
https://doi.org/10.1369/0022155420959146

Journal of Histochemistry & Cytochemistry 2021, Vol. 69(2) 137–155
© The Author(s) 2020
Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1369/0022155420959146
journals.sagepub.com/home/jhc

Jo
ur

na
l o

f 
H

is
to

ch
em

is
tr

y 
&

 C
yt

oc
he

m
is

tr
y

Review

Introduction

Advances in reagents, methodologies, analytic plat-
forms, and tools have resulted in a dramatic transfor-
mation of the research pathology laboratory.1,2 The 
development of digital cameras, computer hardware 
and software, and microscopes that convert stained 
tissue sections on glass slides into high-resolution 
whole slide digital images (WSDIs) has been central to 
these advances. Access to WSDIs, which can be 
viewed over the Internet using virtual microscopy, has 
resulted in the growth of the subfield of digital pathol-
ogy, a paradigm shift in the pathology laboratory.

The focus of digital pathology is the analysis and 
management of digitized glass slides of either clinical 
or research specimens.3 Two ways to perform analysis 
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Summary
Advances in reagents, methodologies, analytic platforms, and tools have resulted in a dramatic transformation of the 
research pathology laboratory. These advances have increased our ability to efficiently generate substantial volumes of data 
on the expression and accumulation of mRNA, proteins, carbohydrates, signaling pathways, cells, and structures in healthy 
and diseased tissues that are objective, quantitative, reproducible, and suitable for statistical analysis. The goal of this 
review is to identify and present how to acquire the critical information required to measure changes in tissues. Included 
is a brief overview of two morphometric techniques, image analysis and stereology, and the use of artificial intelligence 
to classify cells and identify hidden patterns and relationships in digital images. In addition, we explore the importance 
of preanalytical factors in generating high-quality data. This review focuses on techniques we have used to measure 
proteoglycans, glycosaminoglycans, and immune cells in tissues using immunohistochemistry and in situ hybridization to 
demonstrate the various morphometric techniques. When performed correctly, quantitative digital pathology is a powerful 
tool that provides unbiased quantitative data that are difficult to obtain with other methods. (J Histochem Cytochem 69: 
137–155, 2021)
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of WSDIs are human-supervised analysis and com-
puter analysis. Human-supervised analysis began 
when scientists first introduced contrast to tissues 
using histochemical techniques such as hematoxylin 
and eosin (H&E) stain to identify cellular subsets, ana-
tomic structures, and pathological alterations in tissue 
(Fig. 1A and B). Computer analysis of WSDIs has 
allowed researchers to efficiently obtain substantial 
volumes of data that are objective, quantitative,  
reproducible, and suitable for statistical analysis. 

Several companies, such as Visiopharm (Hoersholm, 
Denmark), Indica Labs (Albuquerque, NM; Halo), and 
Definiens (Munich, Germany), have developed 
advanced morphometric analysis software. Open-
source software is also available for computer analy-
sis, including ImageJ, Fiji, Icy, and CellProfiler. More 
recently, QuPath became the first open-source image 
analysis software capable of analyzing WSDIs.4 
Throughout this review, methods we have used to 
measure the chondroitin sulfate proteoglycan (PG), 

Figure 1.  Histochemical stains provide contrast to tissues, which is required to visualize cells, structures, and molecules. (A) The 
unstained lung tissue from a mouse is transparent, making it difficult to visualize structures and cells. (B) An H&E-stained lung tissue 
obtained from a mouse 9 dpi with influenza virus has contrast, allowing for the visualization of neutrophils and macrophages (black 
arrow) in alveoli. An accumulation of lymphocytes and macrophages (gray arrow) is observed in the peribronchiolar space around a 
bronchiole. (C) A tissue section adjacent to the section shown in (B) with positive immunostaining for the chondroitin sulfate proteogly-
can, versican (brown). The gray arrow highlights an accumulation of versican in the peribronchiolar space of the same bronchiole shown 
in (A). Positive staining for versican on alveolar septa is also observed. Hematoxylin staining of nuclei (blue) provides the morphological 
details required to identify neutrophils and macrophages (black arrow) in alveoli. (D) Quantitative digital pathology was performed on 
WSDIs of lung tissue obtained from mice after oropharyngeal treatment with PBS (vehicle control) or 9 dpi with influenza virus (PR/8). 
The analysis showed a significant increase in versican accumulation in lungs at 9 dpi using the Mann–Whitney test, *p<0.03 with n=4 
mice/group, values are mean ± SEM. Scale bar (A, B, and C), 100 μm. Abbreviations: AV, alveolus; BL, bronchiole lumen; dpi, days post-
infection; H&E, hematoxylin and eosin; PBS, phosphate-buffered saline; WSDI, whole slide digital image.
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versican, and the glycosaminoglycan (GAG), hyaluro-
nan (HA), in tissues are presented to illustrate how to 
perform quantitative digital pathology using immuno-
histochemistry (IHC), affinity histochemistry, and in 
situ hybridization (ISH).

