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A B S T R A C T   

Despite an expanding literature on brain alterations in patients with longstanding epilepsy, few neuroimaging 
studies investigate patients with newly diagnosed focal epilepsy (NDfE). Understanding brain network impair
ments at diagnosis is necessary to elucidate whether or not brain abnormalities are principally due to the 
chronicity of the disorder and to develop prognostic markers of treatment outcome. Most adults with NDfE do not 
have MRI-identifiable lesions and the reasons for seizure onset and refractoriness are unknown. We applied 
structural connectomics to T1-weighted and multi-shell diffusion MRI data with generalized q-sampling image 
reconstruction using Network Based Statistics (NBS). We scanned 27 patients within an average of 3.7 (SD = 2.9) 
months of diagnosis and anti-epileptic drug treatment outcomes were collected 24 months after diagnosis. Seven 
patients were excluded due to lesional NDfE and outcome data was available in 17 patients. Compared to 29 
healthy controls, patients with non-lesional NDfE had connectomes with significantly decreased quantitative 
anisotropy in edges connecting right temporal, frontal and thalamic nodes and increased diffusivity in edges 
between bilateral temporal, frontal, occipital and parietal nodes. Compared to controls, patients with persistent 
seizures showed the largest effect size (|d|>=1) for decreased anisotropy in right parietal edges and increased 
diffusivity in edges between left thalamus and left parietal nodes. Compared to controls, patients who were 
rendered seizure-free showed the largest effect size for decreased anisotropy in the edge connecting the left 
thalamus and right temporal nodes and increased diffusivity in edges connecting right frontal nodes. As 
demonstrated by large effect sizes, connectomes with decreased anisotropy (edge between right frontal and left 
insular nodes) and increased diffusivity (edge between right thalamus and left parietal nodes) were found in 
patients with persistent seizures compared to patients who became seizure-free. Patients who had persistent 
seizures showed larger effect sizes in all network metrics than patients who became seizure-free when compared 
to each other and compared to controls. Furthermore, patients with focal-to-bilateral tonic-clonic seizures 
(FBTCS, N = 11) had decreased quantitative anisotropy in a bilateral network involving edges between temporal, 
parietal and frontal nodes with greater effect sizes than those of patients without FBTCS (N = 9). NBS findings 
between patients and controls indicated that structural network changes are not necessarily a consequence of 
longstanding refractory epilepsy and instead are present at the time of diagnosis. Computed effect sizes suggest 
that there may be structural network MRI-markers of future pharmacoresistance and seizure severity in patients 
with a new diagnosis of focal epilepsy.   

* Corresponding author at: Department of Clinical Neurophysiology, University Medicine Göttingen, Robert-Koch-Str. 40, D-37075 Göttingen, Germany. 
E-mail address: barbrakr@liv.ac.uk (B.A.K. Kreilkamp).  

Contents lists available at ScienceDirect 

NeuroImage: Clinical 

journal homepage: www.elsevier.com/locate/ynicl 

https://doi.org/10.1016/j.nicl.2021.102564 
Received 11 March 2020; Received in revised form 10 January 2021; Accepted 11 January 2021   

mailto:barbrakr@liv.ac.uk
www.sciencedirect.com/science/journal/22131582
https://www.elsevier.com/locate/ynicl
https://doi.org/10.1016/j.nicl.2021.102564
https://doi.org/10.1016/j.nicl.2021.102564
https://doi.org/10.1016/j.nicl.2021.102564
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nicl.2021.102564&domain=pdf
http://creativecommons.org/licenses/by/4.0/


NeuroImage: Clinical 29 (2021) 102564

2

1. Introduction 

Compared to well-studied longstanding epilepsy, sophisticated neu
roimaging studies in patients with newly diagnosed focal epilepsy 
(NDfE) are scarce. Understanding brain network impairments at diag
nosis is necessary to elucidate whether or not brain abnormalities are a 
consequence of longstanding refractory epilepsy. Furthermore, the 
study of focal epilepsy at the earliest time-point could allow the devel
opment of prognostic markers of treatment outcome. This is critical for 
patients, as early appropriate treatment is more likely to increase the 
likelihood of seizure freedom (Kwan and Brodie, 2000). Understanding 
how the brain is altered in the earliest stages of human epilepsy will 
likely yield important MRI-markers associated with biological processes 
underlying the disorder, seizure outcome and comorbidities. An early 
marker of pharmacoresistance could enable selected patients to be re- 
routed to alternative or adjunctive treatments at an earlier time-point, 
which would save time, costs and chronic exposure to persistent side- 
effects of anti-epileptic drugs (AEDs). 

