—we have neglected higher order interactions. Based
on these assumptions we can characterize receptor-mediated,
chemical-induced perturbations by examining 93 transcripts for
10 reference chemicals. We used a Bayesian framework first to
integrate peer-reviewed literature data and new transcriptomic
data collected for reference chemicals.

By determining the transcriptional patterns for reference
receptor activators, we can then screen new chemicals by
comparing their concentration response mRNA expression data
to the reference patterns to estimate both potency and likely
target receptor(s). Here we tested the 1060 chemicals from the
ToxCast library*® in eight-point concentration response. We used
the reference patterns of upregulation and downregulation across
the assayed transcripts as transcriptional signatures. We searched
the screening library transcriptional concentration-response data
for these signatures using Bayesian analysis. We assume that
chemicals vary with respect to potency for each receptor; that is, a
given chemical will activate different receptors (if at all) in various
patterns as concentration increases. We draw inferences about
possible molecular initiating events (that is, upstream receptor
activity) and potency across the chemical screening library. Many
of the chemicals screened here lack in vivo testing data; this new
assay provides assessment of how likely these chemicals and/or
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their metabolites are to perturb a variety of toxicity pathways and
hepatic functions.

RESULTS

We collected transcriptomic data for a library of chemicals from
commerce and the environment in order to screen for potential
biological interactions. The 93 transcripts assayed by these
experiments were selected with specific emphasis on Phase |
and Phase Il metabolizing enzymes, transporters, and receptor
signals known to be modulated by environmental chemicals. In
addition, cell-cycle progression and morphogenesis genes poten-
tially related to mechanisms of cancer were selected. All tested
transcripts and rationale for inclusion are listed in Supplementary
Table 1. The concentration-response data for each transcript
provides two ToxCast assay ‘endpoints’ as each curve was fit
separately in up and downregulation mode. The concentration-
response relationships considered included both a monotonic Hill
function and a gain-loss model, but any loss of signal at high
concentration was interpreted as being due to cytoxicity®®. The
lactate dehydrogenase (LDH) assay provides one additional assay
endpoint. To distinguish from other ToxCast assays, we denote this
set of assay endpoints as “LTEA” for the two contractors Life
Technologies and Expression Analysis who performed the assays.
After the first reference plate of chemicals was tested, the results
for the 93 transcripts were manually investigated for performance
and five probes were identified as having too many non-detects.
Four of the five (for transcripts KLK3, MMP1, SLC10A1, and
SLC22A6) were replaced with probes for different transcripts
(MIR122, NFE2L2, PDK4, and XBP1). The original probe for CYP24A1
(TagMan assay Hs00167999_m1) was replaced by probe
Hs00989017_m1, also for CYP24A1, since previous research has
demonstrated the presence of that transcript in HepaRG cultures?®,

Across the 1060 chemicals, 1037 chemicals (98%) had at least
one systematic relationship between concentration and transcrip-
tional response. However, if all relationships with curve-fit warning
flags'' are omitted (a very conservative assumption with respect
to true activity), only 718 (68%) of chemicals had a clear systematic
response. Among the 718 chemicals, the median number of
responding transcripts was 6, with a maximum of 90 (for the
chemical mancozeb). The most commonly occurring responses
were upregulation of CYP1A1 (360 chemicals), upregulation of
CYP2B6 (352), and downregulation of CYP2E1 (323). Sixty-five
percent of the chemical-transcript pairs demonstrated an upre-
gulation relationship while 35% demonstrated a downward
relationship.

We used reference chemicals and transcriptomic data to
elucidate the gene regulation network. Figure 1 demonstrates
that canonical response genes downstream of receptor targets
were identified as active when probed with reference compounds.
Omeprazole was active against CYP1A2 and CYP1A1 (correspond-
ing to AhR??); fenofibric acid was active against HMGCS2
(PPARG®®); rifampicin against CYP3A4 (PXR*>*%); phenobarbital
against CYP2B6 (CAR*®); and chenodeoxycholic acid was active
against ABCB11 (FXR®>*°). All data are available at ftp://newftp.epa.
gov/COMPTOX/CCTE_Publication_Data/CCED_Publication_Data/
Wambaugh/ToxCast_LTEA, in files LTEA_Level2_20191119.zip (raw,
unnormalized data) and LTEA_Level5_20191119.zip (results of
concentration-response curve-fitting).

A metabolically competent ToxCast assay for transcription
response

Since the goal of this approach was to study transcriptional
activity, an “induction medium” (0.5% dimethyl sulfoxide or
DMSO) was used to intentionally lower the basal gene expression
of DMSO-induced drug metabolizing enzymes to better reflect a
Zone-2 like state of hepatocyte differentiation, which retains both
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Fig. 1 Dose-response curves for reference chemicals and transcriptionally regulated genes. Log2 (Fold Induction) response profiles of (A)
CYP1A1, (B) CYP1A2 upon exposure to AhR positive control, omeprazole; (C) CYP3A4 with rifampicin treatment; (D) CYP2B6 in response to
CAR-inducing, phenobarbital exposure; (E) HMGCS2 after treatment PPARa positive control, fenofibric acid and (F) ABCB11 expression with
chenodeoxycholic acid treatment. Three dose-response relationships are indicated in each plot, the first (no response) is a horizontal long-
dashed line, while the Hill function (short-dashed line) and gain-loss (solid line) response models change with the points. The vertical lines
indicate the estimate 50% activation concentration (AC50) for the two response models. The gray shaded region indicates estimated
background.
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Fig. 2 Visual assessment of aflatoxin B1 (AFL) cytotoxicity in cells. Images of cells treated for 48 h with (A) 0.5% DMSO vehicle control, (B)
3.16 uM AFL (~EC10) or (C) 100 uM AFL. (D) LDH assay dose-response curve for AFL treated cells.

baseline and inducible drug metabolizing activities in response to suggesting sufficient metabolic competence of the culture
chemical exposures. This may reduce the rate of xenobiotic model consistent with what has been observed elsewhere®°.
metabolism observed with high (for example, 2%) DMSO As shown in Fig. 2D, aflatoxin B1 treatment resulted in a
concentrations that have been used elsewhere with HepaRG™ concentration-related increase in cytotoxicity as measured by

cultures>®", LDH release consistent with a metabolically competent in vitro

The cell morphology of HepaRG™ cultures treated with liver model. Aflatoxin B1 was included on the six reference
vehicle (0.5% DMSO) confirmed healthy, well-differentiated cell plates tested throughout the screening, and in all these
cultures composed of the two distinct cell morphologies typical reference plates the HepaRG™ cultures showed aflatoxin B1-
of HepaRG™ cell cultures. Treatment with the metabolic induced cytotoxicity in a concentration-related manner. All
positive control aflatoxin B1, a mycotoxicant, resulted in visually image data are also available at ftp://newftp.epa.gov/COMPTOX/

apparent cell death (Fig. 2). Since the cytotoxicity of aflatoxin B1 CCTE_Publication_Data/CCED_Publication_Data/Wambaugh/
is known to be metabolically-dependent®?, the observed ToxCast_LTEA.

cytotoxicity demonstrated HepaRG'™ metabolic activity was A second line of evidence for metabolic competence is the
consistent throughout the in vitro screening. The concentration- induction of CYP3A4 mRNA expression by omeprazole. Omepra-
dependency of toxicity was evident with fewer dead cells zole is a reference AhR agonist which typically does not induce
present with a lower (3.16 uM) concentration of aflatoxin B1 (Fig. genes such as CYP3A4*8, However, omeprazole is also known to
2B) compared to the highest concentration tested (100 uM, Fig. be extensively metabolized in humans to multiple metabolites,
2C). Thus, cell morphology images support the LDH assay data including sulfone metabolites, that have been shown to induce
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Fig.3 Comparison of cytotoxic activity. Using cells with xenobiotic metabolism capacity may permit identification of compound toxicity
resulting from a chemical metabolite. A The log AC50 values (dot) for the compounds positive in the HepaRG™ cytotoxicity assay, as
determined by measure of lactate dehydrogenase (LDH) release, were compared with a range of cytotoxicity measurements made in other
cell lines and primary cells (whiskers). Cytotoxicity measurements for the other cell types used a range of techniques, primarily ATP level
determinations, but did not include LDH release While assay-specific sensitivities may influence results, overall, few compounds showed

enhanced cytotoxicity in the HepaRG™ cells.