Proteoglycans are dynamic molecules with com-
plex macromolecular structures that are essential in 
biology.5–8 The basic structure of PGs includes a core 
protein with one or more covalently attached GAG 
side chain(s). GAGs are long linear negatively 
charged polymers of repeating disaccharides classi-
fied into four groups: HA, chondroitin sulfate/derma-
tan sulfate, heparan sulfate/heparin, and keratan 
sulfate. Most GAGs are synthesized and attached to 
a core protein in the Golgi; the exception is HA, which 
is synthesized at the plasma membrane.9–11 The PG 
family of proteins encompasses 43 distinct genes 
with numerous alternatively spliced variants divided 
into four major classes: intracellular, cell surface, 
pericellular, and extracellular PGs.5,9 Cell-associated 
PGs include intracellular and cell surface PGs. For 
example, serglycin is an intracellular PG found in 
hematopoietic and endothelial cells. Cell surface PGs 
include syndecans, which are single transmembrane 
domain proteins, and glypicans, which are proteins 
that are attached to the cell membrane through a gly-
cosylphosphatidylinositol anchor.9,12–14 Pericellular 
PGs, such as perlecan, agrin, and collagen XVIII, are 
found in the basement membrane zone of cells.15 The 
extracellular PGs include the small leucine-rich PGs, 
such as biglycan, decorin, and lumican, and the HA- 
and lectin-binding PGs (hyalectans), such as versi-
can and aggrecan.5,9,16,17

Gaining histological insight into how PGs and GAGs 
modulate cellular mechanisms requires efficient analy-
sis tools. Manual and semiquantitative analysis tech-
niques tend to be tedious and less precise than 
desired, resulting in the potential for introducing unin-
tended errors into a study. The goal of this review is to 
address the critical steps and information required to 
objectively measure changes to PG and GAG expres-
sion and accumulation in tissues. To accomplish this 
goal, we provide a brief overview of image analysis, an 
analytical technique that measures objects in two-
dimensional (2D) tissue sections, and stereology, an 
analytical technique that uses the spatial interpretation 
of 2D tissue sections to measure objects in three-
dimensional (3D) tissues or organs. The application of 
artificial intelligence (AI) algorithms to automatically 
segment images, classify cells, and identify hidden 
patterns and relationships in digital images is also dis-
cussed. This is followed by a discussion of critical pre-
analytical considerations required to obtain robust and 
reproducible data when performing quantitative digital 

pathology. We also explore important elements of the 
preanalytical tests, which include protocols for valida-
tion and optimization of antibodies for IHC assays and 
appropriate positive and negative controls for IHC and 
ISH. This review focuses on the use of formalin-fixed 
paraffin-embedded (FFPE) tissue, which is often used 
for quantitative IHC and ISH studies.

Quantitative Digital Pathology

Digital Imaging and Whole Slide Scanning

Digital image acquisition is the conversion of an 
object by a sensor into a digital signal that can be 
processed by a computer and visualized on a com-
puter screen. The development of whole slide images 
means that digital slides can be viewed, managed, 
and shared from the Cloud and analyzed on a com-
puter monitor. The development of automated soft-
ware to extract relevant data from whole slide images 
has resulted in the rapid expansion of computerized 
analysis, often referred to as quantitative digital 
pathology.18,19 Whole slide images offer an advan-
tage as they are amenable to precise and reproduc-
ible data extraction that can be efficiently analyzed 
with automated open-source and commercially avail-
able software developed for image analysis and ste-
reology. For example, the accumulation of versican 
was measured in tissue samples obtained from the 
lungs of mice exposed to either vehicle control or 
H1N1 influenza virus strain, A/PR/8/34 (PR/8), using 
WSDI and image analysis (Fig. 1C and D). This study 
showed a significant increase in the accumulation of 
versican in the lungs of mice 9 days post-infection 
(dpi) with PR/8 when compared with controls (15.37 
± 0.78%, vs 5.80 ± 1.01%, p<0.03, respectively). An 
important advantage of using tissues and histo-
chemical stains to measure alterations in PGs is the 
ability to acquire morphological and contextual 
details from tissues such as information about physi-
ological processes occurring in the lungs infected 
with influenza virus—for example, the migration of 
immune cells into the airways of the lungs of mice 
infected with influenza virus, which on day 9 after 
infection most often occurs in regions staining posi-
tive for versican (Fig. 1B and C). Generation of qual-
ity WSDIs is central to all quantitative digital analysis 
workflows and heavily impacted by preanalytical fac-
tors, as shown in Fig. 2.

