Table 1.
ACC | AUC | Sensitivity | Specificity | PPV | NPV | |
---|---|---|---|---|---|---|
AB+GLH | 0.6369 | 0.6357 | 0.6753 | 0.6431 | 0.6910 | 0.5805 |
AB+GLCM | 0.6458 | 0.6449 | 0.6431 | 0.6491 | 0.6880 | 0.6018 |
AB+SIFT | 0.6280 | 0.6270 | 0.6267 | 0.6295 | 0.6706 | 0.5836 |
DT+GLH | 0.4598 | 0.4588 | 0.4728 | 0.4441 | 0.5073 | 0.4103 |
DT+GLCM | 0.4866 | 0.4859 | 0.4972 | 0.4745 | 0.5190 | 0.4529 |
DT+SIFT | 0.4955 | 0.4950 | 0.5057 | 0.4844 | 0.5190 | 0.4711 |
KNN+GLH | 0.5967 | 0.5900 | 0.5650 | 0.7458 | 0.7125 | 0.2675 |
KNN+GLCM | 0.5818 | 0.5752 | 0.5562 | 0.7 | 0.7051 | 0.2553 |
KNN+SIFT | 0.6280 | 0.6222 | 0.5886 | 0.7687 | 0.7009 | 0.3435 |
LR+GLH | 0.6429 | 0.6416 | 0.6359 | 0.6519 | 0.7026 | 0.5805 |
LR+GLCM | 0.6815 | 0.6802 | 0.6684 | 0.6990 | 0.7464 | 0.6140 |
LR+SIFT | 0.6250 | 0.6242 | 0.6253 | 0.6246 | 0.6618 | 0.5866 |
MLP+GLH | 0.5402 | 0.5395 | 0.5472 | 0.5321 | 0.5743 | 0.5046 |
MLP+GLCM | 0.5759 | 0.5748 | 0.5780 | 0.5733 | 0.6268 | 0.5228 |
MLP+SIFT | 0.5744 | 0.5738 | 0.5803 | 0.5678 | 0.6006 | 0.5471 |
NB+GLH | 0.6354 | 0.6331 | 0.6184 | 0.6628 | 0.7464 | 0.5198 |
NB+GLCM | 0.6637 | 0.6623 | 0.6527 | 0.6782 | 0.7289 | 0.5957 |
NB+SIFT | 0.6518 | 0.6500 | 0.6373 | 0.6727 | 0.7376 | 0.5623 |
SGD+GLH | 0.6101 | 0.6089 | 0.6181 | 0.6128 | 0.6742 | 0.5532 |
SGD+GLCM | 0.5372 | 0.5375 | 0.5488 | 0.5262 | 0.5248 | 0.5502 |
SGD+SIFT | 0.5833 | 0.5838 | 0.5981 | 0.5698 | 0.5598 | 0.6079 |
SVM+GLH | 0.4896 | 0.4924 | 0.5000 | 0.4836 | 0.3586 | 0.6261 |
SVM+GLCM | 0.5208 | 0.5247 | 0.5500 | 0.5076 | 0.3382 | 0.7112 |
SVM+SIFT | 0.5327 | 0.5359 | 0.5617 | 0.5172 | 0.3848 | 0.6869 |
LeNet | 0.6577 | 0.7305 | 0.6535 | 0.6535 | 0.6535 | 0.6535 |
AlexNet | 0.6716 | 0.7696 | 0.6708 | 0.6711 | 0.6714 | 0.6706 |
AlexNet pre-trained model | 0.7583 | 0.7941 | 0.8004 | 0.7997 | 0.7992 | 0.8009 |