CYP3A4 with cultures of primary human hepatocytes®>. In this
study, omeprazole produced a robust (4.2-fold) induction of
CYP3A4 after 48 h in response to omeprazole exposures, which is
consistent with observations in other metabolically-competent
systems>”,

Analysis of the LDH assay concentration response data provided
an additional ToxCast assay endpoint characterizing cytotoxicity
with increasing test chemical concentration. In Fig. 3, the log,q
ACso values for the compounds positive in the HepaRG™
cytotoxicity assay were compared with a range of ToxCast
cytotoxicity measurements made in other cell lines and primary
cells. Cytotoxicity measurements for the other cell types used a
range of techniques, primarily ATP level determinations, but did
not include LDH release®. Overall, few compounds showed
enhanced cytotoxicity in the HepaRG™ culture for the concentra-
tions and duration of exposure examined relative to the ranges of
ToxCast cytotoxicity observed to date. Further evaluation of these
findings in context with information related to chemical specific
bioactivation or detoxification and varied culture media composi-
tion is warranted.

Inferring molecular initiating events

By identifying patterns of upregulation and downregulation that
occur when a receptor is activated, our probabilistic model for
gene regulation detangled multiple receptor activations from any
noise, and identified potencies (chemical concentrations) asso-
ciated with those activations. Molecular initiating events (that is,
receptor activation) were inferred in a three step Bayesian analysis
described in detail in the “Methods” section and summarized in
Fig. 4 and Table 1.

Prior information on reference chemical potencies

Four receptor-activating reference chemicals were included on the
reference plates that were repeatedly tested throughout the
screening process. In vitro screening literature were curated to
determine known potencies for the various reference chemicals
across six receptors (Supplementary Table 2). Information was not
available for all chemical-receptor combinations, and many
chemicals showed some potency for multiple receptors (left-hand
side of Fig. 5). Phenobarbital was run at a high concentration
(500 uM max) on the reference plates, as well as part of the
ToxCast screening library (100 uM max). To clarify receptor
activation profiles, six additional reference chemicals with known
agonism were also selected from among the screening library. As
is shown in Fig. 5, literature data indicate that our screening library

npj Systems Biology and Applications (2021) 7

contained only one reference compound for three of the
receptors (FXR, AhR, and AR are, respectively, activated by
chenodeoxycholic acid, omeprazole, and methyl testosterone).
Both chemicals that activate PPARa (fenofibric acid and pirinixic
acid) also activate additional receptors. Four chemicals activate
CAR (phenobarbital sodium, chenodeoxycholic acid, fenofibric
acid, and p,p’-DDT), while seven chemicals activate PXR (pheno-
barbital sodium, fenofibric acid, pirinixic acid, p,p’-DDT, o,p’-DDT,
rifampicin, and methoxychlor). Data for omeprazole are the most
incomplete, while phenobarbital sodium is the least potent of any
of the reference chemicals considered.

Receptor-gene literature

Separately from the reference chemicals, automated literature
searches provided independent evidence of interactions between
a given receptor and gene expression. A histogram of the number
of literature occurrences associating one of the six receptors and
one of the 93 transcripts is shown on the right hand-side of
Supplementary Fig. 1. Most genes and receptors that co-occur do
so in the MeSH terms for fewer than ten peer-reviewed journal
articles, while a handful co-occur hundreds of times. The
occurrence of up and downregulation relationships are roughly
evenly split, while more enzyme induction relationships are
observed than repression (right-hand side of Supplementary Fig.
1). All the literature data were used as prior evidence for a
regulatory interaction (up or down) between a receptor and a
transcript.

Reference chemical data

One chemical (aflatoxin B1) was used to test for consistent
metabolic competency throughout the testing. In addition to
inclusion at a single concentration (n = 3 wells) on each test plate,
aflatoxin was one of five chemicals included in concentration-
response on each of the reference plates (Supplementary Fig. 2)
interspersed throughout the testing process. The reference plates
also included four of the reference receptor activator chemicals.
Three of the reference receptor activator chemicals (omeprazole,
fenofibric acid, chenodeoxycholic acid) only appeared on the
reference plates, producing 12 replicates of the data for analysis.
Neglecting outliers (a few extreme cycle threshold (Ct) values less
than —10) for these three reference chemicals the median
standard deviation of Ct across all endpoints was 0.62. The three
least varying endpoints were TFGA, TIMP1, and SLC10A1, while the
three most variable endpoints were cytotoxicity, MIR122 and
MMP10. A fifth chemical (phenobarbital) was included on the

Published in partnership with the Systems Biology Institute
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signaling network model was then trained in three steps (see Table 1). Transcriptomic, gene-receptor literature data, and chemical-receptor

potency data are shaded differently.

reference plates (max concentration 500 uM), tested as part of the
ToxCast library (max concentration 100 uM) and included at a
single concentration (1 mM, n = 3 wells) on every test plate. This
resulted in a total of 678 replicates of data. For phenobarbital the
median standard deviation was 0.65, the three most reproducible
endpoints were FASN, TGFB1, and SLC10A1, while the most
variable were cytotoxicity, MMP10, and MMP1. Six additional
reference activator chemicals were selected from among the test
library and only tested in duplicate.

Collectively, the reference chemicals helped to identify the
transcriptional responses most likely representative of a receptor’s
activation. The transcriptomic data for the ten reference activator
chemicals were analyzed twice. The 93 transcripts were manually
selected based upon expert opinion of the authors. Therefore, as a
feature selection step, all 93 transcripts were first analyzed to
detect any switch-like behavior (upregulation or downregulation)
at the inferred activation concentration for each reference
chemical and receptor. Though the model assumes that different
reference chemicals will activate receptors at different concentra-
tions, the subsequent receptor-mediated pattern of transcriptional
activation/deactivation was assumed to be consistent between all
chemical activators of a receptor (that is, the activity results from
the operation of the same biochemical machinery independent of
the presence of the activating chemical). Across the ten reference
chemicals, only 45 transcripts responded to increasing chemical
concentration in a systematic manner (Hill function or gain-loss,
that is, a "hit") for any receptor. While the other transcripts are also
likely markers of important cellular perturbations, they were set
aside for the initial analysis of the activation of the six receptors.
The model used for analyzing the expression data are not

Published in partnership with the Systems Biology Institute

deterministic, rather there is always a transcript-specific prob-
ability (thresh;) that a transcript remains at a basal expression level
even if upregulatory or downregulatory signals are received.
Analysis of the heavily duplicated reference chemicals allowed
estimation of the responsiveness of each transcript to signaling.

The right-hand side of Fig. 5 displays the potencies and
upregulatory or downregulatory behavior for the 45 differentially
expressed transcripts. Both chemicals and genes are clustered
according to similar behavior. We observe that 17-
methyltestosterone is the most distinct chemical, downregulating
a series of transcripts that are largely unaffected by the other
chemicals, except perhaps for rifampicin. A group of genes at the
far left are all downregulated by chenodeoxycholic acid, indicating
a potential signature for FXR agonists. Although the two PPARa
agonists are clustered together, a distinct pattern for PPARa
activation is less obvious, perhaps reflecting a lack of coverage of
PPARa-regulated genes by the 93 transcripts. The PXR activators
are all clustered together, but the much less potent and more
CAR-selective phenobarbital exposure is somewhat separated
from the PXR cluster.

