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Abstract

Transfer entropy (TE) is a recently proposed measure of the information flow between coupled 

linear or nonlinear systems. In this study, we suggest improvements in the selection of parameters 

for the estimation of TE that significantly enhance its accuracy and robustness in identifying the 

direction and the level of information flow between observed data series generated by coupled 

complex systems. We show the application of the improved TE method to long (in the order of 

days; approximately a total of 600 h across all patients), continuous, intracranial 

electroencephalograms (EEG) recorded in two different medical centers from four patients with 

focal temporal lobe epilepsy (TLE) for localization of their foci. All patients underwent ablative 

surgery of their clinically assessed foci. Based on a surrogate statistical analysis of the TE results, 

it is shown that the identified potential focal sites through the suggested analysis were in 

agreement with the clinically assessed sites of the epileptogenic focus in all patients analyzed. It is 

noteworthy that the analysis was conducted on the available whole-duration multielectrode EEG, 

that is, without any subjective prior selection of EEG segments or electrodes for analysis. The 

above, in conjunction with the use of surrogate data, make the results of this analysis robust. These 

findings suggest a critical role TE may play in epilepsy research in general, and as a tool for robust 

localization of the epileptogenic focus/foci in patients with focal epilepsy in particular.
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I. Introduction

Research in the field of nonlinear dynamics has recently focused upon the analysis of data 

from coupled nonlinear systems [1], [2]. The identification of the direction of information 

flow and estimation of the strength of interaction between data series from such systems, 

especially when their structure is unknown, hold promise for the understanding of the 

mechanisms of their interactions, and for a subsequent design and implementation of 

appropriate schemes to control a possibly erratic behavior these and similar systems in 

nature may exhibit over time. A relevant example is the epileptic brain and the intermittent 

occurrence of epileptic seizures.

Commonly used tools for the estimation of linear dependencies between data series are the 

linear cross-correlation in the time domain and the cross-coherence in the frequency domain 

[3]. A mathematically more general (nonparametric, model-free) and statistically rigorous 

approach for the detection of linear and nonlinear interdependences between time series is 

the mutual information (MI). However, MI being a symmetrical function with respect to its 

arguments, cannot detect directional flow of information and causal relationships unless one 

of the time series is time delayed. Although the introduction of a time delay in MI is an 

important improvement to this goal, the resulting measure presents a set of difficulties. One 

important issue is that its estimation requires a relatively large amount of high quality data 

(noise-free, stationary, that is, characteristics rarely met in real world data where 

experimental signals are typically short, nonstationary and likely to be masked at least by 

measurement noise), especially if the causal effect under investigation is weak. A second 

issue is the poor sensitivity and specificity of MI to existing and/or nonexisting delays in the 

causal structure of the analyzed time series, respectively [4].

To study the directional aspect of interactions, many other approaches have been employed 

[4]–[9]. One of these approaches is based on the improvement of the prediction of a series’ 

future values by incorporating information from another time series. Such an approach was 

originally proposed by Wiener [6] and later formalized by Granger in the context of linear 

regression models of stochastic processes. Granger causality was then extended to nonlinear 

systems by 1) applying to local linear models in reduced neighborhoods, estimating the 

resulting statistical quantity and then averaging it over the entire dataset [4], or 2) 

considering an error reduction that is triggered by added variables in global nonlinear 

models [5].

Despite the relative success of the above approaches in detecting the direction of interactions 

in special cases, they essentially are model-based (parametric) methods (linear, as well as 

nonlinear), i.e., either make assumptions about the structure of the interacting systems or the 

nature of their interactions, and as such they may suffer from the shortcomings of modeling 

systems/signals of unknown structure. For a detailed review of parametric and 

nonparametric(linear, as well as nonlinear) measures of causality, we refer the reader to [10] 

and [11]. To overcome this problem, an information theoretic approach to identify the 

direction of information flow and quantify the strength of coupling between complex 

systems/signals has recently been suggested [7]. This method was based on the study of 
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transitional probabilities of the states of systems/signals under consideration. The resulted 

measure was termed Transfer Entropy (TE).

We have shown [8], [9] that the direct application of the method as proposed in [7] may not 

always give the expected results, and that tuning of certain parameters involved in the TE 

estimation plays a critical role in detecting the correct direction of the information flow 

between time series. We herein propose a methodology to also test the significance of the TE 

values using surrogate data analysis. We then employ the improved TE method to define 

three new measures, the net transfer entropy NTE, the spatial average net transfer entropy 

(SANTE) and the temporal probability distribution (PD) of SANTE in a study for 

localization of the epileptogenic focus.

The organization of the rest of this paper is as follows. The measure of TE, the 

improvements, practical adjustments and new measures we introduced, are described in 

Section II. In Section III, the application of these measures to EEG for identification of the 

epileptogenic focus is presented. Discussion of these results and conclusions are given in 

Section IV and V, respectively.