Two-dimensional Image Analysis

Image analysis is a morphometric technique for 
extracting data from digital images. Guidelines for 
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performing image analysis have been described in 
detail.20–22 Image analysis is based on the evaluation 
of individual pixels or groups of pixels that meet spec-
ified criteria defining the target objects for analysis, 
enabling image segmentation.22 The segmented 
image is then used to quantitate an area (defined by 
the known area of the individual pixels involved) of 
specific features, such as the area of positive staining 
for the antigen of interest in tissue (Fig. 2B). For 
example, affinity histochemistry was performed using 
biotinylated HA-binding protein to detect and quanti-
tate the accumulation of HA in the lungs of a mouse 
treated with lipopolysaccharide (LPS), a component 
of the cell wall of gram-negative bacteria.23 WSDIs of 
lung tissue stained for HA (Fig. 3A) were segmented 
using Visiopharm software (Visiopharm A/S) to seg-
regate HA-stained regions as brown pixels from 
unstained lung tissue (Fig. 3B). The segmented 
image was then used to calculate the relative area of 
HA staining in mouse lungs using thresholding, so 
pixels above a specific threshold are equally counted 
(Fig. 3C and D). The relative area of staining or, in this 
case, the %Total lung is calculated using the 
HA-stained pixels (yellow pixels) as the numerator 
and the total pixels measured, which is the HA-positive 
pixels (yellow pixels) plus the unstained tissue (blue 

pixels), as the denominator (Fig. 3C). The significant 
increase in HA accumulation in lungs following expo-
sure to LPS compared with control (19.71 ± 2.94% vs 
9.14 ± 3.01%, p<0.04, respectively) provides evidence 
that the increased expression and accumulation of 
HA is an integral part of the immune response to lung 
infection caused by gram-negative bacteria.23,24 The 
advantage of performing image analysis is that once 
the protocols for segmenting an image are devel-
oped, one can rapidly obtain quantitative data using 
automated imaging software that performs analysis 
on WSDIs (Fig. 3E).

An important often overlooked element of image 
analysis is that it provides spatial information about 
cellular subsets, anatomic structures, and pathologi-
cal alterations in tissue and has been used to 
describe the striking complexity of spatial interac-
tions among immune cells in healthy and diseased 
tissues.25–29 To better understand how PGs and 
GAGs shape cellular phenotype in healthy and dis-
eased tissues, the spatial relationships between cel-
lular subsets and PGs using multiplex IHC or ISH 
can be defined. For example, ISH performed with 
probes for CD68, a marker for macrophages and 
dendritic cells, and versican mRNA, shows colocal-
ization of versican in a subset of CD68-positive cells 

Figure 2.  (A) Workflow for performing quantitative digital pathology on 2D tissue sections using image analysis and stereology. Blue 
shading designates preanalytical factors, which are procedures a tissue undergoes before quantitative analysis. Gray shading designates 
generation of whole slide digital images, and green shading designates quantitative analysis of digital images. (B) Workflow for image 
analysis, a 2D analysis technique used to obtain quantitative data from tissue sections stained with histochemical stains, IHC, or ISH. 
(C) Workflow for stereology, a 3D analysis technique that is considered the gold standard for quantitative analysis of tissue sections. 
A critical preanalytical step often required when performing stereology is the need to obtain a reference volume, which is the volume 
of tissue, organ, or biopsy before processing of the tissue. Abbreviations: 2D, two-dimensional; 3D, three-dimensional; IHC, immuno-
histochemistry; ISH, in situ hybridization.
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in lungs of mice infected with influenza type A virus 
(IAV) at 9 dpi (Fig. 4). The colocalization of versican 
in a subset of CD68-positive cells provides support-
ing evidence that increased expression of versican 
by macrophages or dendritic cells is a component of 
the host response to viral infection in the epithelial 
and peribronchiolar compartments of lungs. This 
image-based approach provides important spatial 

information required to understand complex biologi-
cal processes occurring in tissues. It will, therefore, 
complement single-cell transcriptomics, a technique 
that performs RNA sequencing of dissociated cells. 
In Fig. 4B, the preanalytical workflow for performing 
ISH highlights the need for proper tissue sampling, 
which is discussed in a later section. The ability to 
measure alterations to mRNA in tissue using ISH 