The vast majority of adults with NDfE have no MRI-identifiable 
lesion (Liu et al., 2002; Van Paesschen et al., 1997). There are limited 
insights from diagnostic MRI and EEG on how the brain is perturbed at 
the time of epilepsy diagnosis (Pohlmann-Eden et al., 2013). Many 
studies do not reveal cohort-based volumetric alterations in patients 
with NDfE based using conventional quantitative analysis (Liu et al., 
2001, 2002; Hagemann et al., 2002; Salmenpera et al., 2005; Alonazi 
et al., 2019). A recent study in patients with NDfE reported reduced 
volume within the corpus callosum in patients who became seizure-free 
when compared to patients who did not respond to AEDs (Kim et al., 
2017), although this did not survive correction for multiple compari
sons. One reason why volumetric MRI studies are unrevealing in NDfE 
may be because the pathological brain changes that result from the 
development of epileptogenic brain networks are not amenable to 
detection through analysis of gross brain morphometry. It is therefore 
important to investigate patients with more advanced imaging tech
niques that provide insights into the perturbed brain networks at the 
time of diagnosis (Pohlmann-Eden et al., 2013; de Bézenac et al., 2019). 

Epilepsy is a system disorder with abnormal short- and long-range 
inter-ictal network connectivity, as has been shown with electrophysi
ological and functional MRI recordings (Blumenfeld, 2014; Wykes et al., 
2019). As structures within an epileptogenic network are involved in 
generation and expression of seizures and may contribute to the main
tenance and refractoriness of the disorder, neuroimaging approaches 
should endeavour to model these networks. Structural brain networks 
are known to be affected in patients with longstanding refractory focal 
epilepsy and may provide novel prognostic markers of postsurgical 
outcome (Taylor et al., 2018; Bonilha et al., 2015, 2013). For these 
reasons, analysis of brain networks is gathering pace in patients with 
chronic epilepsy (Bernhardt et al., 2015). However, it is not known if 
structural network changes are driven by the chronicity of epilepsy, 
including the long-term use of AEDs, and the potentially deleterious 
effects of recurrent seizures. These issues could be resolved by using 
novel applications of network analysis (connectomics) in patients with 
NDfE. 

Focal onset epilepsy may become pharmacoresistant (Kwan and 
Brodie, 2000), may be associated with memory dysfunction (van 
Rijckevorsel, 2006) and can impact on patient quality of life. Approxi
mately 60% of patients with NDfE will have seizure remission with AED 
treatment, while the remainder may continue to experience seizures 
(Brodie, 2013; Mohanraj and Brodie, 2013). Fewer seizures before the 
commencement of AED treatment, response to the first prescribed AED, 
genetic-generalized epilepsy and the absence of an MRI-identifiable 
lesion have been related to improved AED treatment outcomes (Kwan 
and Brodie, 2000). There are, however, no markers of pharmacoresist
ance that can stratify individual patients at the time of diagnosis. Like 
studies addressing surgical outcome in refractory focal epilepsy (Taylor 
et al., 2018; Bonilha et al., 2015, 2013), network-based approaches may 

provide unique in-vivo imaging prognostic markers of AED treatment 
outcome. 

In the present study we investigated structural network alterations in 
patients with non-lesional NDfE relative to healthy controls. DSI-studio 
(http://dsi-studio.labsolver.org) allows deterministic tractography of 
multi-shell diffusion MRI using a generalized q-sampling imaging tech
nique which is more advanced than the more commonly used diffusion 
tensor imaging technique (Yeh et al., 2010). Q-sampling affords the 
advantage of identifying kissing and crossing fibers by virtue of esti
mating the spin distribution function directly from diffusion MRI giving 
a more accurate representation of the underlying biology (Fan et al., 
2016). Network Based Statistics (NBS, Zalesky et al., 2010) implements 
statistical methods for hypothesis-testing on human connectomes and 
has identified network alterations in other disorders such as depression 
(Tymofiyeva et al., 2017), schizophrenia (Zalesky et al., 2011; Cocchi 
et al., 2014) and other neurodegenerative disorders (Gou et al., 2018; 
Wang et al., 2019a, 2019b). NBS offers multiple-comparison corrected 
whole-brain connectomics with sensitive assessment of large-scale 
structural network alterations. In order to determine whether struc
tural networks have potential as an MRI-marker of pharmacoresistance, 
we also collected two-year AED treatment outcomes after diagnosis and 
explored whether network alterations were related to treatment 
outcome. 

