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Integrative analysis 
of transcriptomic data 
for identification of T‑cell 
activation‑related mRNA 
signatures indicative of preterm 
birth
Jae Young Yoo1,5, Do Young Hyeon2,5, Yourae Shin2,5, Soo Min Kim1, Young‑Ah You1,3, 
Daye Kim4, Daehee Hwang2* & Young Ju Kim1,3*

Preterm birth (PTB), defined as birth at less than 37 weeks of gestation, is a major determinant of 
neonatal mortality and morbidity. Early diagnosis of PTB risk followed by protective interventions 
are essential to reduce adverse neonatal outcomes. However, due to the redundant nature of the 
clinical conditions with other diseases, PTB-associated clinical parameters are poor predictors of 
PTB. To identify molecular signatures predictive of PTB with high accuracy, we performed mRNA 
sequencing analysis of PTB patients and full-term birth (FTB) controls in Korean population and 
identified differentially expressed genes (DEGs) as well as cellular pathways represented by the DEGs 
between PTB and FTB. By integrating the gene expression profiles of different ethnic groups from 
previous studies, we identified the core T-cell activation pathway associated with PTB, which was 
shared among all previous datasets, and selected three representative DEGs (CYLD, TFRC, and RIPK2) 
from the core pathway as mRNA signatures predictive of PTB. We confirmed the dysregulation of 
the candidate predictors and the core T-cell activation pathway in an independent cohort. Our results 
suggest that CYLD, TFRC, and RIPK2 are potentially reliable predictors for PTB.

Preterm birth (PTB) is the birth of a baby at less than 37 weeks of gestation, as opposed to the usual about 
40 weeks, called full term birth (FTB)1. The rate of PTB is 10.6% of births worldwide2,3. In Korea, the rate of PTB 
has steadily increased from 4.8% in 2006 to 7.2% in 20164. Preterm babies show adverse short- and long-term 
health outcomes. Short-term outcomes include neonatal death, neurodevelopmental disabilities, and under 
five-year mortality5. Long-term problems include increased risk of hypertension, type 2 diabetes, cardiovascular 
disease, chronic kidney disease, asthma, and neurocognitive disorders6–8. Owing to these adverse outcomes, it 
is important to diagnose PTB as early as possible, followed by protective interventions. However, the clinical 
criteria for PTB diagnosis remain inaccurate until the onset of labor.

The clinical criteria for the diagnosis of PTB have been developed based on various non-modifiable and 
modifiable factors, and clinical conditions that contribute to the risk of PTB. Non-modifiable factors include PTB 
history, maternal age, multiple pregnancies, obstetric complications, and genetic factors (genetic alterations and 
aberrant DNA methylation)9–11. The modifiable factors include nutrition, maternal reproductive tract infections, 
behavioral factors, and emotional status3. Further, clinical conditions leading to PTB include decidual hemor-
rhage, uterine distension, maternal distress that leads to increased prostaglandin production, uterine infection, 
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inflammation, and premature rupture of membrane9. Since little is known about the etiology of PTB, the effectors 
of PTB remain elusive, precluding the use of these conditions as predictors of PTB risk.

Therefore, significant efforts have been made to systematically identify molecular signatures that can be used 
to diagnose PTB with high accuracy, together with the clinical criteria mentioned above. The Preterm Birth 
International Collaborative (PREBIC) reviewed and identified 116 predictors for PTB from blood, amniotic 
fluid, and cervicovaginal fluid from 217 studies published between 1965 and 200812. However, PREBIC did not 
find a single molecule that reliably predicts PTB. Several studies performed transcriptomics or proteomics using 
whole blood, placenta, amniotic fluid, or cervicovaginal fluid from PTB patients with different sampling time, 
cohort size, ethnic group, and technical platforms. Heng et al.13 compared the gene expression profiles of whole 
blood samples from 75 Australian PTB patients and 79 full-term birth (FTB) controls. Paquette et al.14 also per-
formed mRNA sequencing analysis of whole blood samples from 15 PTB patients and 23 FTB controls (mixed 
ethnic groups). However, there is the lack of shared molecular signatures due to the heterogeneity originating 
from the above differences.

Here, we initially performed mRNA sequencing analysis in five Korean PTB patients and five FTB controls 
and identified the differentially expressed genes (DEGs) between them. These DEGs, and the cellular pathways 
enriched by them may serve as candidate predictors for PTB in the Korean population. By integrating two pre-
viously reported gene expression profiles from different ethnic groups, we identified a PTB-associated cellular 
pathway shared among the different datasets and selected representative DEGs of the shared cellular pathway 
as reliable PTB predictor candidates. We finally confirmed the dysregulation of the selected candidates and 
the shared pathway in an independent cohort of 83 Korean PTB patients and 113 FTB controls, to support the 
validity of the PTB predictor candidates.