Figure 3.  Image analysis using whole slide digital imaging and automated image analysis software provides quantitative data on the rela-
tive amount of positive staining for HA in lungs of mice treated with PBS or LPS. (A) Positive immunostaining for HA (brown) in lung tis-
sue obtained from a mouse 48 hr after oropharyngeal instillation of LPS. HA accumulation is observed in alveolar septa, peribronchiolar 
(gray arrow), and perivascular (purple arrow) spaces. Hematoxylin (blue) is the counterstain used to provide contrast, which allows for 
visualization of neutrophils within an alveolus (black arrow). (B) Segmentation of the digital image shown in (A) using Visiopharm Image 
Analysis Software where yellow pixels designate lung tissue that stains positive for HA and blue pixels define unstained lung tissue. (C) 
Formula used to determine the relative area of lung tissue stained positive for HA. (D) Accumulation of HA is significantly increased in 
the lungs of mice treated with LPS. Values are mean ± SEM with n=4 for each group. *Significantly different (p<0.04) than mice treated 
with PBS using the Mann–Whitney test and GraphPad Prism. (E) Workflow for quantification of HA in WSDIs using image analysis. Scale 
bar (A and B), 100 μm. Abbreviations: Av, alveolus; BL, bronchiole lumen; BV, blood vessel; HA, hyaluronan; LPS, lipopolysaccharide; PBS, 
phosphate-buffered saline; WSDI, whole slide digital image.
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and image analysis is discussed in the section on 
AI/machine learning.30

Stereology

Stereology is an analytical technique that is design-
based and, in contrast to image analysis, is divorced 
from the limitations imposed by 2D assumption-based 
analysis techniques. Its potential and applications to 
biological structures have been described in  
detail.21,31–38 Design-based stereology relies on (1) 
uniform random sampling of the entire volume of con-
cern and (2) unbiased questioning using geometric 
probes that question their target tissue for the pres-
ence or absence of an object. Geometric probes are 

always paired with their target objects such that the 
number of hits of the probe on the target object invari-
ably sum to three dimensions. The probes are super-
imposed over digital images to enable extrapolation of 
quantitative 3D data on structures, cells, and molecules 
in an organ or tissue biopsy. These design-based ste-
reological probes allow for the measurement of several 
parameters, including the total volume of an organ, 
local volumes, surface area or length of structures in an 
organ, cross-sectional area, and diameter.34,35,39 
Design-based stereology accurately measures cell 
size and number within an organ.31,32,36 For example, 
counting objects in tissues, a zero-dimensional task, is 
performed using the design-based 3D volumetric 
probe, the disector, which is based on two tissue 

Figure 4.  (A) In situ hybridization provides evidence of colocalization of versican (red) and CD68 mRNA (green) in cells in the lungs 
obtained from a C57BL/6J male mouse 9 dpi with influenza virus. Black arrows identify cells positive for CD68 and versican mRNA 
among bronchiolar epithelial cells and in the peribronchiolar space. Gray arrows identify cells stained positive only for CD68 in the 
peribronchiolar space and adjacent to alveoli. (B) Workflow for in situ hybridization includes fixation in formalin and proper sampling 
using a cutting instrument that sections lung tissue into 2 mm sections that were then processed into 4 mm sections. In situ hybridiza-
tion was performed on these tissue sections using RNAscope kits (Advanced Cell Diagnostics [ACD]; Newark, CA) on a Leica Bond 
Rx (Leica Biosystems; Nussloch, Germany). The Hamamatsu-HT 9600 Nanozoomer Digital Pathology System (Hamamatsu Photonics; 
Hamamatsu City, Japan) converted the stained tissue section into a WSDI. Scale bar, 10 µm. Abbreviations: AV, alveolus; BL, bronchiole 
lumen; dpi, days post-infection; WSDI, whole slide digital images.
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sections within a single block; the volume of the probe 
can then be defined by the area of the sections that 
were sampled and the distance between the sections. 
More specifically, the disector comprises three ele-
ments: (1) a counting rule that uses a pair of optical or 
physical tissue sections that are separated by a 
defined distance (h) determined by the height of the 
object being counted; (2) an integral test system with 
test points; and (3) an unbiased 2D counting frame 
with a known area.35,40,41