2. Methods 

2.1. Participants 

We studied 27 adults with NDfE (mean age = 33, SD = 11, 12 female) 
and 29 healthy controls (mean age = 32, SD = 11, 16 female). Our study 
received prior approval by the local research ethical committee (refer
ence 14/NW/0332) and informed consent was obtained from each 
participant. Patients with NDfE were recruited from the Walton Centre 
NHS Foundation Trust, Liverpool, UK. Patients were scanned an average 
3.7 months after diagnosis (SD 2.9, range 1–11 months, Alonazi et al., 
2019). Focal epilepsy was diagnosed by expert epileptologists based on 
ILAE classifications and seizure semiology. Seizure history was recorded 
(focal seizures without and with impaired awareness, focal-to-bilateral 
tonic-clonic seizures, focal seizures without and with impaired aware
ness with focal-to-bilateral tonic-clonic seizures). Patients with primary 
generalized seizures, provoked seizures (e.g. drug induced), acute 
symptomatic seizures (e.g. brain injury) or known progressive neuro
logical disease (e.g. brain tumor) or other neurological/psychiatric 
conditions were excluded. None of the controls had a history of neuro
logical/psychiatric conditions. Controls and patients were comparable 
in age and sex. Seven patients were excluded from analysis due to a 
neuroradiologically confirmed lesion (Alonazi et al., 2019) that would 
have biased connectome computation and lead to underpowered ana
lyses. 24-month outcomes were collected; nine patients had persistent 
seizures and eight patients were seizure free. Outcome data was un
available in three patients as these did not have recent clinical ap
pointments. All demographic and clinical information is presented in 
Table 1. 

2.2. MRI acquisition 

Participants were scanned at the Liverpool Magnetic Resonance 
Imaging Centre (LiMRIC) on 3 T MR (Siemens Trio). We acquired an 
isotropic 1 mm T1-weighted (T1w, Magnetization Prepared Rapid 
Gradient Echo sequence with 176 axial slices, TE = 5.57 ms, TR = 2040 
ms, TI = 1100 ms, flip angle = 8◦), isotropic 1 mm T2-weighted (T2w, 
Turbo Spin Echo sequence with 160 axial slices, TE = 355 ms, TR =
3000 ms) and isotropic 3.1 mm multi-shell diffusion MRI (dMRI) with b- 
values of 1000 and 2000 s/mm2, 60 gradients each and a b0 image (72 
axial slices, TE = 104 ms, TR = 5.7 ms, flip angle = 90◦, acceleration 
factor = 2). 
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2.3. Preprocessing 

All preprocessing steps are shown in Fig. 1 on the basis of one par
ticipants’ data. Briefly, connectomes were computed from T1w and 
multi-shell dMRI data. For generation of T1w gray matter segments, 
cortical and subcortical parcellations were computed using Freesurfer 
Version 6 with the Desikan-Killiany atlas (Fischl et al., 2002). As the size 
of parcellated regions within an atlas may influence connectomics, we 
have applied the same analysis on an additional atlas (Destrieux et al., 
2010) and results are summarized and presented in supplementary 
materials. The gray and white matter boundary segmentations were 
manually corrected using the recommended FreeSurfer PialEdits/Con
trolPoints procedures before 82 regions-of-interest were extracted and 
used as network nodes for connectomics (Taylor et al., 2018). The dMRI 
data was preprocessed using FMRIB Software Library (FSL) version 6 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL, Smith et al., 2004) according 
to the ENIGMA dMRI-preprocessing steps to mitigate effects of image 
artifacts (http://enigma.ini.usc.edu/protocols/dti-protocols/), such as 
echo-planar image distortions (Andersson et al., 2003), as published in 
our previous work (Kreilkamp et al., 2019). Briefly, the b0 images were 
brain-extracted and motion-corrected, while distortion-correction was 
achieved by the use of a brain-extracted T2w image. The resulting mean 
b0 image served as a reference volume for motion- and distortion- 
correction on the diffusion-weighted images and the gradient table 
was rotated according to the motion-parameters (Leemans and Jones, 
2009). The root-mean-square values (unit in millimeters) representing 
the mean translational and rotational movement across all intra-cerebral 
voxels from all diffusion-weighted images relative to the first b0 image 
were extracted from the FSL eddy output files ’eddy_movement_rms’. 
We computed the mean of these values across all diffusion-weighted 
images for every participant to perform group-wise comparisons be
tween all patients, patients with persistent seizures, patients who 
became seizure-free, patients with FBTCS, patients without FBTCS and 
controls. 

For generation of white matter connections (edges), DSI-studio 
(Build 27-02-2019, Yeh et al., 2019) was used to perform determin
istic tractography using a higher-order q-sampling imaging (Yeh et al., 
2010) rather than a more simplistic diffusion-tensor reconstruction 
approach. DSI-studio has been demonstrated to provide the most reli
able reconstruction of valid connections (Maier-Hein et al., 2017). Data 
were reconstructed using three shells (B = 0; B = 1000 and B = 2000 s/ 
mm2). The diffusion data were upsampled to isotropic 1.55 mm to allow 
tractography (Ahmadi et al., 2009; Yeatman et al., 2012) and fibers were 
reconstructed using generalized q-sampling imaging with a diffusion 
sampling length ratio of 1.25. The orientation distribution function 
calculation was weighted by the square of the diffusion displacement. 
The step size was 1 mm and quantitative anisotropy (QA) and angular 
threshold were set to 0.1 and 60 degrees respectively. A total of 
5,000,000 streamlines longer than 10 mm and shorter than 300 mm 

Table 1 
Demographic and clinical information for all study participants.   