II. Methodology

A. Transfer Entropy

Consider a kth-order Markov process [12] described by

P xn + 1 ∣ xn, xn − 1, …, xn − k + 1 = P xn + 1 ∣ xn, xn − 1, …, xn − k (1)

where P is the conditional probability of a random process X being in state xn+1 at time n + 

1. Equation (1) implies that the probability of occurrence of a particular state xn+1 depends 

only on the past k states xn, …, xn − k + 1 ≡ xn(k) of the system. The definition given in (1) 

can be extended to the case of Markov interdependence of two random processes X and Y as

P xn + 1 ∣ xn(k) = P xn + 1 ∣ xn(k), yn(l) (2)

where yn(l) are the past l states of the second random process Y. This generalized Markov 

property implies that the state xn+1 of the process X depends only on the past k states of the 

process X and not on the past l states of the process Y. However, if the process X also 

depends on the past states (values) of process Y, the divergence of the hypothesized (a 

priori) transition probability, P xn + 1 ∣ xn(k)  [left-hand side of (2)], from the true underlying 

transition probability of the system, P xn + 1 ∣ (xn(k), yn(l))  [right-hand side of (2)] can be 

quantified using the Kullback–Leibler measure [13]. Thus, the Kullback–Leibler measure 

quantifies the TE from the driving process Y to the driven process X, and it is given by

TE(Y X) = ∑
n = 1

N
P xn + 1, xn(k), yn(l) log2

P xn + 1 ∣ xn(k), yn(l)

P xn + 1 ∣ xn(k) . (3)
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The values of the parameters k and l are the orders of the Markov process for the two 

coupled processes X and Y, respectively. The value of N denotes the total number of the 

available points per process in the state space.

A simple manipulation of (3) permits a decomposition of the transfer entropy in terms of 

conditional entropies [14] and justifies the use of TE as a measure of information flow from 

Y to X:

TE(Y X) = H xn + 1 ∣ xn(k) − H xn + 1 ∣ xn(k), yn(l) (4)

where H xn + 1 ∣ xn(k)  is the information gained about the future state xn+1 by using the 

information from xn(k) (i.e., the past k states of X), and H xn + 1 ∣ (xn(k), yn(l))  is the information 

gained about the future state xn+1 by using the information from yn(l) (i.e., the past l states of 

Y) in addition to xn(k). Thus, TE(Y → X) is the additional information gained from process 

Y about the future state of the process X, and therefore it can be seen as the information 

flow from the process Y to process X. Equation (4) also implies that when the processes X 
and Y are independent, the value of TE(Y → X) is zero.

In search of optimal k, it would generally be desirable to choose the parameter k as large as 

possible in order to find an invariant value (e.g., for conditional entropies), but in practice 

the finite size of any real dataset imposes the need to find a reasonable compromise between 

finite sample effects and approximation of the actual value of probabilities. Therefore, the 

selection of k and l plays a critical role in obtaining reliable values for the TE from real data. 

In addition, the estimation of TE also depends on the neighborhood size (radius r) used in 

the state space for the calculation of the involved joint and conditional probabilities. The 

value of radius r in the state space defines the maximum norm distance in the search for 

neighboring state space points. The involved probabilities are not accurately estimated for 

large r values, and may eventually lead to erroneous estimates of TE.

B. Improved Computation of TE

1. Selection of k: The value of k (order of the driven process) used in the 

calculation of TE(Y → X) [see (3)] represents the dependence of the state xn+1 

of the system on its past k states. A classical linear approach to autoregressive 

(AR) model order selection, namely the Akaike information criterion (AIC), has 

been applied to the selection of the order of Markov processes. Evidently, AIC 

suffers from substantial overestimation of the Markov process order in nonlinear 

systems and therefore is not a consistent estimator [15]. Arguably, a method to 

estimate this parameter is the delayed mutual information [16]. The delay d at 

which the mutual information of X reaches its first minimum can be taken as the 

estimate of the period within which two states of X are dynamically correlated 

with each other. In essence, this value of d minimizes the Kullback–Leibler 

divergence between the dth and higher order corresponding probabilities of the 

driven process X [see (1)], i.e., there is minimum information gain about the 

future state of X by using its values that are more than d steps in the past. Thus, 

in units of the sampling period, d would be equal to the order k of the Markov 

Sabesan et al. Page 4

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2021 January 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



process. If the value of k is severely underestimated, the information gained 

about xn+1 will erroneously increase due to the presence of yn, and would result 

to an incorrect estimation of TE. A straightforward extension of this method for 

estimation of k from real-world data may not be possible, especially when the 

selected value of k is large (i.e., the large embedding dimension of state space for 

finite duration data in the time domain) [14]. This may thus lead to an erroneous 

calculation of TE. Therefore, from a practical point of view, a statistic that may 

be used is the correlation time constant te, which is defined as the time required 

for the autocorrelation function (AF) to decrease to 1/e of its maximum value 

(maximum value of AF is 1) [16]. AF is an easy metric to compute over time, it 

has been found to be robust in many simulations, but it only detects linear 

dependencies in the data. Despite the latter drawback, we have used AF to 

approximately estimate k per data segment generated either from simulation 

models or the epileptic brain. We would like to emphasize that estimation of k 
was conducted per data segment under consideration (e.g., 10.24 s of EEG per 

electrode site in the epilepsy application). As we show below and elsewhere [8], 

[9], the derived results for the detection of the direction and level of interactions 

justify such a compromise in the estimation of k.

2. Selection of l: The value of l (order of the driving system) was chosen to be 

equal to 1. The justification for the selection of this value for l is the assumption 

that the current state of the driving system is sufficient to produce a considerable 

change in the dynamics of the driven system within one time step (and hence 

only immediate interactions between X and Y are assumed to be detected in the 

analysis herein). When larger values for l were employed (i.e., a delayed 

influence of Y on X), detection of information flow from T to X was possible 

too. These latter results are not presented in this paper.