A recent design-based stereology study used the 
physical disector and tissue sections from airway biop-
sies to gain a better understanding of the mechanisms 
regulating airway hyperresponsiveness in patients 
with asthma.42 For these studies, the location of mast 
cells was defined and measured in two compartments, 
the submucosal and epithelial compartments. The 
analysis was performed on airway biopsies obtained 
from normal human subjects and patients with asthma. 
These tissue samples were fixed in methyl Carnoy’s 
solution before embedding in paraffin. To ensure that 
all portions of the airway biopsies were sampled, 
design-based stereology sampling techniques were 
used to obtain two serial tissue sections from the block 
that were separated by a distance of 6 µm. WSDIs of 
the two tissue sections were obtained using the 
Hamamatsu-HT 9600 Nanozoomer Digital Pathology 
System (Hamamatsu Photonics; Hamamatsu City, 
Japan). The WSDIs of the two tissue sections were 
imported into and aligned using the Visiopharm 
Autodisector module (Visiopharm A/S). Uniform ran-
dom sampling of the two WSDIs was performed, and 
a counting probe was superimposed on the two 
aligned digital images. To estimate the number and 
location of mast cells in the tissue biopsies, the two 
digital images with a disector height of 6 µm (i.e. physi-
cal distance between the two sections) were defined 
as the “reference” and “look-up” sections (Fig. 5). Mast 
cell nuclei coming into view in the “reference” were 
counted if they were not present in the “look-up” sec-
tion. A point associated with each counting frame was 
used to determine the reference volume of the submu-
cosa and the epithelium. For this example, there were 
no mast cells in the initial look-up section. To increase 
efficiency, the “reference” and “look-up” sections can 
be reversed as demonstrated in Fig. 5, where a mast 
cell nucleus is present in the new reference section, 
which is now the right panel, and not in the corre-
sponding “look-up” section, the left panel. Proper sam-
pling techniques of both the airway biopsy and digital 
images ensured that accurate measurements of mast 
cells were made even though these cells may not be 
uniformly distributed in airways. Using this approach, 
the physical disector provided measurements of the 

volume density of mast cells in the submucosal and 
epithelial compartments of airway biopsies and 
showed a shift in mast cells from the submucosa to the 
airway epithelium. These data provided new informa-
tion showing that mast cells are strongly associated 
with increased airway hyperresponsiveness and iden-
tified mast cells as regulators of type 2 inflammation in 
patients with asthma.42 This approach could be easily 
adapted to measure the association of immune cells 
with specific PGs in a tissue section to provide quanti-
tative information about changes in PG volume and 
distribution within a section and how that change is 
correlated with alterations in the spatial location of 
select immune cells. Guidelines for performing design-
based stereology using stereological probes have 
been described in detail.21,31–34,36,42–48

When designing experiments using stereology, 
preplanning is essential for studies so that a refer-
ence volume of the tissue to be studied can be 
obtained before tissue processing (Fig. 2C). 
Preplanning is also required to ensure proper sam-
pling protocols such as uniform random sampling 
are implemented to make sure that all components 
of a 3D organ have an equal chance of being  
sampled.31,32,34,45–47,49,50 When performed correctly, 
stereology is more precise and requires minimal or 
no assumptions to obtain quantitative measure-
ments from tissues, thus enabling unbiased data. 
For these reasons, stereology has become the gold 
standard for quantitative digital pathology (Table 1).

Stereology vs Image Analysis

Whereas image analysis is easily automated and ame-
nable to high-throughput analysis, a limitation of stere-
ology is the amount of time required to correctly 
perform a study even with computational advances 
such as whole slide digital imaging and automated 
analysis software (Table 1). Nevertheless, image anal-
ysis is less rigorous and only provides representative 
2D measurements of relative changes for antigens, 
mRNA, cells, or structures in tissues. Image analysis 
also requires assumptions which may introduce bias 
into a study (Table 1).51 A common assumption that is 
often made when performing image analysis is that a 
single 5-µm tissue section represents the entire organ. 
If the object of interest (e.g., PGs, GAGs, anatomic 
structures, or cells) is not uniformly distributed through-
out a tissue or organ, obtaining only one tissue section 
from an organ has the potential to introduce sampling 
bias.51 Therefore, it is highly recommended that proper 
sampling techniques be incorporated into the experi-
mental design of image analysis protocols to minimize 
the introduction of this type of bias.
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Another assumption that is often made is that one 
can count objects (e.g., cells, glomeruli) in a 2D tissue 
section. Whereas it is tempting to perform counts of 
objects when using image analysis, it is important to 
remember that image analysis visualizes profiles of 3D 
objects, such as cells in 2D tissue sections. The count-
ing of profiles is highly biased because counts are influ-
enced by the height of the object perpendicular to the 

section plane as well as its overall 3D shape.31,32,51 
Therefore, the use of image analysis to count objects in 
tissue results in geometric bias in which the number of 
objects in a tissue/organ can be misrepresented and, 
due to differences in height and complexity of volumet-
ric shapes, larger and more complex objects are over-
represented when compared with smaller, simpler 
objects.31,32 Proper sampling of tissues is also required 