Controls Patients 

Demographic Information   
N 29 27 
Mean age ± SD in years 32 ± 12 33 ± 11 
Sex (female / male) 16 / 13 12 / 15  

Clinical Information  Lesional Non-lesional 

N – 7 20 
EEG (normal / abnormal) – 7 / 0 17 / 3 
FSA (yes / no) – 0 / 7 2 / 18 
FSIA (yes / no) – 0 / 7 3 / 17 
FBTCS (yes / no) – 5 / 2 11 / 9 
FBTCS: At 24 months (PS / SF / NO) – 1 / 4 / 0 3 / 6 / 2 
At 24 months (PS / SF / NO) – 3 / 4 / 0 9 / 8 / 3 

Note. FSA = focal seizure with awareness; FSIA = focal seizure with impaired 
awareness; FBTCS = focal-to-bilateral tonic-clonic seizure; EEG = electro- 
encephalography; PS = persistent seizures; SF = seizure-free; NO = no outcomes 
at 24 months. 

Fig. 1. Processing steps shown on an example participant. Data was processed with FreeSurfer (T1w), FSL (dMRI), DSI-studio (combined nodes and edges), 
MATLAB (connectivity matrix) and NBS (structural network). As seen from left to right and top to bottom. T1w = T1-weighted MRI; dMRI = diffusion MRI; NBS =
network-based statistics. 
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were calculated. Matrix entries represented edges from tractography 
and were set as present if more than one streamline terminated in two 
nodes derived from segmentations. The average edge diffusion metrics 
were directly calculated from all streamlines connecting two nodes. 
Connectivity matrix thresholding was performed so that edges were 
present in at least 75% of all controls/patients (most common in sample) 
and edges were common to every group (Besson et al., 2014a). 

2.4. Statistics 

All statistical analyses were performed using MATLAB 2018b. Age 
was normally distributed in patients and controls (Lilliefors test p >
0.05), we therefore used an unpaired t-test when testing for differences 
in age of controls and patients. A chi-square test of independence was 
used for analysis of sex distribution differences in controls and patients. 
We also conducted a chi-square test of independence with Yates- 
correction for small sample sizes to calculate whether patients with 
FBTCS (N = 3 in PS) and those without FBTCS (N = 6 in SF) were equally 
distributed across groups of patients with persistent seizures and those 
who became seizure-free. The average root-mean-square motion values 
computed from diffusion-weighted images were tested for normality 
using a Lilliefors test (data non-normally distributed for all groups at p 
< 0.05) and analyzed with an unpaired Mann-Whitney U test to compare 
controls and patients and a Kruskal-Wallis ANOVA for patients with 
persistent seizures, patients who became seizure-free and controls. For 
patient and control group network analysis we performed an unpaired t- 
test within NBS v1.2 running 10,000 permutations for multiple com
parison correction. NBS accounts for controlling Type I errors by 
reducing the number of comparisons based on initial T-score thresholds 
followed by permutation testing for family-wise error correction (Zale
sky et al., 2012). It is therefore necessary to validate significant findings 
across multiple T-score thresholds. T-score thresholds were set to 
1.5–4.0 in increments of 0.1 to investigate significant effects in diffusion 
networks. We used this range of T-score thresholds in NBS to validate the 
robustness of significant findings when comparing patients and controls. 
We have not performed an analysis of streamline count since this mea
sure may be influenced by gray matter parcel size. Furthermore, this 
measure may depend on tractography algorithm, curvature, length, 
width and myelination and may not be considered a good indicator for 
fiber count (Jones et al., 2013). We therefore chose to analyze diffusion 
metrics that will be less affected by parcel size, are commonly analyzed 
in the literature and may provide a better representation of structural 
alterations than streamline count. The diffusion metrics analyzed 
included fractional/quantitative anisotropy (FA/QA) for measurement 
of diffusion directionality based on anisotropic diffusion within voxels; 
mean diffusivity (MD) quantifying the average magnitude of diffusion in 
all directions; radial/axial diffusivity (RD/AD) which provide indication 
on the magnitude of diffusion radially and parallel to the principle di
rection of diffusion in every voxel. Age and sex were used as covariates 
in all analyses. Spearman correlations between clinical characteristics 
(age of onset, seizure type and seizure frequency between diagnosis and 
MRI) and the average of significantly altered diffusion metrics within 
the patient versus control networks were investigated. Results were 
considered significant at p < 0.05. For visualizing NBS networks we 
have selected the exemplary threshold of |T|>=2.7, corresponding to 
two-tailed p = 0.0096 (patients N = 20; controls N = 29; 48 degrees of 
freedom). This threshold was chosen as an example due to its high sig
nificance level in our sample while all other T-scores and edges are 
shown in the figures and in supplementary materials. 