Results
DEGs between PTB and FTB groups.  We collected whole blood samples from the subjects at clinical 
sign with delivery in the discovery cohort (5 PTB patients and 5 FTB controls) and the validation cohort (83 
PTB patients and 113 FTB controls). Singleton pregnant women diagnosed with preterm labor (PTL) and/or 
premature preterm rupture of membranes (pPROM) were included as PTB patients in the cohorts. Women with 
multiple births, major birth defects, and pregnancy complications such as preeclampsia, gestational diabetes 
were excluded. Clinical parameters for the subjects in the discovery and validation cohorts were summarized 
in Table S1. In these cohorts, age, parity, and gravidity showed no significant differences between PTB patients 
and FTB controls while gestational age, birth weight, and APGAR scores (1 and 5 min) are significantly differ-
ent. Moreover, PTB patients showed higher rates of chorioamnionitis than FTB controls. To identify molecular 
signatures associated with PTB, transcriptomic or proteomic analysis has been applied to whole blood samples 
(Australian cohort13 and a cohort of mixed ethnic groups14) or placenta-related tissue samples (placenta15 and 
tissue biopsies16). In this study, we used whole blood samples, rather than placenta-related tissues, to focus on 
non-invasive molecular predictors of PTB, which can be more efficient for fast screening purposes in regular 
check-ups during pregnancy than invasive predictors from placenta-related tissues17.

We performed mRNA sequencing analysis of the whole blood samples collected from the discovery cohort. 
The numbers of measured and mapped reads for mRNA sequencing data are summarized in Table S2. Principal 
component analysis showed that the PTB patients could be distinguished from the FTB controls using the mRNA 
sequencing data (Fig. S1). To identify the genes that can distinguish the PTB patients and FTB controls, we first 
identified 15,662 genes expressed in at least half (n ≥ 3) of either PTB or FTB group. Among these expressed 
genes, we then identified 933 DEGs (273 upregulated and 660 downregulated genes) between PTB and FTB 
groups using an integrative statistical testing method previously reported (Fig. 1A; Table S3)18. The PREBIC sum-
marized 116 PTB predictors reported in the 217 previous studies12, including 83 genes/proteins, their variants 
(truncated or post-translationally modified proteins), and steroid/metabolite hormones (e.g., cortisol, dopamine, 
dehydroepiandrosterone, or estrogen/progesterone). Among our 933 DEGs, only six genes (upregulated: TFRC 
and IL2RA; and downregulated: TNFRSF1A, MMP9, SLPI, and IL6R) overlapped with the 83 predictor genes 
previously identified by PREBIC (Fig. 1B). The PREBIC also listed 16 predictors that were most frequently 
reported (≥ 10 times) in the 217 studies12. Among the six overlapping genes, matrix metalloproteinase 9 (MMP9) 
belonged to the 16 most common predictors.

The small overlap between our DEGs and the previous predictors prompted us to investigate the consistency 
in dysregulations of these genes in the two other gene expression profiles of whole blood samples including an 
Australian cohort (75 PTB and 79 FTB)13 and a cohort of mixed ethnic groups (15 PTB and 23 FTB)14. Accord-
ing to the PREBIC, the 83 previous predictor genes were most significantly associated with immune responses12. 
Consistent with this finding, our DEGs included 46 and 16 genes involved in innate immune response and T-cell 
activation, respectively. These immune-related DEGs in the Korean PTB cohort showed no significant mRNA 
expression changes in the two other gene expression datasets (Fig. 1C). Among the 83 previous predictor genes, 
56 genes expressed in at least one dataset also showed no strong consistency in their dysregulations across the 
different cohorts (Fig. 1D). These data suggest that heterogeneity exists in PTB-associated gene expression 
changes across the different cohorts, consistent with the previous finding from the integrative analysis performed 
by the PREBIC12.