Figure 5.  The physical disector provides accurate measurement of cell numbers and/or volume in tissues. (A) Two WSDIs from two 
tissue sections approximately 6 µm apart (i.e., disector height) were processed using the Visiopharm Autodisector module, which 
sampled, aligned, and labeled the adjacent sections as the “reference” and “look-up” sections. A two-dimensional counting frame is 
shown superimposed on these images with inclusion lines (left and bottom) and exclusion lines (right and top) of the counting frame. 
A hematoxylin-stained nucleus (blue) in a mast cell (MC) identified using a murine monoclonal anti-tryptase antibody (brown stain) 
is counted if it is in focus, if it is inside the counting frame, or if it touches the inclusion lines but does not touch the exclusion lines. 
MC nuclei that were in focus in the “reference” were counted if they were not present in the “look-up” sections. For efficiency, this 
process was reversed so that the Look-up section became the Reference section. In this case, the MC nuclei shown by red arrow in 
the lower right-hand counting frame in the Look-up section are counted because they are not observed in the counting frame of the 
adjacent Reference section. A point associated with each counting frame was used to determine the reference volume by enumerating 
points hitting the submucosa and the epithelium. The point in the lower left-hand counting frame, highlighted by red arrow, is hitting the 
epithelium, so it is counted. (B) Workflow for performing analysis using the physical disector on two WSDIs to measure the volume of 
MCs in tissue biopsies. (A) is a supplemental figure from Altman et al.42 Abbreviation: WSDI, whole slide digital image.
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to obtain accurate counts, especially when cells are not 
uniformly distributed in an organ. The importance of 
proper sampling techniques is discussed in detail in 
section “Preanalytical Elements of Tissue Processing.” 
If the goal of a study is to obtain the number of cells or 
structures in an organ or biopsy, then stereology is 
required. Also, when confronted with small intergroup 
differences in a study, stereology might be a better tool 
compared with image analysis, which is less precise 
and may not be able to identify biologically relevant dif-
ferences as significant (Table 1).

Finally, the following principle needs to be incorpo-
rated into all quantitative digital pathology studies, 
whether stereology or image analysis: “Be as accurate 
as possible and as precise as necessary.”52 This prin-
ciple is based on the idea that accuracy, or the absence 
of bias, is fundamental, but precision can be adjusted 
or improved as needed. Such adjustments can be 
made at the many levels of sampling, from the number 
of animals per group, to the number of sections per 
tissue block, to the number of counts per field of view. 
(This will be discussed in more detail in section 
“Sampling of Tissues and Digital Images.”) Although 
these adjustments improve statistical precision, they 
are meaningless if the fundamental assumptions are 
biased or inaccurate.53

When performed correctly, stereology and image 
analysis are powerful tools that provide unbiased 
quantitative data from IHC and ISH experiments that 
are difficult to obtain with other methods. Quantitative 
data obtained using these analytical techniques can 
then be correlated with other measurements such as 
clinical data or data collected with flow cytometry or 
quantitative PCR.25,29,54,55 More importantly, these 
morphometric techniques provide spatial information 

that is lost when tissues are disrupted to obtain cells 
for flow cytometry and proteins or mRNA for pro-
teomics and transcriptomics studies, respectively.

Artificial Intelligence/Machine Learning

The integration of AI with image analysis for detection, 
segmentation, feature extraction, and tissue classifica-
tion of digital images has resulted in an even more rapid 
evolution and expansion of digital pathology.18,19,56–58 
Although the promise of AI has garnered substantial 
attention and excitement, it is important to point out that 
the use of AI to obtain objective data from cells and tis-
sues dates back over 40 years.59,60

AI, computer-based systems that automate deci-
sion-making processes, was initially defined as the 
overarching concept of the thinking machine.19,58 
When first described, machine learning was defined 
as giving computers the ability to learn without having 
to be specifically programmed to provide an output.19,58 
Frequently, this is accomplished through supervised 
learning, wherein the AI system uses algorithms to 
analyze training sets of data (e.g. digital images), 
learns from those data and adjusts its algorithms, and 
then based on that learning interprets or makes pre-
dictions about new data. Through an iterative process 
of training, the accuracy of the computer algorithms 
improves. Machine learning has tremendous utility 
due to its ability to automatically segment images, 
classify cells, and identify hidden patterns and rela-
tionships in digital images that humans might miss.61 
For example, a study undertaken by Gross et al. clas-
sified cells in the heart based on their nuclei as cardiac 
myocytes vs non-cardiac myocytes.62 Using 5-ethynyl-
2′-deoxyuridine (EdU), a thymidine analogue, and the 

Table 1.  Comparisons Between Stereology and Image Analysis.

Stereology Image Analysis

Advantages 1. Gold standard for quantitative analysis of tissues
2. Minimal to no assumptions
3. Provides precise and unbiased measurements
4. �Able to accurately measure volumes, number of 

cells, surface area, etc.