In order to determine the sample size needed to detect significant 
effects when comparing patients who became seizure-free, patients with 
persistent seizures and controls, we conducted an a priori power analysis 
using G*Power3 (Faul et al., 2007). Sufficiently powered sample sizes 
were computed for a one-way fixed-effects ANOVA between three 
groups with a large effect size (|d|>=1) and an alpha value of 0.05. 
Results showed that a total sample of 42 participants with three equally 

sized groups of N = 14 would be required to achieve a power of at least 
0.80. As the power analysis indicated that we were underpowered to 
perform an ANOVA in NBS for subgroup analysis (patients with persis
tent seizures N = 9; patients who were seizure-free N = 8; patients with 
FBTCS N = 11; patients without FBTCS N = 9), we computed Cohen’s D 
effect sizes corrected for small samples based on the estimated marginal 
means corrected for age and sex. The magnitude of Cohen’s D effect sizes 
were interpreted following previously published criteria: d (0.01–0.19) 
= very small, d (0.2–0.49) = small, d (0.5–0.79) = medium, 
d (0.8–1.19) = large, d (1.2–1.99) = very large, and d (>=2.0) = huge 
(Sawilowsky, 2008). We report effect sizes with magnitudes of at least | 
d|>=1. 

3. Results 

Analysis of demographic information did not reveal any significant 
difference in age between patients and controls (t(48) = − 0.2799, p =
0.78) or sex (χ2

(1) = 0.64, p = 0.42). The number of patients with FBTCS 
and those without FBTCS were equally distributed within groups of 
patients with persistent seizures and those who became seizure-free: 
χ2

Yates (1) = 1.5, pYates = 0.22. 
The descriptive statistics for root-mean-square motion values 

computed from the diffusion-weighted images were as follows: controls 
(Mean ± SD = 1.23 ± 0.41), patients (Mean ± SD = 1.42 ± 1.32), pa
tients with persistent seizures (Mean ± SD = 1.84 ± 1.93), patients who 
were seizure free (Mean ± SD = 1.03 ± 0.20), patients with FBTCS 
(Mean ± SD = 1.62 ± 1.77) and patients without FBTCS (Mean ± SD =
1.18 ± 0.27). Unpaired Mann-Whitney U test between controls and 
patients (Z = − 0.50, p = 0.62), patients with FBTCS and those without 
FBTCS (Z = − 0.46, p = 0.65) and Kruskal-Wallis ANOVA between the 
two patient subgroups (SF / PS) and controls (χ2(2) = 2.57, p = 0.28) did 
not reveal any significant differences. 

Patient brain networks showed decreased anisotropy and increased 
diffusivity (QA range = 2.3–2.4; AD range = 2.0–3.5; MD range =
2.0–3.7; RD range = 1.8–3.9) across multiple NBS thresholds relative to 
controls (Fig. 2), but no alterations in FA. Our supplementary analysis 
using the Destrieux atlas also showed decreased QA and increased MD 
and RD across multiple NBS thresholds in patients relative to controls 
(Fig. 1, Suppl), but no alterations in FA or AD. Within the Desikan- 
Killiany atlas, the edges with the largest absolute T scores (|T|) for 
every metric are highlighted in red in Fig. 2 and involved the right pars 
orbitalis, right rostral middle frontal, right pars opercularis, right 
amygdala, right nucleus accumbens and left pericalcarine nodes. The 
right thalamus showed altered edges in all networks (|T|>=2.4 for 
decreased QA and |T|>=2.0 for increased MD/RD/AD; Fig. 2). There 
was also significantly increased AD within a separate network between 
right amygdala and right nucleus accumbens. Fig. 3 shows MD and RD 
value distributions in controls and patients (where patients were color- 
coded for outcome) for networks with significant alterations. There were 
no significant correlations between clinical variables (age of onset, 
history of seizure type and seizure frequency) and network diffusion 
metrics. 

Patients who went on to experience persistent seizures showed 
increased diffusivity and decreased QA and FA for multiple edges as 
demonstrated by the Cohen’s d values (QA min = − 1.4 ; FA min = − 1.6; 
MD max = 1.6; RD max = 1.6; AD max = 1.6) relative to controls. The 
edges with the largest absolute Cohen’s d values (|d|) are presented in 
Fig. 4, Table 1 (Suppl) and included bilateral parietal and left thalamic 
nodes. There were also two edges that demonstrated increased FA 
compared to controls (edge connecting the right lateral orbitofrontal 
node with the left pars orbitalis node and edge between the right lateral 
orbitofrontal node and right banks of the superior temporal sulcus 
node). 