For computational efficiency the first step was conducted for
each receptor individually. Despite showing systematic response
to increasing concentration of at least one reference activator
chemicals, regulation of 13 of the 45 transcripts was found to be
unlikely to be associated with receptor activation (ACOX1, APOAS,
BCL2, CAT, EGR1, EZR, FASN, HSPA1A, MIR122, MMP10, MYC,
PPP2R4, and SDHB). A second analysis refined the signaling
network by jointly estimating interactions between the receptors
and the 32 remaining transcripts. This analysis provides a receptor
activity inference model that was used to analyze the non-
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Table 1. A Bayesian analysis combines prior information with new data to generate a posterior distribution reflecting the likely outcomes based on

both the prior and the new data.

Bayesian  Description Data Prior Posterior

Analysis

Step One  Univariate (one  Full reference chemical concentration- Literature associations between Estimates of strength of interaction
receptor at a response data for all reference reference chemicals and transcripts  for every receptor and all transcripts
time) analysis of chemicals and only those transcripts under investigation. Texting mining of where the reference chemicals
reference where a change was observed. MeSH term co-occurrence for displayed activity.
chemicals receptors and transcripts.

Step Two  Multivariate Full reference chemical concentration- Literature associations between Estimates of strength of interaction
analysis of response data for all reference reference chemicals and transcripts  for every receptor and every
reference chemicals and only those transcripts under investigation. Texting mining of transcript identified as likely to be
chemicals where there was a 50% or greater MeSH term co-occurrence for associated with a receptor in

chance of interaction in Step One. receptors and transcripts. Step One.

Step Three Multivariate Full concentration response data for The posterior from Step Two: a Estimates of the probability and
analysis of test  all test chemicals for the same correlated, multivariate normal potency of receptor activation for all
chemicals transcripts as Step Two. distribution of receptor-transcript test chemicals.

interactions.
Prior Genes largest observed effects are upregulation of CYP1A1 by AhR,
M= =11

17-Methyltestosterone.
Fenofibric Acid

Pirinixic acid

Phenobarbital sodium
Potency
Chenodeoxycholic acid (Up/Down)
0.1uM (up)
10 oM (up)
>100 M

Omeprazole 10 uM (down)

0.1 uM (down)

Reference Chemicals

Rifampicin

Methoxychlor

p.p-DDT

Fig. 5 Transcriptional behavior of reference chemicals. At the left-
hand side the literature-curated receptor potencies are indicated,
while at the right-hand side the heatmap shows the potency (darker
indicates more potent) and direction (color) of the 45 transcripts
found to be systematically altered by increasing concentration of
the reference chemicals. The 32 transcripts found to have at least a
50% chance of non-zero interactions in the multivariate analysis are
indicated in bold. Chemicals and transcripts are clustered hierarchi-
cally such that those showing more similar behavior are closer
together. The heatmap was created with R package Complex-
Heatmap'®® using hierarchical clustering with complete linkage and
Euclidean distance.

reference chemicals in the ToxCast chemical library. This analysis
of the reference chemicals and all receptors simultaneously was
conducted including only those 32 transcripts that were
significant in the first analysis. This analysis identified patterns of
transcriptional activity corresponding to each of the six different
molecular initiating events. The inferred signaling network for
HepaRG™ cells is depicted in Fig. 6A. Substantial cross-talk was
observed, so individual network diagrams for each receptor are
provided in Supplementary Fig. 3.

Crosstalk between receptors is a key observation of our study.
Only three of the 32 transcripts (BID, CYP2C9, and CYP3A5)
appeared to be regulated by a single receptor. Those transcripts
that were found to be regulated by more than two receptors are
numbered in Fig. 6A, and their identities are given in Table 2.
PPARa and FXR appear to be more distinct from the other four
receptors. AR and AhR are distinctly closer to PXR than CAR.
Proximity between receptors may be related to the unequal
numbers of transcripts corresponding to each receptor. The
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upregulation of CYP3A4 by PXR, and more surprisingly, down-
regulation of IFG1 by AR. Interestingly, CAR and PXR are
considered to be closely related xenobiotic sensing receptors®®*’,
and CYP2B6 is considered to be upregulated by both®®. We found
that while PXR strongly upregulated CYP2B6, CAR downregulated
it. This could be a result of the selected reference chemicals—of
three reference CAR activators two of the three (rifampicin and
phenobarbital) activated both CAR and PXR (see Fig. 5 and
Supplementary Fig. 3). Both of those chemicals were observed to
induce CYP2B6. As shown in Fig. 5, only one reference chemical,
chenodeoxycholic acid, is believed to act on CAR but not also
activate PXR. In the absence of PXR activity, chenodeoxycholic
acid downregulated CYP2B6. Chenodeoxycholic acid was tested in
duplicate on our six reference plates. So, as shown in Fig. 6a and
Table 2, our analysis inferred that CAR downregulates CYP2B6.
However, chenodeoxycholic acid concurrently activates FXR,
which might interfere with CYP2B6 activation by CAR. Other
possibilities include that HepaRG™ CAR-CYP2B6 signaling devi-
ates from other cells or that other literature evidence of
upregulation of CYP2B6 by CAR may have been confounded by
PXR activation.

The transcripts in Table 2 are ordered from highest “degree”
(number of regulating receptors) to lowest. CYP7A1 was found to
be regulated by all six receptors; this gene is associated with
regulation of cholesterol and bile acid homeostasis®>®° and its
promiscuity among the receptors might therefore be related to
biliary clearance of compounds. Strength and direction (up/
downregulation are also indicated in Table 2. “++" and “——"
indicate regulation with a strength estimated to be greater than
the median interaction, while “+” and “—" indicate below median
interaction strength. UGT1A1 is strongly regulated by five of the
six receptors (FXR excepted). UGT1A1 is involved in synthesis of
bilirubin®', again pointing to receptor activation being directly
linked to biliary clearance.

The amount of crosstalk that was observed strongly supports
the need to use a pattern of regulation®® to identify receptor
activation (that is, all transcripts indicated by a row in Table 2)
rather than individual transcripts.

ToxCast chemical data

We used the patterns of transcriptional activity resulting from
receptor activation, as identified from the reference chemicals, to
assess the probability of those events occurring as a function of
concentrations for the 1053 test chemicals from the ToxCast
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and cross-talk for the six receptors in HepaRG™ cultures as determined using the entire chemical library as a set of test perturbations. Genes
regulated by three or more receptors are labeled numerically, as described in Table 2. The left-hand side of the heatmap (panel B) indicates
the relative potency inferred for the six receptors, while the right-hand side of Panel B presents the observed transcriptional response
transcripts identified as part of the reference chemical signatures. The heatmap was created (with a function provided in the section “R Code”
of the Supplementary Materials) using hierarchical clustering with complete linkage and Euclidean distance.

screening library®®. Figure 6B shows the transcriptional response
observed for the 32 transcripts that comprise the receptor activity
patterns. Most chemicals do not show notable activity. Corre-
spondingly, when the receptor activity inference model is used, as
on the left-hand side of the heatmap in Fig. 6B, no receptor
activity was inferred for 43% of the chemicals and only 37% have
any activity inferred below 100 uM. However, receptor activation
was inferred for some chemicals, with many having multiple
activities inferred: below 100 pM (the highest test concentration)
PXR is the most common (18%), followed by CAR (17%), FXR
(12%), AhR (11%), PPARa (3.8%), and AR (0.98%). All data and
results are available in Supplementary Table 3, Supplementary
Table 4, Supplementary Table 5, and Supplementary Table 6.