Cellular processes represented by the DEGs.  We next examined cellular processes represented by 
the 933 DEGs in Korea PTB cohort by performing the enrichment analysis of gene ontology biological pro-
cesses (GOBPs) for the 273 upregulated and 660 downregulated genes using the DAVID software19. The upregu-
lated genes were mainly associated with the processes related to cell proliferation (cell cycle, cell proliferation, 
apoptotic signaling, response to ER stress, RAS signaling, and translation/RNA localization), adaptive immune 
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response (lymphocyte activation, response to cytokine, and cytokine signaling), cell adhesion, angiogenesis, 
and carbohydrate metabolism (glycolytic process) (Fig. 2A, left). On the other hand, the downregulated genes 
were associated with the processes related to endocytosis, innate immune response (TLR signaling, granulo-
cyte chemotaxis/migration, cytokine secretion), and lipid metabolism (lipid metabolic process; Fig. 2A, right). 
The 83 previous PTB predictor genes reported by the PREBIC were associated with a majority of these cellular 
processes (Fig. 2A, red heat map), indicating a strong overlap at the level of cellular pathways, unlike the small 
overlap at the gene level (Fig. 1B,C).

Interestingly, the adaptive immune response, and T-cell activation in particular, was upregulated in the 
Korean PTB patients, whereas the innate immune response was downregulated. To sort out this discrepancy 
at the molecular level, we reconstructed a network model describing interactions among the DEGs involved in 
the processes related to the immune responses. The network model showed that 1) TLR (LY96, TLR1/4/5/6/10, 
LRRK2, and RIPK) signaling, 2) TNF (TNFRSF1A/10C, MAP3K5, MAP2K6, and RPS6KA1/5) signaling, 3) Fc 
gamma receptor mediated phagocytosis (FCGR2A, PLD1, VAV3, RAC2, and WAX) and 4) integrin (ITGA​1/4) and 
growth factor (IGF1R)-mediated cytoskeletal reorganization pathways were downregulated in PTB (Fig. 2B). In 
contrast, 1) T-cell activation (LAT, NECTIN2, RAB1B, TFRC, CYL and RIPK2) and co-stimulation (CD40, ICOS, 
and TRAF1) pathway, and 2) chemokine signaling in T-cells (CCR7, GNA2/15, and GRK3) were upregulated 
in PTB (Fig. 2C, red nodes). These data suggest that the number or activation of T-cells is increased in PTB, 
compared to that in FTB while the number or activation of innate immune cells is decreased.

Core PTB‑associated pathways identified through integration of gene expression pro‑
files.  The PREBIC performed an integrative analysis of PTB predictors reported in 217 studies to identify 

Figure 1.   Differentially expressed genes (DEGs) between PTB (preterm birth) and FTB (full-term birth) 
groups. (A) Volcano plot for the comparison of PTB with FTB. Dotted lines represent the cutoffs for log2-fold-
change and adjusted p value. Red and green dots denote the 273 upregulated and 660 downregulated genes, 
respectively. The representative up- and downregulated genes involved in T-cell activation (red) and innate 
immune response (green), respectively, are indicated by arrows. The six genes that overlapped with the 83 
PREBIC PTB predictors are highlighted in bold. (B) Venn diagram showing the relationship between the DEGs 
and the PREBIC PTB predictors. Numbers of upregulated (red) and downregulated (green) genes in the sections 
of the Venn diagram are shown. (C,D) Heat maps showing expression changes of up or downregulated genes 
involved in T-cell activation and innate immune response, respectively and the 56 genes expressed (C) in at least 
one dataset (D) in all the three datasets. The color bar represents the gradient of log2-fold-change of mRNA 
expression levels in the samples with respect to the median mRNA expression levels.
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reliable predictors. Six gene expression profiles of the samples from PTB patients had been reported. To iden-
tify reliable PTB predictors among these profiles, we thus integrated our data with the aforementioned two 
gene expression profiles of whole blood samples from the Australian cohort13 and a cohort of mixed ethnic 
groups14. The other profiles were excluded due to possible misleading biases originating from non-blood samples 
(placenta15 and tissue biopsies16), or whole blood samples not collected before labor (4 days after birth20). Using 
the same method used for Korean PTB cohort, we identified 733 (279 up- and 454 downregulated) and 1712 
(971 up- and 741 downregulated) DEGs from the Australian and mixed cohorts, respectively. Comparison of the 
DEGs revealed no significant overlaps between our data and the previous datasets (Fig. 3A), consistent with the 
findings from the PREBIC12 and the findings in Fig. 1B–D.

