Skip to main content
. 2021 Jan 14;8:620257. doi: 10.3389/fbioe.2020.620257

Table 1.

Performance results of all methods for CRC LNM.

ACC AUC Sensitivity Specificity PPV NPV
AB+GLH 0.6369 0.6357 0.6753 0.6431 0.6910 0.5805
AB+GLCM 0.6458 0.6449 0.6431 0.6491 0.6880 0.6018
AB+SIFT 0.6280 0.6270 0.6267 0.6295 0.6706 0.5836
DT+GLH 0.4598 0.4588 0.4728 0.4441 0.5073 0.4103
DT+GLCM 0.4866 0.4859 0.4972 0.4745 0.5190 0.4529
DT+SIFT 0.4955 0.4950 0.5057 0.4844 0.5190 0.4711
KNN+GLH 0.5967 0.5900 0.5650 0.7458 0.7125 0.2675
KNN+GLCM 0.5818 0.5752 0.5562 0.7 0.7051 0.2553
KNN+SIFT 0.6280 0.6222 0.5886 0.7687 0.7009 0.3435
LR+GLH 0.6429 0.6416 0.6359 0.6519 0.7026 0.5805
LR+GLCM 0.6815 0.6802 0.6684 0.6990 0.7464 0.6140
LR+SIFT 0.6250 0.6242 0.6253 0.6246 0.6618 0.5866
MLP+GLH 0.5402 0.5395 0.5472 0.5321 0.5743 0.5046
MLP+GLCM 0.5759 0.5748 0.5780 0.5733 0.6268 0.5228
MLP+SIFT 0.5744 0.5738 0.5803 0.5678 0.6006 0.5471
NB+GLH 0.6354 0.6331 0.6184 0.6628 0.7464 0.5198
NB+GLCM 0.6637 0.6623 0.6527 0.6782 0.7289 0.5957
NB+SIFT 0.6518 0.6500 0.6373 0.6727 0.7376 0.5623
SGD+GLH 0.6101 0.6089 0.6181 0.6128 0.6742 0.5532
SGD+GLCM 0.5372 0.5375 0.5488 0.5262 0.5248 0.5502
SGD+SIFT 0.5833 0.5838 0.5981 0.5698 0.5598 0.6079
SVM+GLH 0.4896 0.4924 0.5000 0.4836 0.3586 0.6261
SVM+GLCM 0.5208 0.5247 0.5500 0.5076 0.3382 0.7112
SVM+SIFT 0.5327 0.5359 0.5617 0.5172 0.3848 0.6869
LeNet 0.6577 0.7305 0.6535 0.6535 0.6535 0.6535
AlexNet 0.6716 0.7696 0.6708 0.6711 0.6714 0.6706
AlexNet pre-trained model 0.7583 0.7941 0.8004 0.7997 0.7992 0.8009