DISCUSSION

HTS is a new approach methodology that may be used to protect
public health from unintended chemical effects®. This study
attempts to improve the predictive capacity of HTS by both
increasing coverage in biological response space and using more
biologically relevant cell culture systems. Because of the
difficulties in obtaining pure, testable samples of most metabo-
lites*®, to date HTS has focused on parent chemicals, regardless of
whether those chemicals are metabolically transformed, activated,
and/or deactivated in vivo. The initial phase of the ToxCast project
incorporated metabolically competent primary human hepato-
cytes to profile the impact on 14 transcripts for 309 chemicals®.
These Rotroff et al. data have proved useful as a component of
predictive models for in vivo effects®"%¢, However, the limited
supply and pronounced variability of human primary hepatocytes
pose serious statistical issues as part of a screening panel for larger
libraries of chemicals. Here, we have examined the human liver
derived HepaRG™ cell culture as a more stable, year-over-year
available, and reproducible cell model conferring xenobiotic
recognition and liver receptor signaling functionality in concert
with metabolic competence reflective of inducible Zone-2 hepatic
metabolism to predict adverse outcome pathways.

We present data characterizing perturbations on sentinel
targets of cellular signaling pathways for 1060 chemicals, many
of which occur in commerce and the environment. We further
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analyzed these data to identify patterns of transcription that are
indicative of six different molecular initiating events and assess
the probability of those events occurring as a function of
concentrations for all the chemicals. This paper provides a novel
Bayesian approach for integrating prior knowledge (results from
other in vitro assays and literature mining) and new data
(HepaRG™ transcriptomic data) to predict putative molecular
initiating events (receptor activation) for chemicals. Once the
model is trained on reference chemicals, it can be used to predict
(that is, infer) the targets and potency values for new chemicals.
The combination of identifying a transcriptional signature and
activation concentration are key to disentangling the complicated
network of receptor crosstalk we observed (Fig. 6A).

If each transcript is a note, then each receptor plays a collection
of notes—a chord. As concentration increases, each chemical
varies in the progression of chords it plays by activating various
receptors. By first identifying the chords corresponding to each of
six receptors, we have begun to hear the songs of the ToxCast
library. To identify MIEs we used a framework that allowed new
transcriptomics data to be combined with gene-receptor relation-
ships identified with literature mining. This resulted in predicted
probabilities of interaction for the 1060 chemical library and each
of the six receptors. Only 30% of the chemical library showed
greater than 50% probability of interaction with any receptor
below 100 uM, but many of those compounds potentially are
activators for multiple receptors. We have observed that the
proportion of active chemicals in the library is lower in this study
than in previous ToxCast HTS data sets. It could be that the
metabolic competence of the HepaRG™ cell culture attenuates
activity overall. Furthermore, it is possible that by analyzing the 32
genes and six receptors using a mechanistic, albeit simple,
network model we increased the signal-to-noise ratio of the
assay; that is, the receptor inferences are more statistically specific
and less likely to identify a false positive. However, this specificity
might have been offset by a large degree of crosstalk that was
inferred between the six receptors. Cytoxicity at higher concen-
trations is known to cause a “burst” of signaling® that in this
analysis was set aside as noise, but future analyses could attempt
to identify specific signatures of cytotoxicity (that is, cytotoxicity as
a pseudo-receptor). Perhaps additional receptors, transcripts, and/
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or additional reference compounds could disambiguate these
linkages, but by virtue of having performed a Bayesian analysis we
know that this crosstalk is a plausible explanation for the prior
literature information, this data set, and signaling model we have
analyzed.

The MIE inference analysis allows this set of experiments to be
interpreted as an IATA-like approach®. IATA provides practical,
science-based approaches for chemical hazard characterization
using an integrated analysis of all existing information combined
with new data from novel assay strategies. Of course, while the
homogeneity of the HepaRG™ cell line allows for reproducibility,
it eliminates the ability to assess human variability such as
sensitivity populations®” and sex differences®,

Within this study a primary focus was to establish high quality
HepaRG™ cultures appropriately differentiated to provide meta-
bolic competence and model liver enzyme induction. This was
confirmed through cell morphology observations, baseline gene
expression levels, and functional responses to prototype human
hepatic receptor activators as described previously®. Additional
lines of evidence such as aflatoxin B1 cytotoxicity, which is known
to be dependent on CYP3A metabolism, and CYP3A4 induction in
response to omeprazole further confirmed that the differentiation
state of the HepaRG™ cultures used here that was analogous to
primary human hepatocyte cultures.

HepaRG™ cell-cultures were selected because they overcome
the challenges posed by de-differentiated HepG2 and primary
human hepatocyte culture models. The hepatoma-derived HepG2
cell-line lacks native expression levels and functionality for various
nuclear receptor signaling pathways, as has been reported and
reviewed previously>?. Primary human hepatocytes are a viable
option, and initial ToxCast assays using that model were published
in 2010%>. However, high donor-to-donor variability and a finite
supply of primary liver cells from a given donor preparation impair
large chemical screening studies and year-over-year comparisons
within a consistent genetic background. Pooling primary hepato-
cytes has recently become an option for short-term drug
metabolism studies, but these technologies have not achieved
sufficient quality in adherent culture configurations to model
physiologically-relevant hepatocyte receptor signaling. HepaRG™
have been previously found to model numerous hallmarks of
hepatocyte functionality that includes CYP450 drug metabolism,
Phase 2 metabolism, biliary network formation, active uptake and
efflux transporter function, and nuclear receptor signaling
functionality that includes proficiency to express and translocate
the nuclear receptor CAR®.

A recent transcriptomics based analysis using global gene
expression profiling showed that HepaRG™ cultures outper-
formed human induced pluripotent stem cells (iPCSs) and other
humans hepatoma cell lines (huH-7, HepG2, and HepG2/C3A) in
their relation to human primary cells expression of hepatotoxicity
related genes, drug metabolizing enzymes and transporters®’.
Similar to the results of Gerets et al.?® that used reference CYP450
inducers to deem HepaRG™ cultures suitable for screening
chemicals, our results showed evidence for metabolic capacity,
albeit likely not at physiological rates.

Since this screen used an upper testing concentration of
100 pM, and the cell cultures were only exposed for 48 h, we may
have been unable to achieve sufficient levels of metabolites to
fully characterize the effects of metabolic activation/detoxification.
However, the primary focus of this study focused on modeling
chemical-induced effects on hepatic receptor pathways reflected
in hepatic Zone-2 hepatocytes. Given the kinetics of enzyme
induction vary between transcripts®', the 48 h time point used
here may have also impacted responses for some transcripts. For
example, omeprazole is very fast to induce CYP1A1 (6 h*°), slower
to induce CYP1A2 (24 h’%), and even slower to induce CYP3A4 to
near-maximal levels by 48 h”'. As shown in Fig. 2 we observe
induction by omeprazole of all three transcripts. Previous
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studies”®®®’2 have demonstrated that 48h exposures were
effective to capture both rapidly responsive transcripts and slower
responsive genes. Our intention was to allow additional time in
response to chemical exposures to enable some formation of
metabolites (for example, omeprazole, aflatoxin B1) and evaluate
the combined effects of parent chemical and metabolites
produced within this model system. It is certainly true that some
transient responses related to stress responses (for example,
oxidative stress) may be underrepresented using a single, later
time point.