Patients who were seizure free had networks with increased diffu
sivity and decreased QA and FA for multiple edges (Cohen’s d: QA min 
= − 1.4; FA min = − 1.42; MD max = 1.5; RD max = 1.5; AD max = 1.5) 
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relative to controls (Fig. 4, Table 1, Suppl). There was also a single edge 
that demonstrated a large |d| for FA compared to controls (edge con
necting the right superior frontal node with the left insula node). All 
details on edges with large |d| are presented in Table 1 (Suppl) and 
included left thalamic and right temporal and frontal nodes. 

Patients who went on to experience persistent seizures had networks 
with increased diffusivity and decreased QA and FA for multiple edges 
(Cohen’s d: QA min = − 2.3; FA min = − 2.5; MD max = 2.1; RD max =
1.8; AD max = 2.5) relative to patients who became seizure-free (Fig. 4, 
Table 1, Suppl). Conversely, patients who became seizure-free had 
networks with increased diffusivity and decreased QA and FA for a 
different set of edges (Cohen’s d values: QA max = 2; FA max = 2.3; MD 
min = − 1.2; RD min = − 1.5; AD min = − 1.4). All details on edges with 
large |d| are presented in Table 1 (Suppl) and included right frontal, left 
insular/parietal and right thalamic nodes. Patients who had persistent 
seizures showed larger effect sizes in all network metrics than patients 
who became seizure-free when compared to each other and compared to 
controls. 

Patients with FBTCS had decreased quantitative anisotropy in a 
bilateral temporal, parietal and frontal connectome and increased 
diffusivity values when compared to patients without FBTCS in inter- 
hemispheric temporal and frontal edges (Fig. 5, Table 2, Suppl). 
Compared to patients without FBTCS, patients with FBTCS had 57 edges 
with |d|>1.0. The largest decrease in QA and FA was found in an edge 
connecting the left fusiform with left entorhinal node and between right 
parahippocampal and right lingual nodes, respectively. The edge con
necting right precentral and left paracentral nodes showed the largest | 
d| value in MD and RD for patients with FBTCS. The edge with the 
largest increase in AD was between the right entorhinal and left tem
poral pole nodes. 

Compared to patients with FBTCS, patients without FBTCS had 50 
edges with |d|>1.0 (Fig. 5, Table 2, Suppl). The largest decrease in QA 
and FA was found in an edge connecting the right pars opercularis and 
right lateral orbito frontal node and between the right pastriangularis 
and left insula node, respectively. The left lingual and left entorhinal 
edge showed the largest MD and RD effect size increases while the left 
insula and left pericalcarine edge had the largest increase in AD. 

4. Discussion 

Our results indicate that patients with non-lesional focal epilepsy 
have bi-hemispheric structural network alterations at the time of diag
nosis at a group level. Additionally, we have demonstrated large effect 
size differences in bilateral structural networks between patients who 
became seizure-free, patients with persistent seizures and controls. We 
further demonstrate increased bi-hemispheric structural network alter
ations in patients with FBTCS to patients without FBTCS. This may 
suggest that at least some of the structural network alterations reported 
in patients with refractory focal epilepsy may not necessarily emerge as 
a consequence of long-term epilepsy and some may relate to AED 
treatment outcome and the presence of FBTCS seizures. Bilateral 
network alterations seen in our sample are similar to what is reported in 
some studies of patients with refractory focal epilepsy. Patients with 
longstanding focal epilepsy are typically electrophysiologically well- 
characterized, allowing ipsi-/contralateral analysis, as opposed to 
those with a new onset of seizures for whom localization information 
frequently is not readily available. Our study suggests that connectome 
alterations are already present in NDfE. 

Studying patients with NDfE provides a unique opportunity to 
determine brain alterations at the earliest time in human epilepsy 
(Pohlmann-Eden et al., 2013; de Bézenac et al., 2019). This approach is 
more favorable than extrapolating information from cross-sectional 
correlational analyses based on duration of epilepsy and MRI-derived 
measures of pathology as commonly done when studying refractory 
focal epilepsy (Keller et al., 2015; Kreilkamp et al., 2019). Some quan
titative MRI studies in patients with NDfE have not found cohort-based 
hippocampal or cortical atrophy (Liu et al., 2002; Salmenpera et al., 
2005; Alonazi et al., 2019). Advanced imaging techniques, which may 
include diffusion MRI connectivity and network approaches, are in short 
supply in NDfE (Pohlmann-Eden et al., 2013). Park et al. (2020) 
described a graph-theoretical analysis of conventional diffusion-tensor 
imaging and reported that patients with persistent seizures had signifi
cantly lower assortativity coefficient values when compared to patients 
who became seizure-free. According to the authors a lower assortativity 
coefficient makes the network more vulnerable to attack (Park et al., 
2020). This is consistent with our results that indicate reduced anisot
ropy and increased diffusivity in edges of patients with persistent 