3. Selection of Radius r: The multidimensional transitional probabilities involved in 

the definition of TE [(3)] are calculated by joint probabilities using the 

conditional probability formula P(A|B) = P(A, B)/P(B). One can then 

reformulate the TE as

TE(Y X) = ∑
n = 1

N
P xn + 1, xn(k), yn(l) log2

P xn + 1, xn(k), yn(l) P xn(k)

P xn + 1, xn(k) P xn(k), yn(l)
. (5)

From the above formulation, it is clear that probabilities of a vector in the state 

space at the nth time step are compared with ones of vectors in the state space at 

the (n+1)th time step, and therefore the units of TE are in bits/time step, where 

time step in simulation studies is the algorithm’s (e.g., Runge–Kutta) iteration 

step. In real life applications (like in the EEG) the time step corresponds to the 

sampling period of the sampled (digital) data. The multidimensional joint 

probabilities in (5) are estimated through the generalized correlation integrals 

Cn(r) in the state space of embedding dimension P = k + l + 1[17] as
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Pr xn + 1, xn(k), yn(l) = 1
N ∑

m = 0

N − 1
Θ r −

xn + 1 − xm + 1

xn(k) − xm(k)

yn(l) − ym(l)
= Cn + 1(r) (6)

where Θ(x > 0) = 1, Θ(x = 0) = 0, |·| is the maximum distance norm, and the 

subscript (n+1) is included in C to signify the dependence of C on the time index 

n [note that averaging over n occurs in the estimation of TE, using (6) into (3)]. 

In the rest of the paper we use the notation Cn(r) or Cn+1(r) for C 
interchangeably. Equation (6) is in fact a simple form of a kernel density 

estimator where the kernel is the Heaviside function Θ. We found that the use of 

a more elaborate kernel (e.g., a Gaussian or one which takes into account the 

local density of the states in the state space) than the Heaviside function does not 

necessarily improve the ability of the measure to detect direction and strength of 

coupling. In order to avoid a bias in the estimation of the multidimensional 

probabilities, temporally correlated pairs of points are excluded from the 

computation of Cn(r) by means of the Theiler correction and a window of (p − 1) 

* l = k in duration [18].

The estimation of joint probabilities between two different time series requires 

concurrent calculation of distances in both state spaces [see (5)]. Therefore, in 

the computation of Cn(r), the use of a common value r* of radius r in both state 

spaces is desirable. In previous publications ([8], [9]), using simulation examples 

(unidirectional as well as bidirectional coupling in two and three coupled 

oscillator model configurations), we have found that the TE values obtained for 

only a certain range of r accurately detect the direction and strength of coupling. 

Typically, these r values corresponded to the ones for which we observed a quasi-

linear region in the ln Cn(r) versus ln r curve [19]. Although such an estimation 

of r* is possible in noiseless simulation data, for physiological data sets that are 

always noisy and the underlying functional description is unknown, it is difficult 

to estimate an optimal value r* simply because a linear region of ln Cn(r) versus 

ln r may not be apparent. It is known that for small r values, the presence of noise 

in the data will be predominant [20], [21] and over the entire space (high-

dimensional). This causes the distance between neighborhood points to increase. 

Consequently, the number of neighbors available to estimate the 

multidimensional probabilities at the smaller scales may decrease and it would 

lead to a severely biased estimate of TE. On the other hand, at large values of r, a 

flat region in ln Cn(r) may be observed (saturation). In order to avoid the above 

shortcomings in the practical application of this method (e.g., on EEG), we 

approximated TE as the average of TEs estimated over an intermediate range of 

values (from σ/5 to 2σ/5; where σ is the standard deviation of the raw, time 

series data). The decision to use this range for r was made on the practical basis 

that r less than σ/2 typically (well-behaved data) avoids saturation and r larger 

than σ/10 typically filters a large portion of A/D generated noise (simulation 

examples offer corroborative evidence for such a claim). Even though these 
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criteria are soft (no exhaustive testing of the influence of the range of r on the 

final results was performed herein), it appeared that the proposed range for r 
constitutes a very good compromise (sensitivity and specificity-wise) for the 

subsequent detection of the direction and magnitude of flow of entropy.

C. Statistical Significance of TE

The statistical significance of the values of TE was tested using the method of surrogate 

analysis. Since TE calculates the direction of information transfer between systems by 

quantifying their conditional statistical dependence, a random shuffling applied to the 

original driver data series (e.g., Y) destroys the temporal correlation and significantly 

reduces the information flow TE(Y → X). Thus, in order to estimate the statistically 

significant values of TE(Y → X), the null hypothesis that the current state of the driver 

process Y does not contain any additional information about the future state of the driven 

process X was tested against the alternate hypothesis of a significant time dependence 

between the future state of X and the current state of Y. One way to achieve this is to 

compare the estimated values of TE(Y → X) (i.e., the TE xn + 1 ∣ (xn(k), yn(l)) ), thereafter 

denoted by TEo, with the TE values estimated by studying the dependence of future state of 

X on the values of Y at randomly shuffled time instants (i.e., TE xn + 1 ∣ (xn(k), yp(l)) ), 

thereafter denoted by TEs, where p ∈ 1, … , N is selected from the shuffled time instants of 

Y. The above described surrogate analysis is valid when l = 1; for l > 1, tuples from original 

Y, each of length l, should be shuffled instead.