The lack of significant overlap at the gene level, and presence of a strong overlap at the pathway-level (Fig. 2A) 
prompted us to perform pathway-level integration of the three datasets, assuming that the non-overlapping DEGs 
can be involved in the same pathways. We performed the GOBP enrichment analysis for the up- and downregu-
lated genes in the two previous datasets and then searched for the GOBPs shared in all three datasets. Among 
the GOBPs enriched by our DEGs, only T-cell (lymphocyte) activation was enriched consistently by the upregu-
lated genes in all three datasets (Fig. 3B). Focusing on the T-cell activation, we next reconstructed an integrated 
network model describing interactions among the upregulated genes involved in T-cell activation-associated 

Figure 2.   Cellular processes represented by the DEGs. (A) Gene ontology biological processes (GOBPs) 
enriched by the genes that were up- and downregulated in PTB compared to that in FTB. Significance (p value) 
of the GOBPs enriched by the upregulated (left bars) and downregulated (right bars) genes is displayed as − log10 
(p value). GOBPs associated with the PREBIC PTB predictors are indicated in the red heat map (‘PREBIC 
PTB predictors’). (B,C) Network models describing interactions among the downregulated (B) or upregulated 
(C) genes involved in the processes related to innate immunity and T-cell activation, respectively. Node color 
represents upregulation (orange) or downregulation (green) in the comparison of PTB versus FTB. Gray nodes 
indicate the non-DEGs added in the network to increase connections among the DEGs. Solid and dashed edges 
represent direct and indirect activation (arrow) or repression (suppression symbol), respectively. Gray lines 
indicate protein–protein interactions. Thick gray lines denote the plasma and nuclear membranes.
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Figure 3.   Core PTB-associated pathways identified by integration of the previous datasets. (A) Venn diagrams 
showing the relationships among upregulated (left) and downregulated genes (right) in PTB, compared to 
that in FTB, identified from our data and two previous datasets (Heng et al.13 and Paquette et al.14). (B) Radar 
charts showing the GOBPs enriched by our DEGs (left) in comparison with those enriched by the DEGs from 
Heng et al. (middle) and Paquette et al. datasets (right). Significance (p value) of the GOBPs enriched by the 
up- or downregulated genes is displayed as − log10(p value). (C) Network model describing interactions among 
the upregulated genes involved in the T-cell activation-associated processes in any of the three datasets. Dark 
orange, orange, and yellow nodes represent the upregulated genes identified from our data and Heng et al. and 
Paquette et al. datasets, respectively. See the legend of Fig. 2B,C for nodes, edges, and membranes.
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processes (T-cell/lymphocyte activation and response to cytokine) in all three datasets (Fig. 3C). The integrated 
network model showed that TCR, chemokine, CD40 stimulation, transferrin, and peptidoglycan signaling lead-
ing to T-cell activation were collectively supported by the upregulated genes in the three datasets. Since the TCR 
and chemokine signaling pathways are well known, we focused on the other signaling pathways. Among our 
upregulated genes, CYLD, TFRC, and RIPK2 (Fig. 3C, large nodes) represented CD40 stimulation, transferrin, 
and peptidoglycan signaling pathways, respectively.

PTB predictor candidates involved in the core PTB‑associated pathway of T‑cell activa‑
tion.  We next attempted to validate the core upregulated T-cell activation pathway in the validation cohort 
(113 FTB and 83 PTB). Overall, the mean maternal ages of FTB and PTB in the validation cohort were 33.4 
and 32.9 years, respectively, and the mean gestational ages of FTB and PTB were 39 weeks and 31 weeks 6 days, 
respectively (Table S1B). We first examined the amount of six types of immune cells (lymphocyte, platelet, neu-
trophil, eosinophil, basophil, and monocyte) in the whole blood samples of PTB patients in the validation cohort 
using complete blood count (CBC) tests. Among the immune cells, only the count of lymphocytes in the blood 
was significantly (p < 0.05) increased in PTB, compared with that in FTB (Fig. 4A). Correspondingly, mRNA 
expression level of T-cell marker genes (CD4, CD8a/b, and CD3d/g/e) were increased in the blood samples of 
PTB (Fig. 4B). Finally, we checked for the upregulation of CYLD, TFRC, and RIPK2 that represent the T-cell 
activation-associated signaling pathways, according to the integrated network analysis, using the whole blood 
samples from 30 PTB patients and 30 FTB controls in the validation cohort. Clinical characteristics of the sub-
jects used for qRT-PCR analysis is summarized in Table 1. qRT-PCR analysis confirmed significant (p < 0.01) 
upregulation of the three representative genes in PTB, compared to that in FTB (Fig. 4C). Collectively, these 
data suggest that CYLD, TFRC, and RIPK2 which represent core T-cell activation pathways can serve as reliable 
molecular candidates that can predict PTB.