1. �Easily automated
2. �Quantitative results are obtained more rapidly than with 

stereology, so more amenable to high throughput
3. �Excellent when used for IHC, ISH, and special stains when 

contrast allows easy segmentation of an image
Limitations 1. �Considerable amount of time is required to 

perform stereology
2. �Typically requires the investigator to obtain an 

initial reference volume and monitor changes to 
the volume during tissue processing to account 
for shrinkage (Fig. 2C).

1. �Less rigorous and assumptions are required in many instances, 
which introduces bias

2. �This technique provides measurements of relative change (%), 
which is typically a ratio of the ROI to the total tissue or other 
denominator

3. �Counts 2D profiles, which overestimates the number of objects 
counted; is influenced by orientation and distribution of cells in 
a 3D tissue; and counts larger cells more than smaller cells.

4. �Less precise than stereology

Abbreviations: 2D, two-dimensional; 3D, three-dimensional; IHC, immunohistochemistry; ISH, in situ hybridization; ROI, region of interest.
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TUNEL (terminal deoxynucleotidyl transferase dUTP 
nick end labeling) assay to label cells in the heart, the 
authors were then able to quantitate cardiac myocytes 
undergoing cell proliferation and apoptosis, respec-
tively. Using multiplex IHC combined with similar 
machine learning models, one could also quantitate 
the degree of colocalization of specific PGs and GAGs 
to select cells and cellular processes in a tissue.

An emerging area within machine learning is deep 
learning, which is a form of machine learning that 
relies on both supervised and unsupervised learning. 
Deep learning applied to digital pathology uses artifi-
cial neural networks (ANN) to determine whether the 
output or interpretation of a digital image is correct.18,58 
ANN use multiple layers of calculations imitating the 
complex network of neurons in the human brain to pro-
vide an analysis or output from the input data.56,58 A 
number of commercial software vendors have begun 
to incorporate deep learning modules into their image 
analysis software programs. These deep learning pro-
grams provide additional tools for sophisticated image 
segmentation.

For example, using tissue obtained from a mouse 9 
dpi with influenza virus (PR/8 strain), a deep learning 
module (Visiopharm) was used to identify nuclei in 
mouse lung tissue sections in which versican and 
platelet-derived growth factor receptor beta (PDGFRB) 
mRNA were detected using ISH (RNAscope technol-
ogy; Advanced Cell Diagnostics [ACD], Newark, CA) 
(Fig. 6A). Recognition of PDGFRB-positive nuclei was 
used to identify fibroblasts and pericytes in the lung 
tissue.63 The challenges of segmenting nuclei using 
the deep learning module included prolonged pro-
cessing times and difficulty in correctly determining 
nuclear borders.2,3 To decrease up to 1 hr per digital 
image processing time required for deep learning seg-
mentation, uniform random sampling of the WSDI was 
performed (Fig. 6B). The difficulty in correctly identify-
ing nuclear borders was due to poor nuclear morphol-
ogy and clumping of nuclei. The poor nuclear 
morphology was the result of repeated heating of the 
tissue section when performing ISH. However, repeat 
annotation of nuclei in tissue sections followed by 
training generated a segmentation protocol that accu-
rately identified the nuclei in ISH-stained tissues (Fig. 
6C). An image analysis protocol was then developed 
and used to identify nuclei that were positively stained 
for versican mRNA alone (red), PDGFRB mRNA alone 
(green), or versican and PDGFRB mRNA colocalized 
in the same nuclei (yellow) (Fig. 6D). To determine the 
appropriate amount of tissue on a WSDI that needs to 
be sampled, we undertook a small pilot project that 
compared analysis of 20%, 30%, and 100% of lung 
tissue on the digital image. The colocalization of 

PDGFRB and versican mRNA was found in 18% of the 
nuclei for the 20% and 30% analyses compared with 
19% in the 100% analysis. This proof-of-concept study 
shows how proper sampling of even 20% of the WSDI 
is able to provide similar information compared with 
sampling of the entire digital image.

Preanalytical Elements of Tissue 
Processing

The quality and reproducibility of the data collected 
when performing stereology and image analysis rely 
directly on the quality of the tissue samples used for a 
study. Therefore, preanalytical elements need to be 
considered and integrated into each study’s experi-
mental design. Careful consideration must be made of 
the following: (1) proper sampling of tissues and digital 
images, and (2) tissue fixation and processing.