The shuffling was based on generation of white Gaussian noise and reordering of the 

original data samples of the driver data series according to the order indicated by the 

generated noise values (i.e., random permutation of all indices 1, … , N and reordering of 

the Y time series accordingly). Transfer entropy TEs values of the shuffled datasets were 

calculated at the “optimal” values of r from the original data. If the TE values obtained from 

the original time series (TEo) were greater than Tth standard deviations from the mean of the 

TEs values, the null hypothesis was rejected at the α = 0.01. level. (The value of Tth depends 

on the desired level of confidence 1 – α, and the number of the shuffled data segments 

generated, that is, the degrees-of-freedom of the test.)

D. Detecting Causality Using Transfer Entropy

Since it is difficult to expect a truly unidirectional flow of information in real-world data 

(where flow is typically bidirectional), we have defined a causality measure we called NTE 

that quantifies the driving of Y by X as

NTE(Y X) = TE(Y X) − TE(X Y ) . (7)

Positive values of NTE(Y → X) denote that Y drives (causes) X, while negative values 

denote the reverse case. Values of NTE close to zero may imply either equal bidirectional 

flow or no flow of information, where the values of TE will help decide between these two 

plausible scenarios.
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III. Application to Epilepsy

Epilepsy is a disorder of the brain with intermittent occurrences of transitions to seizures, 

that is, massive electrical discharges that usually propagate from a focal pathological area to 

normal sites of the brain and disrupt its normal operation [22]. Thus, significant alteration of 

information flow is expected to occur ictally (during seizures), as well as possibly 

interictally (between seizures).

An epileptogenic focus (also called focal zone in the medical literature to include the 

possibility of a larger spatial extent than the one the available recording electrodes can 

record from, as well as to denote involvement of more than one brain structures) is 

electrophysiologically defined as the brain’s area that first (resolution of seconds to 

milliseconds) exhibits the electrographical onset of epileptic seizures [23]. The EEG signals 

are very helpful in providing evidence for epilepsy, but their visual inspection is often not 

reliable in identifying the epileptogenic focus, especially in the presence of artifacts and 

when there is a not well-defined spread of the epileptoformic activity. The primary objective 

in presurgical evaluation of patients, who are candidates for ablative surgery for the 

treatment of epilepsy, is to identify the region responsible for generating the patient’s 

habitual seizures. Usually, resection of the focal tissue is sufficient to substantially reduce or 

permanently abate epileptic seizures in carefully selected uni-focal patients [24]. The 

hypothesis we consider herein is that the epileptogenic focus acts as the driver (source of 

information) for the normal brain sites that participate in a seizure activity (sink of 

information) over extensive periods of time. One could then identify the epileptogenic focus 

as the brain site or sites that mostly and for a prolonged period drive the rest of the brain. We 

apply the TE methodology to quantitatively test this hypothesis in patients with clinically 

well-defined focus/foci in the temporal lobe (amygdala, hippocampus, cerebral cortex).

A. Recording Procedure and EEG Data

Only a few studies have examined the information flow changes in the epileptic brain. Most 

of these studies have been single-center studies with a limited number of patients analyzed, 

of a very limited duration and selectively analyzed EEG recordings per patient and study, 

and more importantly, only homologous structures in the two brain hemispheres (e.g., left 

versus right hippocampus; [25], [26]). In this paper, we test our methodology on EEG data 

from two distinct epilepsy centers, namely the Shands Hospital, Gainesville, FL, and the 

Barrow Neurological Institute, Phoenix AZ, that use different recording electrode montages. 

Four patients (two from each center), who underwent presurgical evaluation via long-term 

intracranial EEG recordings and subsequent successful (Engel’s class I, [24]) surgery with 

removal of the clinically identified epileptogenic focus, were chosen for dynamical analysis 

of their stored presurgical, long-term, continuous EEG recordings of days in duration (more 

than 600 h—see Table I). Informed consent for participation in this study was obtained from 

all patients. The recording procedures and characteristics of the recorded EEG data are 

further described below.

1. EEG From Shands Teaching Hospital, Gainesville, Florida [See Fig. 1(a)] : The 

two patients (Patients 1 and 2) from this medical center underwent a stereotactic 

placement of bilateral depth electrodes in the hippocampi (RTD electrode strip in 
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the right hippocampus with RTD6 posterior, and RTD1 anterior and adjacent to 

right amygdala; LTD eelctrode strip in the left hippocampus with LTD6 

posterior, and LTD1 anterior and adjacent to the left amygdala). In addition, two 

subdural electrode strips, LOF and ROF were placed bilaterally over the 

orbitofrontal lobes (LOF1 to LOF4 in the left and ROF1 to ROF4 in the right 

lobe; LOF1, ROF1 being most mesial and LOF4, ROF4 most lateral). Finally, 

two subdural electrode strips, LST and RST were placed bilaterally over the 

temporal lobes (LST1 to LST4 in the left and RST1 to RST4 in the right; LST1, 

RST1 being more mesial and LST4 and RST4 being more lateral). The 

video/EEG recording was performed using the Nicolet BMSI 4000 EEG 

machine. EEG signals were recorded using an average common reference with 

band pass filter settings of 0.1–70 Hz. The data were sampled at 200 Hz with a 

10-bit quantization.