Discussion
According to the integrative analysis of mRNA and proteomic signatures performed by the PREBIC, the hetero-
geneity in the molecular signatures of PTB-associated changes is common, possibly due to molecular variations 
driven by ethnicity and/or heterogeneity in the initiation and progression of PTB. Correspondingly, our integra-
tive analysis revealed that the mRNA signatures of PTB-associated expression changes were heterogeneous. To 
address this heterogeneity issue, we employed a pathway-level integration of PTB-associated molecular signatures 
to search for the core cellular pathways consistently enriched by the PREBIC PTB predictors and the DEGs in 
three different mRNA expression datasets. Despite the molecular-level heterogeneity across the datasets, this 
approach first revealed that innate and adaptive immune responses and lipid metabolism, which are suggested 
to be associated with the pathogenesis of PTB, were represented consistently by PREBIC predictors and our 
DEGs. Among the immune responses, this approach further identified the T-cell activation-associated pathways 
consistently upregulated in PTB in the three mRNA expression datasets. Finally, this approach identified three 
representative regulators (CYLD, TFRC and RIPK2) of these core T-cell activation pathways as the candidates 
of the whole blood molecular signatures indicative of PTB. Considering that these T-cell activation-associated 
pathways were consistently up-regulated in the three different cohorts, they may serve as the valid whole blood 
molecular signatures in other ethnic groups.

Although several studies have focused on establishing causal links between innate immune response and 
PTB, several studies have reported the association of T-cell activation, an adaptive immune response, with PTB. 
Arenas-Hernandez et al.21 found that activated T-cells were enriched at the maternal–fetal interface of PTB 
patients and progesterone treatment prevented PTB by attenuating T-cell related pro-inflammatory responses. 
Luciano et al.22 also showed the association of neonatal CD4 positive T-cell activation with PTB. Gomez-Lopez 
et al.23 showed enrichment of fetal T-cells and elevation of T-cell cytokines in amniotic fluid during preterm 
gestation, and that intra-amniotic administration of activated neonatal CD4+ T cells induced PTB in mice. These 
data suggest that T-cell activation is a core pathway associated with PTB pathogenesis.

We identified CYLD, TFRC and RIPK2 as PTB predictor candidates representing the core T-cell activation 
pathway in PTB. TFRC mediates iron uptake in the placenta, and iron deficiency during pregnancy increases 
the risk of PTB24. TFRC is upregulated in the placenta of PTB patients15 and correspondingly hyper-methylated 
in the proximity of the TFRC gene at placental tissues from PTB patients25. Although CYLD and RIPK2 play 
important roles in T-cell activation, unlike TFRC, no direct evidence has been reported for causal links of CYLD 
and RIPK2 to PTB. An isoform of RIPK2, RIPK1, is upregulated in the whole blood samples of the patients with 
chorioamnionitis26. Thus, CYLD and RIPK2 can be considered as novel regulatory factors whose functional roles 
in the pathogenesis of PTB should be further investigated using detailed mechanistic experiments.

In this study, whole blood samples were taken from women with signs of delivery (FTB) and with signs of 
preterm labor and/or premature preterm rupture of membrane (PTB). Accordingly, our molecular signatures 
reflect the status of the peripheral blood transcriptome after the symptoms are observed. The selected molecular 
signatures (CYLD, TFRC and RIPK2) can be considered as predictors of PTB, rather than biomarkers that can 
predict PTB before the onset of symptoms. Moreover, although the association of T-cell activation with PTB 
has been reported, as mentioned above, Gomez-Lopez et al.27 also demonstrated that the peripheral blood tran-
scriptome signatures, including T-cell-associated mRNA signatures, changed during gestation in the maternal 
circulation throughout normal pregnancy. In both our discovery and validation cohorts, the gestational age for 
PTB patients was significantly smaller than that for FTB controls. Since the gestational age was not matched 
between PTB patients and FTB controls, the increase of T-cells and T-cell marker gene expression in the whole 
blood samples of PTB patients, compared to in those of FTB controls, could be affected by the difference in the 
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Figure 4.   PTB predictor candidates involved in the core T-cell activation pathway. (A) The amount of the 
indicated immune cells in the whole blood samples from PTB patients and FTB controls in the validation 
cohort. In each violin plot, the middle line indicates 50th percentile of the indicated immune cell count. *p < 0.05 
using unpaired t-test with Welch’s correction. (B) mRNA expression level of the indicated marker genes of 
T-cells, B-cells, and NK cells. Log2 (fold-change) of mRNA expression level between PTB and FTB (PTB/FTB) 
are displayed. (C) Relative mRNA expression level of CYLD, TFRC, and RIPK2 in PTB samples (n = 30) with 
respect to those in FTB samples (n = 30). **p < 0.01, ***p < 0.001 by unpaired t-test with Welch’s correction; error 
bars, standard error of mean (SEM).
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gestational age. Accordingly, the up-regulation of our PTB predictor candidates (CYLD, TFRC and RIPK2) could 
be also affected by the gestational age difference.