Fig. 2. Significant NBS networks in patients vs controls across different T-score thresholds. Networks were visualized with NBSview. Inset shows complete 
node set used for analysis. NBS identified several edges for different T-scores and significant networks are displayed for selected exemplary T-scores for visualization 
purposes. Edges with the highest T-scores are denoted by highlighting the affected node in red along with the connected node and T-score in the subplot titles. L =
left; R = right; A = anterior; P = posterior; rh = right hemisphere; lh = left hemisphere; QA = quantitative anisotropy; MD/AD/RD = mean/axial/radial diffusivity. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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seizures with larger effect sizes relative to those found in patients that 
were rendered seizure-free. Using multi-shell diffusion MRI, we report 
significant network alterations in patients relative to controls. We have 
shown that compared to controls, all patients had altered structural 
connections between frontal (left rostral middle frontal), temporal (left 
entorhinal) and limbic (left posterior cingulate) nodes. 

Patients had bilateral networks with decreased QA and increased 
AD/MD/RD but unchanged FA, which may suggest increased inter- 
axonal space due to altered myelination or white matter atrophy 

(Nagy et al., 2016). Compared to FA, QA makes use of both non-zero b- 
shells in our data, is less sensitive to the partial volume effects of 
crossing fibers and free water, suggesting that it is a robust index for 
reproducible tractography (Yeh et al., 2013). This distinct methodo
logical nature can explain the discrepant results between FA and QA 
values. Our findings here suggest, that in patients with NDfE QA is a 
more sensitive marker than FA and can be useful when determining 
presence of FBCTS at this early stage of epilepsy. In contrast to this, 
when comparing patients with PS to patients who were rendered 

Fig. 3. Significant mean (A) and radial diffusivity (B) connectograms (|T|>¼2.7) with scatterplots. All diffusivity metrics are in units of 10− 3 mm2/s. Net
works were visualized with BrainNet Viewer (Xia et al., 2013). Node size represents number of edges. Edge thickness and color represent magnitude of T-statistic. 
Inset shows complete node set (N = 82) with edges used for analysis. L = left; R = right; A = anterior; P = posterior; MD/RD = mean/radial diffusivity. 
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seizure-free, FA showed more edges and edges with larger effect sizes 
compared to QA. However, as noted earlier, the FA metric may include 
more partial volume effects due to crossing fibers and free water than 
QA. 

The thalamus, which has important roles in seizure initiation, 
propagation and modulation of focal seizures (Blumenfeld et al., 2009; 
Guye et al., 2006; Filipescu et al., 2019; Wykes et al., 2019; Keller et al., 
2015; Caciagli et al., 2020; He et al., 2020), may be a crucial structural 
hub as an imaging marker of pharamacoresistance or FBTCS. Studies in 
genetic generalized epilepsy have demonstrated altered thalamic con
nectivity (Sinha et al., 2019; Wang et al., 2019a, 2019b), which 
measured shortly after diagnosis, could be related to AED treatment 
outcomes (Wang et al., 2019a, 2019b). Longstanding focal epilepsy with 
poor post-surgical outcome has been linked to altered thalamocortical 
connections using probabilistic tractography (Keller et al., 2015) and 
connectomics where temporal and parietal networks have been shown 
to be altered in patients with persistent seizures (Bonilha et al., 2013). 
Furthermore, the insula has been implicated in temporal plus surgical 
failures (Barba et al., 2017). Compared to all other groups, patients who 
had persistent seizures showed larger effect sizes in all network metrics. 
Previous research in longstanding focal epilepsy has shown that more 
widespread brain connectivity alterations are associated with surgical 
refractoriness, which may be a marker of a wider epileptogenic network 
in those with persistent postoperative seizures (Keller et al., 2015; 
Bonilha et al., 2013). The present study is the first to report wider 
network alterations in pharmacoresistant patients at the time of diag
nosis of focal epilepsy. Importantly, the largest effect size difference for 
patients who had persistent seizures relative to patients who were 
rendered seizure-free was found in the edge connecting the right 

thalamic and the left supramarginal node (increased AD) and in edges 
connecting the left insula with frontal nodes (decreased FA). Patients 
who became seizure-free showed the largest effect size difference in the 
edge connecting the left isthmus cingulate and lateral occipital nodes 
(decreased FA). 