2. EEG From Barrow Neurological Institute, Phoenix, Arizona [See Fig. 1(b)]: The 

two patients (Patients 3 and 4) from this center underwent stereotactic placement 

of depth electrodes using the Kelly frame system under MRI guidance. 8-contact 

flexible Adtech depth electrodes with custom spacing were placed, with 

bilaterally symmetric positioning, in amygdala (LA and RA), mid hippocampus 

(LH, RH), orbitofrontal areas (LO, RO), and in frontal cortex (LF and RF) from 

superior sagittal region near supplementary motor area and cingulate (higher 

electrode numbers denote a more posterior location). For all electrodes, contacts 

#1 were mesial and contacts #8 were most distal. Electrodes in the temporal lobe 

were oriented orthogonally to temporal bone, allowing sampling of limbic 

(contacts 1–4) and temporal neocortical structures (contacts 5–8). There was a 

0.5 cm distance between electrodes. Video/EEG monitoring was performed using 

the Nicolet BMSI 6000 EEG machine. EEG signals were recorded with an 

average common reference, using amplifiers with an input sensitivity range of 0–

200 μV/mm and a frequency range of 0.5–70 Hz. Prior to storage, the data were 

sampled at 400 Hz using an analog to digital (A/D) converter with 12-bit 

quantization.

B. TE and its Application to EEG for Localization of the Epileptogenic Focus

In the analysis of EEG signals, we kept the l-Markov order of the driving system equal to 1, 

to mainly investigate direct (not delayed) interactions between involved subsystems. As an 

estimate of the k-Markov order of the driven system, for each (sequential in time) 10.24 s 

pair of EEG segments analyzed over the complete space of electrode pairs, we used the 

previously described correlation time constant. To avoid searching for an elusive value r* of 

the radius per EEG segment, we averaged the TE values estimated over intermediate values 

of r within the range [σ/5 < in r < 2σ/5].

TE was estimated from successive, nonoverlapping, electrocorticographic (ECoG) and depth 

EEG segments of 10.24 s in duration (2048 points per segment at 200 Hz sampling rate, and 

4096 points per segment at 400 Hz sampling rate) for days of EEG recording per patient. 

Two values of TE, one in each direction (i → j or j → i), were estimated for every electrode 

pair (i, j) per 10.24 s of EEG segment.
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Subsequently, per EEG segment, we estimated the NTE(i → j) [see (7)] from the TE(i → j) 
values for each electrode pair (i, j) with j ≠ i. It is to be noted that NTE(i → j) may attain 

only one value (positive if information flow from (i → j) exceeds the one from (j → i), and 

negative otherwise) per EEG segment positioned at a time point t. The null hypothesis that 

the thus obtained values of NTE per electrode site i are not statistically significant was then 

tested. Net TE values from the shuffled EEG datasets (NTEs) were obtained per electrode 

and EEG segment. If an NTEo value (i.e., from analysis of the original EEG time series) was 

greater than Tth = 2.94 standard deviations from the mean of the NTEs values, the null 

hypothesis was rejected at α = 0.01 for this EEG data segment (14 degrees-of-freedom; 15 

surrogate sets were generated per EEG data segment to speed up calculations—no 

significant differences in focus localization results were observed due to this relatively small 

number of generated surrogate data).

Then, in each EEG segment, the average of the statistically significant NTE per electrode 

site i over j was estimated, that is, the average of the values of the statistically significant 

NTE(i → j), in pairs (i, j) where electrode site significantly drives (sends information to) site 

j. We have called this spatial average of the statistically significant interactions at the level of 

the net TE within (t, t + 10.24 s), the spatial average net transfer entropy (SANTEt(i)) at 

electrode site i and time t, and we defined it as

SANTEt(i) = 1
N − 1 ∑

j ≠ i

N
NTEo

t (i j) (8)

where NTEo
t (i j) are statistically significant NTEs, that is, they satisfy the condition 

NTEo
t (i j) − μ NTEs

t (i j) /σ NTEs
t (i j) > Ttℎ, where |·| denote absolute value and 

μ NTEs
t (i j)  and σ NTEs

t (i j)  are, respectively, the mean and standard deviation of the 

15 NTEs values generated per 10.24 s EEG segment at time t, Tth is the threshold of 99% 

significance (Tth = 2.94), and N here represents the total number of available electrodes for 

analysis.

For illustration purposes, we plot SANTEt(i) per electrode i and 10.24 s EEG segment over 3 

h for Patient 1 in Fig. 2(a), and over 6 h for Patient 2 in Fig. 2(b). From Fig. 2(a) we have a 

strong indication that SANTE values are large in the focal area (RTD2, RTD3 in this patient) 

even in the interictal period, and thus it constitutes supporting evidence about the hypothesis 

that the epileptogenic focus is the driver of information flow in the epileptic brain. Since the 

patients typically experience multiple seizures over relatively short period in the epilepsy 

monitoring units (EMUs), one can postulate that the consistently high values of focal driving 

during the interictal period marks a continued existence of an active underlying pathology. 

However, that was not the case for Patient 2. From Fig. 2(b) it is clear that SANTE, without 

any meta-processing, does not unequivocally localize the focal zone in Patient 2.

Algorithm for Focus Localization

1. Step 1: The hypothesis that the epileptogenic focus drives other brain sites for the 

longest period of time was tested by first estimating the probability PD(i) that site 

i drives other brain sites j within a time interval T as equal to the normalized 
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fraction of the period T where SANTEt(i) is positive. Thus, a maximum 

likelihood estimate of the driving probability of each electrode i is thus estimated 

as

PD(i) = 1
NT ∑

t = 1

NT
Θ SANTEt(i) > 0 (9)

where Θ is the Heaviside function and NT denotes the total number of 10.24 s 

EEG segments within the considered period T.