We tested the validity of CYLD, TFRC and RIPK2 as PTB predictors using a moderately sized Korean cohort 
(88 PTB patients and 118 FTB controls). The characteristics of these predictor candidates should be further 
examined in a larger cohort including the subtypes of PTB, such as early and very early PTBs. In this study, 
we measured the number of lymphocytes and mRNA expression levels of T-cell marker genes to evaluate the 
increased T-cell activation in PTB, compared to in FTB. However, the possibility that the activation status of 
T-cells can alter the peripheral blood transcriptome regardless of the number of T-cells cannot be excluded. Thus, 
whether these predictor candidates can contribute to the activation status of T-cells, as well as T-cell prolifera-
tion, should be investigated in detailed functional studies. Moreover, the validity of these predictor candidates 
should also be tested in multiple ethnic cohorts to examine whether they can serve as PTB predictors across 
diverse ethnic groups. Furthermore, the association of these predictor candidates with neonatal adverse out-
comes of PTB should also be investigated to examine whether they have functional roles in the adverse effects 
of PTB. These studies can provide essential information regarding the utility of these predictor candidates in 
the diagnosis and therapy of PTB.

Table 1.   Clinical characteristics of subjects used for qRT-PCR analysis. Data were presented as mean ± SE. 
*Student’s t-test, p < 0.05; †χ2 test, p < 0.05. BMI body mass index, PTL Preterm labor, pPROM Preterm 
premature rupture of membrane, FT Full term.

Items

Full term birth Preterm birth

p value(n = 30) (n = 30)

Maternal age 33.5 ± 0.7 32.5 ± 0.7 0.315

Education, n (%) 0.145

Below high school 2 ( 6.7) 7 (23.3)

College or more 28 (93.3) 23 (76.7)

Pre-pregnancy BMI 22.3 ± 0.9 22.1 ± 1.2 0.900

Parity, n (%) 0.498

Nulliparous 15 (50.0) 16 (53.3)

Multiparous 15 (50.0) 14 (46.7)

Gravidity 0.484

0 18 (60.0) 21 (70.0)

≥ 1 12 (40.0) 9 (30.0)

Diagnosis

PTL 14 (46.7)

PPROM 16 (53.3)

FT 30 (100)

Cervical length (cm) 2.5 ± 0.2 2.3 ± 0.2 0.480

Gestational age 39.0 ± 0.2 30.1 ± 0.6 < 0.001*

Mode of delivery, n (%) 0.209

Vaginal 20 (66.7) 15 (50.0)

C-section 10 (33.3) 15 (50.0)

Chorioamnionitis, n (%) < 0.001†

Positive - 13 (43.3)

Negative 30 (100) 17 (56.7)

Antibiotics, n (%) 0.060

Treatment 15 (50.0) 24 (80.0)

No 15 (50.0) 6 (20.0)

Tocolytics < 0.001†

Treatment - 14 (46.7)

No 30 (100) 16 (53.3)

Birth weight (g) 3241.0 ± 68.8 1758.4 ± 146.9 < 0.001*

Gender, n (%) 0.299

Male 14 (46.7) 19 (63.3)

Female 16 (53.3) 11 (36.7)

APGAR score 1 min 9.7 ± 0.2 6.6 ± 0.6 < 0.001*

APGAR score 5 min 9.9 ± 0.0 8.0 ± 0.5 < 0.001*
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Materials and methods
Sample collection.  We enrolled 88 PTB patients (who delivered preterm infants) and 118 FTB controls, 
who underwent prenatal examinations and delivery at the Ewha Womans University Medical Center between 
2014 and 2019. These subjects were split into discovery (5 PTB and 5 FTB) and validation (83 PTB and 113 FTB) 
cohorts. Singleton pregnant women diagnosed with PTL and/or pPROM were included as PTB patients in the 
cohorts. PTL was diagnosed in patients with regular uterine contraction and 4 or more contractions in 20 min, 
or 8 or more in 60 min as detected by cardiotocography. Uterine activity was assessed by cardiotocography. To 
diagnose pPROM, we conducted sterile speculum exam for detecting amniotic fluid pooling in vaginal cavity, 
as well as nitrazine test for detecting rupture of the membranes. Gestational age was determined using the first 
day of the last menstrual period and ultrasound examination. The maternal characteristics (age, parity and body 
mass index) of the mother were analyzed at admission. When pregnant women were admitted to the hospital for 
delivery, blood samples were taken and stored at − 80 °C.