One study related altered thalamocortical circuits to disorder 
severity and demonstrated a relationship between the extent of impaired 
connectivity and the number of generalized seizures in juvenile 
myoclonic epilepsy (O’Muircheartaigh et al., 2012). Caciagli et al., 2020 
have proposed altered thalamic functional profiles as imaging bio
markers of active secondary generalization. Sinha et al. (2020, PRE
PRINT) have demonstrated greater and more widespread structural 
network alteration in patients with temporal lobe epilepsy and FBTCS 
when compared to patients without FBTCS. This is supported by our 
results as patients with FBTCS showed bilateral alterations in all metrics 
and more widespread bilateral decreased QA and more white matter 
alterations in edges involving the (left) thalamus and frontal, temporal 
and parietal nodes when compared to patients without FBTCS. 

One methodological limitation in this multiple b-shell diffusion 
study pertains to the relatively low isotropic voxel spatial resolution. It 
was necessary to upsample our data to allow tractography as previously 
reported (Ahmadi et al., 2009; Yeatman et al., 2012). As there is no 
consensus or standard optimal parcellation scheme for connectomics, 
and there is no a priori hypothesis as to which parcellation is most 
appropriate, we chose the commonly used Desikan-Killiany atlas as in 
other epilepsy studies (Taylor et al., 2018, 2015; Munsell et al., 2015). 
Nevertheless, we have also used a higher resolution parcellation scheme 
(Taylor et al., 2017; Besson et al., 2014b) in supplementary analysis. 
Compared to the analysis using the Desikan-Killiany atlas we have found 

Fig. 4. NBS networks with small-sample-size cor
rected Cohen’s D magnitudes > 1.0 in outcome 
subgroup comparisons. Networks were visualized 
with BrainNet Viewer using the red-white-blue color
map (He, 2020). Edge thickness and color represent 
magnitude of Cohen’s D. Inset shows complete node set 
with edges used for analysis. SF = seizure-free; PS =
persistent seizures; L = left; R = right; A = anterior; P 
= posterior; QA/FA = quantitative/fractional anisot
ropy; MD/AD/RD = mean/axial/radial diffusivity. (For 
interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this 
article.)   

Fig. 5. NBS networks with small-sample-size corrected 
Cohen’s D magnitudes > 1.0 in FBTCS subgroup compar
isons. Networks were visualized with BrainNet Viewer using 
the red-white-blue colormap. Edge thickness and color repre
sent magnitude of Cohen’s D. Inset shows complete node set 
with edges used for analysis. SF = seizure-free; PS = persistent 
seizures; L = left; R = right; A = anterior; P = posterior; QA/ 
FA = quantitative/fractional anisotropy; MD/AD/RD = mean/ 
axial/radial diffusivity. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web 
version of this article.)   
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similar results using the Destrieux atlas with respect to decreased 
anisotropy and increased diffusivity, although different connectomes 
have been shown to be significant. This was expected since the small 
sample size and higher atlas resolution will affect the entire connectome, 
which can ultimately lead to sparse connectomes and loss of statistical 
power. It is likely that parcellation schemes providing significantly more 
nodes may result in different connectomic alterations and may help to 
identify imaging network markers of pharmacoresistance in larger 
samples. There are also some limitations of our study that are an 
inherent reflection of studying patients with epilepsy at the time of 
diagnosis, which include: (a) a limited sample size as patients with a new 
diagnosis of epilepsy may not be seen at epilepsy specialist centers, (b) 
incomplete outcome data and (c) inclusion of patients with different foci 
(as focus localisation is infrequently ascertainable at the time of diag
nosis). It is difficult and frequently impossible to determine seizure foci 
at diagnosis because of the few – single in many cases – epileptic events 
based on patient / witness testimony and unrevealing inter-ictal EEG 
(Kim et al., 2006). This is in contrast to longstanding refractory focal 
epilepsy where multiple imaging and clinical investigations have been 
conducted and from which a detailed picture of the likely seizure focus 
can be derived (Leek et al., 2020; Taylor et al., 2018). Nevertheless, our 
study revealed evidence of early disrupted structural networks in pa
tients with NDfE who were deemed to be MRI-negative by expert neu
roradiologists. This is an important finding demonstrating the usefulness 
of connectomics in studying the earliest stages of human epilepsy. 

In conclusion, our findings indicate that structural brain connectivity 
is impaired in patients with epilepsy at the time of diagnosis. Further
more, the extent of impairment may be related to seizure severity. This 
suggests that such impairments may be established prior to the onset of 
habitual seizures and do not necessarily result from the chronicity of the 
disorder or long-term AED use. Data presented here also indicates that a 
structural network marker of pharmacoresistance may be identifiable at 
the time of epilepsy diagnosis. It is possible that further network 
reconfiguration occurs in response to uncontrolled seizures; larger lon
gitudinal imaging studies from the point of epilepsy diagnosis are 
needed to provide deeper insights. 
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