2. Step 2: The outliers of the driving probability density function PD(i) will be those 

electrodes that significantly drive the other electrodes for a longer period of time. 

An outlier detection method, that does not make any distributional assumptions, 

utilizes Chebyshev’s inequality to calculate the detection threshold Tu [27]. 

Since we are interested in identifying candidate electrodes that have high values 

of PD, Tu can be calculated as an upper bound on this distribution. A PD value 

higher than Tu is considered to be an outlier. The Chebyshev’s inequality that 

gives a bound for the probability of the data that fall out-side k standard 

deviations from the mean, is

P( ∥ X − σ ∥ ≥ kσ) ≤ 1
k2 (10)

where μ is the mean (sample mean is used to approximate μ), σ is the standard 

deviation (approximated by the sample standard deviation s), and k is the number 

of standard deviations of interest.

The calculation of Tu is a two-stage process. Stage 1 is used to remove possible 

outliers from the calculation of mean and standard deviation in the Chebyshev 

inequality. Stage 2 uses the distribution of the truncated data from Stage 1 to 

calculate the mean and standard deviation of the distribution. A value p = 0.01 

for the one-tail probability for Stage 2 is chosen. Following (10), the value of k is 

determined and Tu is then calculated as

Tu = μ + kσ . (11)

The obtained Tu value is then applied to the original distribution PD to identify 

outliers. All electrodes i that have values of PD(i) > Tu are marked as candidate 

focal electrodes (outliers). In this Step, to avoid in-sample bias in the estimation 

of Tu for each patient, the PD(i) estimated over the first half of the EEG record 

(training data set) were used to calculate Tu according to the procedure 

delineated above. This value of Tu, was then used to detect outliers in the PD(i) 
estimated from the rest (testing portion) of the EEG dataset for each patient.

3. Step 3: If the electrodes selected from Step 2 reside in one hemisphere, the focus 

is lateralized. However, if the selected electrodes reside in both hemispheres, the 

focus cannot be lateralized and recommendation for unilateral surgical resection 
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cannot typically be reached. In the case of existence of dependent foci (e.g., 

primary and secondary), that reside in different hemispheres, the primary focus 

would by definition drive the secondary one (NTE of the primary focus should 

then be significantly larger than the one of the secondary focus). In addition, one 

would expect that each focus would drive electrodes in the hemisphere it resides 

more than ones in the contralateral hemisphere (focus/hemisphere assumption). 

In the case of independent foci, one focus should not significantly drive the other 

(i.e., the NTE between the two foci should not be statistically different). In an 

attempt to further investigate such a situation with two selected (independent or 

dependent) foci in different hemispheres, and based on the above described 

focus/hemisphere assumption, we developed a final Step in our epileptogenic 

focus localization algorithm. In this step (Step 3), we recalculate the SANTE(i) 
and PD(i) measures for each site i selected as outlier in Step 2. However, we now 

estimate the SANTE’s spatial average of NTEs only over sites j (j ≠ i) that reside 

in the same hemisphere as site i does (ipsilateral hemisphere). We have called PD*

the thus derived intra-hemispheric PD. We estimate PD*  over the entire data using 

sequential nonoverlapping 6 h EEG epochs (i.e., one PD*  value per 6 h EEG 

epoch). The final results in this study did not critically depend on the 6 h length 

of the EEG epochs. Finally, we rank all sites i entered in Step 3 according to their 

respective PD* (i) values (using nonparametric Mann–Whitney’s U test). Thus, 

candidate focal sites from Step 2 are further refined with respect to their focality 

in this Step 3.

C. Focus Localization Results

Fig. 3 shows the distribution PD(i) at each electrode i estimated for each of the 4 patients 

enrolled in this study. (Each PD(i) was estimated from nonoverlapping 6 h epochs over the 

whole testing portion of the EEG record per patient.) The threshold Tu (horizontal line in 

this figure) was estimated from the training portion of the EEG record per patient using the 

approach described previously in Step 2. All candidate focal electrodes, that is, the ones with 

PD larger than Tu, are shown with grey vertical bars.

The candidate focal electrodes obtained per patient from Step 2 are listed in column 3 of 

Table II. The results indicate that the candidate focal electrode sites are in very good 

agreement with the ones determined clinically by the physicians as focal sites (see column 2, 

Table II) in three out of four patients (Patients 1, 3, and 4). In these three patients, the 

corresponding PD values of the candidate focal electrodes were in the range 0.50–0.79. 

Therefore, it appears that the candidate focal electrodes have a significantly positive net 

information flow (NTE) towards all other electrodes they interact with for a long period of 

time (50%–79% of the days-long testing EEG dataset per patient). The agreement of the 

identified focus with the one derived from the clinical assessment supports our hypothesis 

that focal electrodes are the most active and most frequent drivers in the epileptic brain 

information-wise. [It is noteworthy that the alternate hypothesis that focus is an information 

sink could not localize the focus in any of the patients—results not shown here.] 

Interestingly, the range of PD values of the focus also suggests that the focal electrodes drive 
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“normal” electrodes even at other times than just during seizures (which here are 

approximately 2 min in duration) or periods before seizures onset (typically seconds in 

duration for clinical assessment of the focal zone). For example, in Patient 1, we found that 

PD for the focal electrode RTD2 is 0.69, which means that RTD2 is the most prominent 

driver of brain sites for approximately 69 h within the 100.1 h testing EEG dataset in this 

patient.