Metabolic transformation is thought to play a significant role in
chemical induced-liver toxicity. This can result in both potentiation
and attenuation of liver injury. In this study, the assay medium
used was, by design, established to model Zone-2 hepatocyte
metabolism to allow induction of major cytochromes P450
enzymes’>. Therefore, the metabolic activity of the cell culture,
while clearly present, was likely ~10% of human liver and
suspensions of primary human hepatocytes comprised of both
Zone-2 and Zone-3 hepatocytes from human liver®. This may
have limited our ability to identify substantial differences in
cytotoxic potency and efficacy between these metabolically
competent assays (that is, LDH leakage) and the range of
cytotoxicities reported in historical ToxCast assays (for example,
ATP depletion) lacking metabolic capacity. It is further possible
that we do not observe significant cytotoxicity due to effective
induction of Phase | and Il metabolism activities preventing their
toxic action. Since metabolites are often structurally like parent
chemicals, the success of QSARs and machine learning for
predicting biological effect from structure perhaps suggests a
reduced role for extensive metabolism for these chemical
classes”*™’®, Finally, it is important to emphasize that liver injury
and toxicity are far more complex than simply cellular death.
Slower developing responses that manifest at the gene expression
level after 48 h exposures are far better indicators of the path to
liver injury often requiring weeks of exposure to manifest
pathological changes (for example, steatosis, hepatocellular injury,
fibrosis). Cytotoxicity responses for environmental exposures are
unlikely to be more than a point of context to interpret more
toxicologically-informative assay responses, but are likely more
akin to LD50 determinations in guideline rodent toxicology
studies.

An initial 93 transcripts were selected by expert opinion of the
authors as being likely to inform hepatic xenobiotic signaling and
pathways of toxicity. However, our inference model of receptor
activation made use of only 32 of the transcripts. We anticipate
that many more of the measured transcripts will be useful for
other applications, such as the development of more accurate
predictions of in vivo effects to screen for chemicals with potential
public health effects. It is possible that using a wider range of
transcripts and more sophisticated analysis of signaling networks
may better inform prediction of toxic outcomes beyond identify-
ing molecular initiating events. However, we acknowledge that
in vitro cell cultures may lack compensatory abilities that are
expected to be present in vivo”’. Hussain et al.”® has shown that
high-content imaging of HepaRG™ cell cultures can predict
human in vivo hepatic toxicity for drugs and other chemicals;
however, Gerets et al.?® found that the frank cytotoxicity within
HepaRG™ cultures was less sensitive than primary human
hepatocytes for detecting known hepatotoxicants. Gerets et al.?
did demonstrate that HepaRG™ were more sensitive than the
HepG2 carcinoma cell-line.

We did not observe activity for most chemicals. Since the
ToxCast library represents chemicals that may occur in the
environment, and though some are pesticides and pharmaceu-
ticals included as points of reference, one might hope that most of
these chemicals do not have significant bioactivity at sub-
cytotoxic concentrations. As part of ToxCast program the
chemicals screened here have also been screened in other
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relevant assays. While we did not observe as frequent activity as
other ToxCast screens, we believe that the synthesis of multiple
transcript activities into signatures that must be consistently
observed reduces the likelihood of false positives. The ToxCast
Factorial assay uses modified HepG2 cells to identify chemical
perturbations of many transcription factors, including CAR, PXR,
PPARa, FXR, and AR’®. For AR, the assays agreed on eight
chemicals and the Bayesian transcriptomics model assigned an
average probability of 75% for AR interaction to those chemicals.
The Bayesian transcriptomics model further identified 29 chemi-
cals not found with the ToxCast Factorial assay, but the average
probability for those chemicals was only 8.5%. The transcriptomics
model assigned 0% probability to 14 chemicals identified as AR
regulators by the ToxCast Factorial assay. For PPARq, the
transcriptomic model identified 28 chemicals that also indicated
PPARa activity with ToxCast Factorial, with an average probability
of 61%. The transcriptomics model further identified 45 chemicals
not identified by the ToxCast Factorial assay that had an average
probability of 32%, while the Factorial assay found 52 chemicals
not identified with transcriptomics. For PXR the transcriptomics
model agreed with the Factorial assay on 131 chemicals (mean
probability 77%), identified an additional 91 chemicals with a
mean probability of 71%, and assigned 0% probability to 187
chemicals identified with the Factorial assay. There was even less
agreement for FXR, where the two assays agreed on 15 chemicals
as potential agonists (mean probability 73%), the transcriptomics
model identified an additional 130 with a mean probability of
70%, and 40 chemicals identified by the Factorial assay were
assigned 0%. The assays were most divergent for CAR, in which
the Factorial assay agreed on only four chemicals (mean
probability 1.3%), the transcriptomics identified an additional
330 chemicals (mean probability 44%), and the transcriptomics
assigned 0% probability to 15 chemicals identified by the Factorial
assay as perturbing CAR.

The data and analysis presented here can be used to refine
existing predictions of molecular responses initiated by chemicals
in the environment. In Judson et al.'' and Kleinstreuer et al."?
ToxCast assays were integrated into a predictive model for AR
agonism. Of the chemicals in both studies, 68 were identified as
potential AR agonists by Kleinstreuer et al., albeit in some cases
weakly. Of those 68, the Bayesian analysis of the pattern of
transcriptomic activities estimated nine chemicals to have some
probability (mean 67.5%) of AR activation at less than 100 uM. Of
the 848 chemicals not predicted to be AR agonists by Kleinstreuer
et al, only 28 were estimated here to have any chance (mean
8.5%) to cause AR activation. In addition, 59 chemicals identified
as AR agonists by Kleinstreuer et al. were assigned 0% probability
of AR activation by the transcriptomics model. We hypothesize
that in this study the synthesis of multiple transcript activities into
signatures that must be consistently observed to infer activity
decreases the number of potential false positives.

Transcriptomics provides a high-throughput approach to more
comprehensively cover toxicity pathways in a high-throughput
format and is being extensively evaluated by the U.S. EPA'>32
While the initial ToxCast assay suite has been able to provide more
than a thousand assay endpoints, the overall coverage of
pathways (and therefore potential toxic effects) has been
limited®. Sentinel gene sets (for example, the L1000%°) and
whole-genome arrays with >23,000 transcripts should allow much
greater insight into the biological effects of chemicals in the
environment. In the interim, we present here an analysis of 93
genes limited to a single time point. Nevertheless, this represents
an advancement for the field. Previously, in Rotroff et al.®, the
gene expression changes induced by the activity of five receptors
were studied in 14 genes for 309 chemicals from the ToxCast
library as tested in eight-point concentration response for two
human donors. That experiment produced roughly 70,000 data
points for analysis. This work has yielded roughly 1.5 million data
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points. As whole genome arrays become amenable to screening
mode use, even a single chemical might generate a third of a
million data points with the same eight concentration, two
replicate study design. Thus, bioinformatic challenges will
continue to be at the forefront screening-mode transcriptomics®2.

There are multiple points in an analysis at which Bayesian ideas
may be incorporated. Both this analysis and the more typical
Bayesian network models®' use prior information and probabilistic
models to describe inference of genetic regulation. However, here
we have determined the solution using a fully Bayesian
hierarchical approach in which MCMC is used to estimate the full
multivariate posterior distributions of parameters such as the
receptor-gene interactions strengths®2 This stands in contrast to
Bayesian network models which use alternatives to MCMC that
approximately identify the most likely networks®®3, Bayesian
network models have successfully analyzed networks of tens of
thousands of genes®’, however, even those models can only
approximate large-scale networks®>2°, In part by incorporating the
occurrence of gene-receptor pairs in the peer-reviewed scientific
literature as prior information of a possible interaction, the fully
Bayesian method used here was able to handle the combinatorics
of teasing out quantitative genetic regulatory network interactions
for specific receptors. This method is anticipated to scale in
computation time roughly linearly with the number of genes and
number of observations.