The present study was approved by the Institutional Review Board of the Ewha Womans University Hospital 
(EUMC 2018-07-007-010). The experiments were conducted in accordance with the approved guidelines, and 
informed consent was obtained from all the subjects.

CBC tests.  Whole blood samples taken from all subjects were immediately analyzed using CBC with 
XN-9000 (Sysmex, Kobe, Japan)/ADVIA 2120i (Siemens, Tarrytown, NY, USA) according to manufacturer’s 
protocol.

Library preparation and data generation.  RNA extraction.  Total RNA was isolated from blood using 
TRIzol RNA Isolation Reagent (Life technologies, Carlsbad, CA, USA), and purified according to the manufac-
turer’s instructions. The RNA concentration was determined using a NanoDrop ND-1000 spectrometer, and the 
RNA integrity number (RIN) for each RNA sample was analyzed using a 2100 Bioanalyzer (Agilent Technolo-
gies, Santa Clara, CA, USA) and the Agilent RNA 6000 Nano Kit (Agilent Technologies, Santa Clara, CA, USA). 
The RINs of the ten samples were > 8, which is appropriate for RNA sequencing.

Stranded mRNA library construction.  The isolated total RNA was processed for preparing RNA sequencing 
library using TruSeq stranded total RNA sample preparation kit (Illumina, San Diego, CA, USA) according 
to the manufacturer’s instructions. Briefly, rRNAs were depleted from 1 μg of total RNA using rRNA removal 
beads, followed by enzymatic shearing. After first and second strand cDNA synthesis, A-tailing and end repair 
were performed for ligation of proprietary primers that incorporate unique sequencing adaptors with index for 
tracking Illumina reads from multiplexed samples run on a single sequencing lane. For each library, an insert 
size of approximately 200 bp was confirmed by a bioanalyzer using an Agilent DNA Kit (Agilent Technologies, 
Santa Clara, CA) and quantification of library was measured by real-time PCR using CFX96 real-time sys-
tem (BioRad, Hercules, CA, USA). Sequencing of each library was performed on an Illumina NextSeq500 and 
clusters of the cDNA libraries were generated on a TruSeq flow cell and sequenced for 76-bp paired end reads 
(2 × 76) with a TruSeq 200 cycle SBS kit (Illumina, San Diego, CA, USA). Raw data were processed, and base 
calling was performed using the standard Illumina pipeline [CASAVA ver. 1.8.2 (http://suppo​rt.illum​ina.com/
seque​ncing​/seque​ncing​_softw​are/casav​a.html) and RTA ver. 1.18.64].

Analysis of RNA sequencing data.  For the read sequences resulting from the RNA sequencing, the adapter 
sequences (Truseq universal and indexed adapters) were removed using the Cutadapt software ver. 1.2.1 (https​
://cutad​apt.readt​hedoc​s.io/en/v1.9.1/)28. The resulting reads were then aligned to the human reference genome 
(GRCh38) using TopHat aligner ver. 2.1.1 (https​://ccb.jhu.edu/softw​are/topha​t/index​.shtml​) with the default 
options29. After the alignment, the mapped reads were counted for gene features (GTF file of GRCh38) using 
HTSeq ver. 0.6.1 (https​://htseq​.readt​hedoc​s.io/en/maste​r/)30 and the estimated fragments per kilobase of tran-
script per million fragments were mapped (FPKM) using Cufflinks ver. 2.2.1 (http://cole-trapn​ell-lab.githu​b.io/
cuffl​inks/)31. The raw and normalized data were deposited with the Gene Expression Omnibus (GEO) database 
(GSE148402).