In Patient 2, in addition to RTD3, which was within the clinically determined focal zone for 

this patient, another candidate focal electrode was determined to be LST3. This patient had a 

poorer postoperative outcome (seizures were not totally abated). Interestingly, the PDs of the 

candidate focal electrodes in this patient were lower (between 0.43 and 0.48) than the ones 

in the other patients. To examine the possibility of existence of two foci (dependent or 

independent), we proceeded to estimate the intra-hemispheric PD*  for each of the two 

candidate focal electrodes LST3 and RTD3, following the procedure described in Step 3 of 

Section-III-B.

1. Determining Intra-Hemispheric Driving of Candidate Focal Electrodes: RTD3 

exhibits a significantly higher intra-hemispheric PD*  than LST3 at α = 0.001 

(one-tailed nonparametric Mann–Whitney U test). This means that the rate of the 

net information outflow of RTD3, towards the rest of the electrode sites in the 

right hemisphere, is significantly larger than the corresponding one of LST3 

towards the electrode sites in the left hemisphere [see Fig. 4(a)]. Therefore, 

according to our assumption, we conclude that RTD3 resides in the zone of a 

major focus, which is in agreement with the clinical assessment, and LST3 in the 

zone of a minor focus in this patient.

2. Determining Inter-Hemispheric Driving of Candidate Focal Electrodes: If we 

extend the analysis one step further, we are able to characterize the foci identified 

in Patient 2 as dependent (primary or secondary), or “independent” foci. In terms 

of our methodology, a consistent way to do this is to compare the net transfer of 

entropy NTE* estimated over each of the 23 6-h EEG segments and only 

between two electrodes, RTD3 and LST3.

In the left and right panel of Fig. 4(b), we plotted the mean and standard deviation of the 23 

inter-hemispheric NTE* (RTD3 → LST3) and NTE*(LST3 → RTD3) respectively. It is 

observed that both and NTE*(RTD3 → LST3) and NTE* (LST3 → RTD3) are significantly 

larger than zero at the α = 0.05 significance level, which means that LST3 and RTD3 do 

interact. Even though the mean value of NTE* (RTD3 → LST3) is larger than the mean 

value of NTE*(LST3 → RTD3), using the nonparametric Mann–Whitney test we find that 

this difference is not statistically significant (P < 0.6), implying that RTD3 and LST3 appear 

to be “independent” foci. Therefore, Patient 2 was more probably bi-focal than uni-focal.

For completion purposes, Step 3 analysis was also performed in the other three patients. In 

these patients, Step 3 gives us the opportunity to rank the focal electrodes with respect to the 

degree of the “focality/pathology” of their dynamics, defined by the value of their PD* (i). The 

results of this analysis have been tabulated in Table II, column 4. From this Table, it can be 
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observed that in Patients 1, 3, and 4, the electrode that is anatomically closer to the clinically 

determined epileptogenic focus has the largest PD*  among all candidate focal electrodes. It 

thus appears that the proposed methodology may also improve the accuracy of focus 

localization, and hence the success of epilepsy surgery, even when applied only in interictal 

periods.

IV. Discussion

In this study, we suggested and implemented improvements for the estimation of TE, a 

measure of the direction and the level of information flow between coupled subsystems, 

built upon it to introduce new measures of information flow, and we showed their 

application to the epileptic brain. The two innovations we introduced in the TE estimation 

were: 1) the distance in the state space at which the required probabilities are estimated, and 

2) the use of surrogate data to evaluate the statistical significance of the TE values, and then 

include only those values in the estimation of the average TE over time. A multivariate 

extension of the TE measure to detect information flow between more than two subsystems 

is straightforward (e.g., see [28] for such an extension of other measures).

A new measure of causality, namely net TE (NTE(i → j)), was then introduced for a system 

i driving a system j [see (7)]. NTE of the system i measures the outgoing net flow of 

information from the driving i to the driven j system. For focus localization, two more new 

quantities were necessary to be defined per system (brain recording site i) and for every 

10.24 s of EEG data.

1. We called the spatial average of the statistically significant interactions NTE(i → 
j) over all systems j ≠ i, SANTE(i) (see Fig. 2). Thus, this quantity is specific to 

each electrode site i and measures the significant net information flow from i to 

the rest of all other electrode sites j.

2. We estimated the probability PD(i) of SANTE(i) being positive over an extensive 

period of time, that is, the percentage of time system i drives the rest of the 

system it significantly interacts with within a specified period of time (e.g., 6 h 

herein). A robust outlier detection method was then used to classify the electrode 

sites with respect to their PD(i)s and to identify candidate focal sites as the ones 

with PD(i) values greater than a suitably identified out-of-sample threshold.

Results from such an information flow-based analysis of long-term EEG data, recorded from 

four temporal lobe epileptic patients at two different epilepsy centers, showed a reliable 

localization of the epileptogenic focus in all patients. In three focal patients the focus was 

correctly (i.e., in agreement with the clinical assessment) localized by SANTE and PD, while 

in one focal patient (Patient 2) meta-processing of SANTE over time, and definition of PD*

was necessary, under the assumption that primarily focal sites drive more frequently the sites 

residing in their own hemisphere than the ones in the contralateral hemisphere (see Fig. 4). 

The location of the “major” focus correlated well with the clinical assessment (including the 

location of seizures’ onset and the outcome of the surgery. Existence of an additional focus 

was also concluded from our analysis in this patient. Interestingly, while all other three 

patients became seizure-free, Patient 2 continued to have seizures of reduced frequency after 
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the operation, which gives credence to the finding from this analysis of a second, less potent 

but independent focus in the contralateral hemisphere.