The method described here achieves full Bayesian posterior
estimates by enumerating all the possible individual states of the
receptors analyzed using a Boolean notation (from 000000 for all
receptors inactive to 111111 for all active). Thus, we only need
work with 26 = 64 possible states, and all gene profiles possible
with our model can be easily calculated using matrix multi-
plication of a matrix of N genes X six receptor weights and a six x
64 matrix mapping the 64 possible states back to individual
receptor states. Using parallel MCMC on a relatively modern,
multicore machine (at least 16 2.3 GHz processors) the analysis of
the 32 gene, 1053 chemical data set takes roughly one week.
Therefore, a whole genome analysis using this method might take
years without further parallelization or increases in processor
speeds. However, the receptor inference for non-reference
chemical portion of the analysis (Step 3 in the “Methods” section
and Fig. 4) is embarrassingly parallel. Therefore, computer systems
with large numbers of parallel cores (for example, graphical
processing units) might be able to greatly reduce the running time
of the analysis. Further, improvements in computing speed might
eventually make the analysis of whole genome microarrays
feasible with this approach. The same is unfortunately not true
for increasing the number of receptors (or other upstream factors)
being inferred from the gene expression data. Although a
moderate number of additional receptors might be included,
the fact that the size of the analysis (as implemented) grows
exponentially with the number of receptors precludes this analysis
method for large numbers of receptors in a single model.

There remain thousands of untested chemicals in commerce
and the environment. Transcriptomics with metabolically-
competent in vitro models presents an opportunity for more
thorough, accurate screening of these chemicals for prioritizing
public health research. The methods described here use a cell line
with relevant physiological response to xenobiotic chemicals
recognition and regulation of metabolic enzymes in a
concentration-response manner to identify putative MIEs for
receptors as a steppingstone toward more quantitative AOP-
based toxicological research.

METHODS
Chemical library

The chemical inventories used in this study were the ToxCast Phase | and
Phase Il libraries; the “phases” here indicate order of testing by the ToxCast
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program and are unrelated to phases of metabolism?®. There were 1060
unique test chemicals, to which one cytotoxicity reference compound and
three receptor activator reference compounds were added. The total
chemical list included ten chemicals designated as reference activators (17-
Methyltestosterone, chenodeoxycholic acid, dichlorodiphenyltrichlor-
oethane, fenofibric acid, methoxychlor, o,p'-DDT, omeprazole, phenobar-
bital, pirinixic acid, and rifampicin), as well as a cytotoxicity reference
chemical (aflatoxin B1). The ToxCast Phase | library is primarily conven-
tional pesticide active compounds, whereas ToxCast Phase Il is more
diverse environmental chemicals. The full list of chemicals is provided as
supplementary material (see Supplementary Table 7). Chemical samples
were commercially procured, diluted in 100% DMSO to a stock
concentration of 20 mM and plated by Evotec (South San Francisco, CA).
Analytical QC for the Phase | chemical inventory was performed using
high-throughput liquid and/or gas chromatography mass spectrometry to
determine sample purity, parent mass, and sample stability in DMSO over
time (https://www.epa.gov/chemical-research/toxcast-chemicals). Similar
methods were applied to analyzing the Phase Il library in association with
the Tox21 project and are publicly available at https:/tripod.nih.gov/tox21/
samples.

Cell culture

Cell culture and cytotoxicity assays were conducted at Thermo Fisher
Scientific’'s Custom Services facility (Madison, WI). A single lot of human
HepaRGT"’I cells (Thermo Fisher Scientific, Frederick, MD) was used for the
cell culture experiments. 96-well format collagen type | coated plates of
human HepaRG™ cells were prepared using established methods. Briefly,
cryopreserved HepaRG™ cells were thawed, plated at a density of
approximately 100,000 cells/well in HepaRG™ Thaw, Plate, and General
Purpose media (HPRG770, Thermo Fisher Scientific), and incubated for
48 h. Test chemical plate layout is shown by Supplementary Fig. 4.

0.5% DMSO was selected as vehicle control to balance the requisite
need of DMSO in HepaRGTM cultures to maintain differentiation (for
example, baseline metabolism, proportions of hepatocytes vs. cholangio-
cytes), while enabling further hepatic receptor pathway activation (for
example, PXR and CAR) in response to chemical exposures®.

Chemical exposure

Forty-eight hours after plating the culture medium was changed to
HepaRG™ Serum-Free Induction Media (HPRG750 Thermo Fisher Scien-
tific). Cells were exposed with each test chemical in duplicate. Plates were
returned to the CO, incubators and maintained for 48 h until harvest.

Prior to exposing cells, chemical plates were thawed to room
temperature and 200x concentrations of each treatment group were
prepared. Eight-point concentration-response curves were prepared for
each test compound with the highest exposure at 100 uM. The subsequent
seven exposures were half-log dilutions, each with a final 0.5% DMSO
concentration. For the positive control only, a separate preparation of
phenobarbital was made such that the maximum concentration was
500 uM at 0.5% DMSO. As shown by Supplementary Fig. 4, each test plate
contained induction positive controls (1 mM phenobarbital in water, n =3
wells), cytotoxicity positive controls (100 mM aflatoxin B1, n = 3), vehicle
controls (0.5% DMSO, n = 4), and total lysis controls (also 0.5% DMSO, n =
2).

A “reference plate” with two replicates each, of four of the 10 positive
control inducers (phenobarbital, omeprazole, fenofibric acid, and cheno-
deoxycholic acid), was tested a total of six times across the screening
process (Supplementary Fig. 2). The reference plate included a fifth
chemical, aflatoxin B1, that was included to demonstrate metabolism-
mediated bioactivity and related cytotoxicity. The reference plate also
contained 0.5% DMSO vehicle control wells (n =4) and total lysis control
wells (n =2). Cell morphology images were acquired for each well/plate
with an Essen IncuCyte™ FLR automated phase-contrast microscope
located inside a tissue culture incubator. Six 96-well culture plates were
loaded into the instrument and imaged for an elapsed time (~24 min). The
IncuCyte™ software was used for image capturing and export of images in
JPEG format.

For cytotoxicity assessments, 50 uL of spent culture media from each
plate was transferred into black-wall plates for the LDH assay. The balance
of spent culture media (50 pL) was transferred to fresh polypropylene
plates and sealed/stored at —80 °C. The cells were treated with 75 pL of RLT
buffer (Qiagen) and frozen at —80 °C until shipped to Quintiles/Expression
Analysis (Durham, North Carolina) for gene expression analysis.
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Cytotoxicity assay

The CytoTox-ONE™ Homogeneous Membrane Integrity Assay (Promega,
Madison WI) was used to measure the LDH leakage activity as a measure of
membrane integrity and cytotoxicity in the cells. For this assay, 50 puL of
spent culture media was removed from each well/plate and transferred to
black-walled 96-well assay plates. Triton X (0.1%, 100 pL) was added to the
two total lysis control wells on each plate (thereby releasing the maximum
amount of LDH into the supernatant) and briefly mixed by pipetting to
generate total lysis controls for each plate. The presence of LDH was
measured by addition of the resazurin, which is converted to the
fluorescent chemical resorufin in a reaction coupled to LDH enzymatic
activity. Fluorescent emission was detected using a Safire’> microplate
reader (Tecan).

Cytotoxicity data analysis

LDH assay results generated by Life Technologies (Madison, WI) and
analyzed with R (v3.6.1)¥ using the ToxCast pipeline package R (tcpl) for
curve fitting®®. Data were converted from raw relative fluorescence units
(RFU) to percent cytotoxicity and normalized to the vehicle and total lysis
controls on each plate, as follows®8;

Experimental — Culture Medium Background
Maximum LDH Release — Culture Medium Background

m

The percent cytotoxicity normalized to vehicle control (DMSO) were the
response values (rval) analyzed using the same three models and criteria
described below for the transcriptomics data analysis. Based on visual
inspection of the cell morphology images for the positive control, aflatoxin-
B1 cytotoxicity was determined to be at 12% of the observed total lysis
reading. Based upon the relatively high (for ToxCast) signal to noise ratio of
this assay, a criterion of exceeding 10 times the baseline median average
deviation (BMAD) was used to determine a “hit". BMAD is defined as the
median average deviation of all normalized response values at the lowest
two tested concentrations. Supplementary File LTEA_Inucyte_Images.zip is
comprised of 20,493 images totaling more than 15 gigabytes, as such these
data are only available via File Transfer Protocol (FTP): ftp://newftp.epa.gov/
COMPTOX/CCTE_Publication_Data/CCED_Publication_Data/Wambaugh/
ToxCast_LTEA as file LTEA Inucyte_Images.zip. The LDH data are available
in Supplementary Table 8.