Identification of DEGs.  To ensure statistical power in the identification of DEGs, we first selected ‘expressed’ 
genes as the ones with fragments per kilobase of exon model per million reads mapped (FPKM) values larger 
than 0 in at least half of the five PTB or FTB samples (n ≥ 3). To identify DEGs among the genes with mean-
ingful expression in either PTB or FTB group, we further selected the genes with the maximum of the non-
zero FPKM values larger than a cutoff of 1. The cutoff value was used to determine meaningfully expressed 
genes32,33. For these expressed genes, the read counts were normalized using the TMM normalization method34 
in the edgeR package ver. 3.6 (https​://bioco​nduct​or.org/packa​ges/edgeR​/)35. The log2 (read count + 1) were then 
normalized using the quantile normalization method36. For each gene, we calculated the T-statistic values and 
log2-fold-changes in the comparison of PTB versus FTB. We estimated empirical null distributions of the T-sta-
tistic values and log2-fold-changes by performing random permutations of the ten samples 300 times. Using the 
estimated empirical distributions, we computed the adjusted p values for the two tests for each gene and then 
combined these p values with Stouffer’s method37. Finally, we identified DEGs as the ones that had combined p 
values < 0.05, t-test p values < 0.05, and absolute log2-fold-changes > 0.58 (1.5-fold). For the analysis of the previ-
ous gene expression datasets, we collected the processed data from the GEO database (GSE46510 and GSE96083) 
and applied the same integrative statistical methods used for our data. The distribution of log2-fold-changes in 
GSE46510 and GSE96083 showed smaller variances than that in our data. For GSE46510 and GSE96083, we 

http://support.illumina.com/sequencing/sequencing_software/casava.html
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thus used the cutoffs as the mean of 10th and 90th percentiles and the mean of 2.5th and 97.5th percentiles of 
the empirical null distributions for log2-fold-changes, respectively (0.34 for GSE46510 and 0.50 for GSE96083).

GOBP enrichment analysis.  To identify the cellular processes represented by the DEGs, we performed the 
enrichment analysis of GOBPs for the up- or downregulated genes using DAVID software ver. 6.8 (https​://
david​.ncifc​rf.gov/tools​.jsp)19 and then selected the GOBPs with p value < 0.05 as the processes enriched by the 
up- or downregulated genes. We used the default p value from the EASE test in DAVID software, rather than a 
multiple testing-corrected p value (e.g., Benjamini–Hochberg p value), because we needed to ensure a sufficient 
list of GOBPs enriched by the small gene set (116 predictor genes) of the PREBIC PTB predictors for their com-
parisons with GOBPs enriched by the DEGs from our and previous mRNA expression datasets. The resulting 
GOBPs may include false positives due to the relaxed p value without the multiple testing correction. To remove 
potential false positives, we only selected GOBPs with the number of genes involved in the enriched GOBPs 
larger than 5 (i.e., count ≥ 5). We further focused on the overlapping “enriched GOBPs” between different gene 
sets (PREBIC PTB predictors, our DEGs, and DEGs identified from previous mRNA datasets). This analytical 
scheme helps us better interpret functional associations shared between molecular signatures identified from 
different PTB-related datasets, as decreasing the possibility to miss certain shared functional associations.

Reconstruction of network models.  We first selected the up-regulated genes involved in T-cell activation-asso-
ciated processes38 (lymphocyte activation and cytokine signaling) and the downregulated genes involved in the 
innate immunity-associated processes (innate immune response, toll-like receptor (TLR) signaling pathway, 
cytokine secretion, and granulocyte migration/chemotaxis). For the selected up- or downregulated genes, we 
then constructed a network model showing interactions among the selected genes using the protein–protein 
interactome databases39–49 and the interactions in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
database50. Key signaling molecules (gray nodes in the network models) were included in the network models 
to improve the connections among the selected genes, based on the KEGG pathways related to the network 
models (T-cell receptor [TCR], TNF, and NF-kappa B, TLR, PI3K-AKT, and MAPK signaling pathways, and Fc 
gamma R-mediated phagocytosis and regulation of actin cytoskeleton). The nodes in the network models were 
arranged according to the activation or repression information obtained from the KEGG pathway database and 
the previous literature.

qRT‑PCR analysis.  For qRT-PCR analysis, 1 μg of RNA was reverse transcribed to cDNA using SuperScript III 
reverse transcriptase (Invitrogen, Carlsbad, CA, USA) and RNasin (Promega, Madison, WI, USA) in a 20 μL 
reaction mixture. qRT-PCR was then performed in a 20 μL reaction mixture containing cDNA, 200 nM prim-
ers for each gene, SYBR Premix EX Taq (Takara Bio, Shiga, Japan), and ROX reference dye (Takara Bio) using a 
PRISM 7000 sequence detection system (Applied BioSystems, Foster City, CA, USA). Briefly, the samples were 
heated to 95 °C for 10 min and then amplified for 40 cycles at 95 °C for 15 s, and annealed at 62 °C for 1 min, 
followed by a dissociation stage at 95 °C for 15 s and 62 °C for 20 s per cycle. The quantity of each gene was 
calculated using the ΔΔCT method and based on the cycle threshold (CT) normalized against glyceraldehyde-
3-phosphate dehydrogenase (GAPDH). The primer sequences used for qRT-PCR are listed in Table S4.
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