Finally, the average probability PD of driving of the identified foci across our three uni-focal 

patients was 0.69. Thus, on average, the focus appeared to be driving the brain for at least 

69% of the duration of the multiple-hour testing EEG data in these patients. This suggests 

that there are many times during the interictal period that a focus may be active. Detecting 

the time periods when the focus is active could help us understand the underlying 

mechanisms of ictogenesis (seizure generation), as well as design and implement timely 

interventions for seizure control [29]–[31].

V. Conclusion

In the estimation of Transfer Entropy, we introduced improvements that were shown to be 

critical in obtaining consistent and reliable results for driver identification. The application 

of this methodology to epileptogenic focus localization in four patients with focal temporal 

lobe epilepsy produced results in agreement with the clinical assessment of location of the 

focus. This is the first study to use analysis of long-term continuous EEG recordings from all 

available electrodes, that is, without subjective selection of EEG segments and electrodes, 

from different epilepsy centers and recorded with different electrode montages, to identify 

the epileptogenic focus/foci. Therefore, the results of the presented methodology appear to 

be fairly robust and may constitute the basis for the development of efficient software 

platforms for prospective localization of the epileptogenic focus in order to do the following.

1. Complement and/or replace the gold standard for focus localization currently in 

use in clinical practice.

2. Identify the extent of the focal zone.

3. Assist in the fast and accurate diagnosis of epilepsy by identifying single or 

multiple foci from interictal EEG. This could reduce the long hospitalization 

time currently required for focus identification, and hence reduce the economic 

burden for patients with epilepsy and the healthcare system.

4. Assist in the treatment of epilepsy by more accurately identifying the brain areas 

to operate upon, or to implant stimulators/drug infusion devices therein.
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Fig. 1. 
Schematic diagram showing depth and subdural electrode placement. The electrode 

montages used for recording EEG signals (a) at Shands Hospital, Gainesville, FL and (b) at 

Barrow Neurological Institute, Phoenix, AZ (see text for description of acronyms of the 

electrode positions).
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Fig. 2. 
Long-term dynamics of SANTE per electrode site over time for epileptogenic focus 

localization in a 4 h EEG from Patient 1 (left panel), a 6 h EEG from Patient 2 (right panel). 

The two vertical lines in the right panel denote seizures of 2–3 min in duration. Highest 

values of SANTE persist for a long period at the focal zone of Patient 1 (Right temporal 

lobe: RTD2, RTD3). The epileptogenic zone is not clear for Patient 2 and metaprocessing 

was deemed necessary.
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Fig. 3. 
Epileptogenic focus localization via the probability PD of SANTE(i) over the testing (second 

half of the entire recording) EEG per electrode i and patient. The grey vertical bars indicate 

the electrode sites selected as focal sites by the procedure in Step 2 that detects outliers in 

the PD(i)’s graph above. The horizontal lines denote the estimated value Tu of from the PD(i) 
in the first half of the data of the EEG recording per patient (see text for details).
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Fig. 4. 
Patient 2: (a) Mean and standard deviation of intra-hemispheric PD* (i)s at the electrode sites i 

determined in Step 2 as PD(i) outliers (see Fig. 3). Using the nonparametric Mann–Whitney 

test, the ProbPD* (RTD3) < PD* (LST3) < 0.001. (b) Mean and standard deviation of 23 inter-

hemispheric NTE*(RTD3 → LST3) and NTE*(LST3 → RTD3). Using the nonparametric 

Mann–Whitney test, we find that NTE*(RTD3 → LST3) is not significantly larger than 

NTE*(LST3 → RTD3) (P < 0.6), implying that RTD3 and LST3 are rather “independent” 

foci.
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TABLE I

Patients and EEG Data Characteristics

Patient ID Number of available 
intrcranial electrodes

Duration of EEG 
recording (hours)

Number of seizures in the 
EEG data

Focus (Clinical assessment)

1 28 200.2 24 Right Hippocampus (RTD)

2 28 143.4 18 Right Hippocampus (RTD)

3 40 113.6 24 Left Amygdala (LA)

4 40 168.4 29 Left Amygdala (LA)

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2021 January 28.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sabesan et al. Page 25

TABLE II

Epileptogenic Focus Localization by SANTE Versus Clinical Assessment

Patient ID Focus (Clinical Assessment/Clinical 
Outcome)

Focus Localization (PD) Focus Lateralization / Focus Localization 
(PD* )

1 Right Temporal lobe (RTD: RTD2, 
RTD3)

Right Temporal lobe (RTD2) Right hemisphere Right Temporal lobe (RTD2)

2 Right Temporal lobe (RTD: RTD3, 
RTD4)

Right/Left Temporal lobe (RTD3, 
LST3)

Right+Left hemisphere Right/Left Temporal 
lobe (RTD3 > LST3)

3 Left Temporal lobe (LA: LA1, LA2, 
LA3)

Left Temporal lobe (LA1, LA2) Left hemisphere Left Amygdala (LA1 > LA2)

4 Left Temporal lobe (LA: LA1, LA2, 
LA3)

Left Temporal lobe (LA1, LA2, 
LA3)

Left hemisphere Left Amygdala (LA1> LA2> 
LA3)

>decreasing order of driving at P <0.001(Mann-Whitney U test)
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