Percent cytotoxicity = 100x

Transcriptomics assay

Total RNA was isolated from the cell suspension in 75 pL of Buffer RLT
(Qiagen, Germantown, MD 20874) by Quintiles/Expression Analysis
(Durham, NC) using a custom isolation procedure. Total RNA from each
plate well was transferred to a preamplification plate. Fluidigm's 96.96
Dynamic Array™ (Fluidigm, Amsterdam, the Netherlands) technology was
used for gene expression analyses by quantitative reverse transcription
polymerase chain reaction (qRT-PCR, performed by Quintiles/Expression
Analysis, Durham, NC)®. Standard TagMan™ Assays (Applied Biosystems/
ThermoFisher Scientific, Foster City, CA) were used to assess the expression
of 93 genes selected based on their selectivity and sensitivity to important
hepatic receptors known to be modulated by environmental chemicals;
importance in human hepatocyte functionality; and hepatotoxicity. Three
“housekeeping” endogenous control genes were also included and used
for normalization: actin B (ACTB), Glyceraldehyde 3-phosphate dehydro-
genase (GAPDH) and RNA Polymerase Il Subunit A (POLR2A). gRT-PCR was
conducted according to the manufacturer’s protocol. The transcripts tested
and TagMan™ probes used are further described in Supplementary Table
1 and Supplementary Table 9.

Transcriptomics data analysis

Gene expression data from the Fluidigm gRT-PCR arrays was analyzed in R.
Prior to processing through the tcpl package, each gRT-PCR primer set was
annotated as an individual assay endpoint (aeid) for analyses. For each
plate, well types were designated for test compound wells (t), positive
controls (c), (that is phenobarbital) and neutral controls (n, DMSO). Fold-
change in the number of amplification cycles needed to pass the
background threshold (Ct) for 96 transcripts to (ftp://newftp.epa.gov/
COMPTOX/CCTE_Publication_Data/CCED_Publication_Data/Wambaugh/

ToxCast_LTEA, file LTEA Level2_20191119.zip) were normalized to the
geometric mean of three housekeeping genes (ACTB, GAPDH, POLR2A) to
generate ACt values (cval). Prior to calculating the response values (rval), or
AAC, for each transcript (n = 96) per well, the baseline value (bval), the
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plate-wise median of the neutral control wells, was generated for each
plate (the normalization process is described in detail in the Supplemen-
tary Methods (“DeltaCT Calculations”). The bval was subtracted from the
cval to yield the rval or log2 Fold Change per transcript.

Curve fitting was then performed using the R package tcpl. The
concentration-response based rval data for each chemical-gene combina-
tion were fit to three models: constant, a Hill, and gain-loss model (the
non-monotonic product of two Hill functions with a shared top) on a per
chemical per transcript basis. Each model fit was compared using an
Akaike Information Criterion (AIC) value and the model with the lowest AIC
was selected as the winning model. Curve parameters from the winning
model such as the half-maximal activity value (50% activity concentration;
ACso; modl_ga) and the modeled top of the curve (modl_tp) were used to
quantify potency and efficacy, respectively. The chemical was identified as
a “hit” (that is, significantly change in gene expression) by exceeding either
three times the BMAD (typical of ToxCast assays) or a 1.2-fold-change cut-
off at any concentration. Curve fits are available from the CompTox
Chemicals Dashboard: https://comptox.epa.gov/dashboard.

Receptor-gene literature mining

Using literature co-occurrence is an established methodology for identify-
ing information about genes®®®'. We used literature mining to identify
which of the 93 target genes have known relationships to members of the
set of nuclear and other receptors. Literature mining was performed on our
database of MeSH annotations extracted from articles in PubMed®2. The
database was queried for the MeSH terms identifying the genes and
receptors of interest (run June 2017). To identify this initial set of gene
search terms, the MeSH term or supplemental concept term that reflected
the gene most closely was chosen using the MeSH browser (https://meshb.
nim.nih.gov) and searching on either the gene symbol or gene/protein
name. The database query using the MeSH search terms returned PubMed
identifiers for each article in which a gene of interest was annotated with a
receptor. We counted the number of times each gene and receptor co-
occurred in the MeSH terms for an article (Supplementary Table 10 and
Supplementary Table 11). These article co-occurrence counts were
assumed to be a function of the same receptor-gene interaction network
that generated the gene expression data and were used as input into the
Bayesian analysis below. This approach assumed that receptors behave the
same in different cell types and tissues.

Model for receptor-regulated gene expression

We assumed a model in which activation of a receptor causes the up or
downregulation of some genes to be more likely, while leaving other
genes unchanged. The ten reference activator chemicals provided a
training set indicating which genes change expression level when a
specific receptor is activated. Genes that were not found to be regulated
by any of the six receptors were omitted from the analysis. A stochastic
framework was used such that activation of a receptor only made changes
in expression level more or less likely; since the model is not deterministic,
there is always the possibility of gene expression remaining unchanged
despite signaling from receptors. Patterns of gene expression changes
were evaluated for each test chemical and tested concentration for
consistency with the patterns observed for known activators of six
different receptors.

This statistical model uses gene expression data across all concentrations
simultaneously. At a given concentration, the receptor state of a chemical is
described by a Boolean vector with a 0/1 for each receptor, with 1 indicating
activation. For each receptor and chemical combination, there was a specific
concentration above which the receptor was activated; here the ACso(re-
ceptor, chemical) from the curve fits was used as a surrogate for this potency.
For Z chemicals, the ACso matrix contains Z x 6 potencies. For each chemical-
receptor pair the receptor state is always zero (inactive) below the ACs and is
always 1 (active) above the ACso. When the ACs, is above the highest
measured concentration, this is equivalent to the chemical not activating the
receptor in the tested range. By interpreting the state of the six receptors as a
binary number (six ones and zeros) a unique integer could be calculated to
represent the states for all receptors for the each chemical and concentration
tested, S(chemical;, concentration) € [0,2° — 1], this is Zx 1 matrix that is a
function of chemical concentration C. Since there were six binary receptors,
there were only 2° = 64 possible values of S across all the observations. While
it would be possible to model a repressed state for the receptors, the number
of states would be 3°=729. Further, we did not have a reference plate of
antagonist chemicals for training the model.

npj Systems Biology and Applications (2021) 7

11


ftp://newftp.epa.gov/COMPTOX/CCTE_Publication_Data/CCED_Publication_Data/Wambaugh/ToxCast_LTEA
ftp://newftp.epa.gov/COMPTOX/CCTE_Publication_Data/CCED_Publication_Data/Wambaugh/ToxCast_LTEA
ftp://newftp.epa.gov/COMPTOX/CCTE_Publication_Data/CCED_Publication_Data/Wambaugh/ToxCast_LTEA
ftp://newftp.epa.gov/COMPTOX/CCTE_Publication_Data/CCED_Publication_Data/Wambaugh/ToxCast_LTEA
ftp://newftp.epa.gov/COMPTOX/CCTE_Publication_Data/CCED_Publication_Data/Wambaugh/ToxCast_LTEA
ftp://newftp.epa.gov/COMPTOX/CCTE_Publication_Data/CCED_Publication_Data/Wambaugh/ToxCast_LTEA
https://comptox.epa.gov/dashboard
https://meshb.nlm.nih.gov
https://meshb.nlm.nih.gov

np)

J.A. Franzosa et al.

12

The state for each of the receptors can impact the state (up/down/
unchanged) for the transcripts (N, initially 93). The impact of activating a
receptor is assumed to be the same regardless of the chemical causing the
activation. For each receptor, unbounded weights for each of the N
transcripts (a vector of N weights) were estimated; these weights could be
positive (causing upregulation) or negative (downregulation). A Horseshoe
prior®® constrained the estimated weights to be sparse (mostly zero, such
that most receptors do not affect the expression of most genes). The
weights for all genes and all receptors composed a N x 6 matrix, M. M is
independent of the test chemicals and describes the relationship between
genes and receptors for the cells.

For faster computation a 6 x 64 matrix B was constructed to contain all
permutations of receptor activation (that is, all 64 possible values of S
ranging from 0,0,0,0,0,0 to 1,1,1,1,1,1). The matrix M was multiplied by B to
produce a N x 64 matrix, W. The probability matrix P for gene expression
was then calculated by indexing into W, P;, = W(S(jk)) where j indicates
chemical and k indicates concentration. P was separated into PP =P;
when P; > 0.0 otherwise and P™"*" = |P;|when P;; < 0 and 0 otherwise such
that P = P’ —P%"", Probability of activation was calculated according to a
Dirichlet distribution parameterized with a three-element vector (basal,
upregulated, downregulated) where the values for each of the three
categories indicated the un-normalized weight for the probability of each
state:

Observation (gene;, chemical;, concentrationy) ~ Prob;, = Dirichlet(6;, Pup jjk: Paown.ijk)
)

0; represents a gene-specific activation threshold or “stiffness” indicating
how much more or less likely that gene is to respond to receptor signaling.

Basis for parameter prior probability distributions

Bayesian analysis combines information from new data with probability
distributions representing the “prior” information that can be either
assumed or drawn from previous studies®®. Here there were two priors
used, one on chemical-receptor interactions for the ten reference activator
chemicals (Supplementary Table 12) and a second prior for receptor-gene
interactions reflecting the scientific literature. In steps one and two of the
Bayesian analysis a Horseshoe prior was used for Gene-Receptor
interactions which acted to make most interaction weights small (no
interaction) unless the data indicated otherwise.

Chemical-receptor priors

Six receptors were examined in this study (AR, AhR, PXR, CAR, PPARaq, FXR).
A combination of ToxCast and Tox21 assay results were used to
characterize receptor activity (Supplementary Table 12). Ten activator
reference chemicals were identified, each having known activity for one or
more of the six receptors under study.

Because chemical partitioning is not measured in HTS in vitro assays and
actual cell exposure is unknown®>%, literature data on potency informa-
tion was discarded and a chemical that was a positive control for a
receptor was simply assumed to be active at some tested concentration
(potency information is available in Supplementary Table 12). A receptor-
chemical pair with no observed activity was modeled as if activity might
still occur, but at a concentration higher than tested. If there was no
receptor-specific assay data available for a chemical, all concentrations
modeled (all tested plus one concentration above the maximum tested)
were considered equally likely.

Receptor-gene priors

Output from literature mining was used as a second set of prior data in
analysis steps one and two (see Supplementary Table 10 and Supplemen-
tary Table 11). Each occurrence of an abstract that mentioned both a
receptor and gene under study was treated as weak evidence of a non-zero
interaction between that receptor and gene. Statistically, each abstract was
assumed to be an independent observation that the interaction between a
receptor i and gene j was non-zero. A censored distribution was used such
that the absolute value of the weight, |M;| was greater than a threshold, y,
given normally distributed measurement error. A single threshold value p
and standard deviation were estimated across all abstracts.

Procedure for Bayesian analysis

JAGS v4.2 (http://mcmc-jags.sourceforge.net/)”” was used to perform
Markov Chain Monte Carlo®®°° because of its ability to sample from the
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discrete probability distributions necessitated by our simplification of the
concentration-response data (basal, up, down). JAGS was automated
through R using the package runjags'®.

The transcription data were fit in positive and negative modes (increase
or decrease of gene expression over control). These data were discretized
in two ways: first, only three states-basal, upregulated, or downregulated
were considered. Second, if the data for a chemical-gene pair were found
to be well-described by concentration-response function (a “hit”), then the
observations were recorded as basal for all tested concentrations below
the ACsy, and as either “up” or “down” for all concentrations above the
ACs,. Chemicals where no systematic response was observed were treated
as “basal” for all tested concentrations.

Due to the computational complexity of the problem, Bayesian analysis
proceeded in three steps (Fig. 4). First, the 93 genes were reduced to the
most informative subset based on analyzing one receptor at a time using
the reference chemical transcriptional data and the literature mining
evidence. Second, the model was retrained on the all six receptors jointly,
using the reference chemicals and literature mining evidence on the
reduced subset of genes. Third, the model was applied to all test chemicals
using the refined signaling network learned from reference chemicals. At
each step, multiple chains were run using runjags'% until each chain had
burned in and passed the Heidelberger and Welch test'! for autocorrela-
tion and the ensemble of chains had passed the Gelman-Rubin test'®? for
mixing. The three steps were:

1. Feature selection. This step uses the reference chemical-receptor
and receptor-gene priors described above. Gene expression data
were analyzed for all genes but for only the reference chemicals.
Expression is analyzed as a function of each receptor separately
(univariate). The 93 assayed genes are subdivided to only those N;
genes that showed activity (up or down) for some concentration for
at least one of the chemicals indicated to have activity for receptor i.
In each univariate analysis a single pattern of receptor-mediated
transcriptional activity was identified. Each reference chemical for
the receptor i is assumed to switch on that activity at a chemical-
specific concentration, ACso(receptor, chemical), that was inferred
from these data. Six receptor-gene matrices M were estimated. For a
transcript to be included in the second step, there had to be at least
50% confidence that the receptor-gene weight M;; was non-zero for
at least one receptor. In this way, a co-regulated pattern of activity
among N”; < N'; transcripts was separated from random spikes in the
data and the activity of other receptors.

2. Gene-receptor interaction estimate. Determined simultaneously
(multivariate) for all six receptors. Again, this step used the reference
chemical-receptor and receptor-gene priors described above. Only
the N'=U,N"; transcripts that were univariately correlated with
activation of a receptor for any reference chemical were included
(that is, 95% credible interval did not include zero). All reference
chemicals were analyzed jointly for activity induced by all six
receptors, estimating a N” x 6 matrix M’ for receptor-gene interac-
tions. All entries in M’ that were close to zero (95% credible interval
included zero) were set to zero in subsequent analysis.

3. New prior probability distribution for the non-zero entries of M". A
multivariate normal distribution, which allowed for correlation
between parameters, was fit to the chains from step 2 for the
non-zero entries of M and the activation weights for the different
genes. In this way, the correlated, non-zero posterior estimates of M’
from the second step became the prior for the third step. In the
third step the model is built from the analysis of the reference
chemical dataset was then used to analyze the remaining 1056
ToxCast chemicals. Both the values for M’ and the activation
concentrations for all six receptors for each chemical was estimated.
A uniform prior was used on each tested concentration.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

Three large datasets generated during and/or analyzed during this study are freely,
and publicly available from the U.S. Environmental Protection Agency at: ftp://newftp.
epa.gov/COMPTOX/CCTE_Publication_Data/CCED_Publication_Data/Wambaugh/

ToxCast_LTEA. These three data sets are files LTEA_Inucyte_Images.zip (images of
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each cell culture), LTEA Level2_20191119.zip (the raw, unnormalized data), and
LTEA_Level5_20191119.zip (results of concentration-response curve-fitting). All other
data used this study are included in the Supplementary Tables.

CODE AVAILABILITY

The

Bayesian analysis R scripts are available in the section “R Code” of the

Supplementary Materials and the JAGS model files are available in the section “JAGS
Code”. All other R work was performed using R packages available from the
Comprehensive R Archive Network. Curve fitting using the “tcpl” package is
described in detail in the Supplementary Methods section “DeltaCT Calculations”.
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