Proper Sampling of Tissues and Digital Images

When designing studies to make quantitative assess-
ments of PGs in a 3D organ, attention must be given 
to sampling because measurements are made using 
2D tissue sections, which results in a loss of informa-
tion. A goal of sampling is to ensure that all parts of an 
organ or a WSDI have the same probability of being 
represented in the analysis. To account for the uneven 
distribution of an object of interest in a 3D space, 
investigators designing stereology studies have devel-
oped rigorous sampling protocols using a number of 
statistical techniques to guarantee the unbiased 
selection of tissue sections and digital images to 
decrease variability and minimize bias.31,34,36,47,49,52 
For example, the use of systematic uniform random 
sampling using a fixed, periodic sampling interval 
and a random starting point within the thickness of 
this interval ensures random sampling of tissues col-
lected from mice (Fig. 7A). This becomes more diffi-
cult when working with larger animals but can be 
overcome with the use of plexiglass templates with 
evenly spaced 5 mm holes and a punch biopsy to 
collect tissues (Fig. 7B).47 The use of Plexiglas tem-
plates to perform uniform random sampling in non-
human primates infected with Mycobacterium 
tuberculosis combined with quantitative analysis 
using stereology showed a significant correlation 
between bacterial numbers and the inflammatory 
response in samples collected from lungs.47

In their seminal paper on sampling, Gundersen 
et  al. provided insight into considerations regarding 
sampling by measuring the variance at each level of 
sampling used in stereology and showed that the 
greatest contribution to variance was among animals 
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Figure 6.  Deep learning algorithms and image analysis protocols were used to perform image segmentation and analysis to measure the 
colocalization of versican and PDGFRB mRNA in the nuclei of lung tissue obtained from an influenza virus–infected mouse. (A) Digital 
image of the tissue section stained for versican (red) and PDGFRB (green) mRNA in tissues adjacent to a bronchiole (BL) in lung tissue 
from a 9 dpi with influenza virus mouse. (B) To decrease nuclear identification processing time, uniform random sampling was performed 

Figure 6.  (continued)
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(70%), followed by tissue blocks/tissue sections (19%), 
fields of view (8%), and intercepts + measuring (3%).46 
Thus, the “Do More Less Well” subtitle of this work 
conveys that one should “do more” by increasing the 
number of subjects or blocks/sections studied to 
decrease variability and increase the rigor of a study. 
This concept is applicable to image analysis as well as 
stereology studies.51 Applying lessons learned from 
stereology regarding minimizing sampling bias to 2D 
image analysis studies will increase the likelihood that 
results are representative of the tissue as a whole.51,64

Tissue Processing

Tissue processing includes fixation, dehydration, and 
then the infiltration of tissues with paraffin. While this 
stabilizes tissues and preserves tissue morphology, it 
produces artifacts, including, but not limited to, non-
uniform shrinkage of tissue, deformation of tissue 
structures, loss of tissue epitopes required for anti-
body recognition, and fragmentation of RNA.23,65 The 
work of Xie et al. showed that inadequate tissue pro-
cessing resulted in the retention of water in tissue sec-
tions, which resulted in antigen degradation as 

measured by IHC, Western blots, and protein array 
technologies.65 Therefore, investigators need to care-
fully consider the requirements for tissue processing 
before starting a study. This is particularly important 
when planning studies for quantitative analysis 
because such artifacts will result in flawed results.

Although FFPE-processed tissues are most com-
monly used for IHC and ISH when quantitative analy-
sis is performed, other methods are being established. 
A problem inherent to the use of FFPE is shrinkage, 
which for lung tissue can be up to 40% based on ste-
reological measurements.23 When using stereology to 
measure the length, surface, or volume of objects in a 
tissue, one must correct for shrinkage to preserve 
unbiasedness.50 Tissue shrinkage is not a problem 
when using stereology to count objects.

Studies comparing snap-freezing to ethanol-based 
fixatives or aldehyde-based fixation show that 
although the amount of antigen (DNA, RNA or pro-
tein) recovery differs between the methods, the qual-
ity of antigen recovered is better in EtOH-based 
fixatives.66–68 Therefore, when planning a study, it is 
important to determine the best fixative for the bio-
molecules that will be studied. In addition, it is also 

Figure 7.  Uniform random sampling of tissues minimizes bias and variability due to the multifocal distribution of cells and other analytes 
of interest in tissues. (A) Cutting instrument with trimming blades used to section mouse lungs into 2 mm sagittal sections to ensure 
adequate sampling. This cutting instrument was used to sample the lung tissues analyzed in Figs. 1, 3, 4, and 6. (B) Stratified uniform 
sampling of a lung lobe from a non-human primate that uses a plexiglass template with evenly spaced 5 mm holes that was randomly 
placed over section of a lung lobe. A punch biopsy was used to collect tissue for microbial cultures and histology, with 10% of the lung 
lobe collected for each test. (B) is adapted from Luciw et al.47

before running the deep learning module. The green dashed line defines lung tissue and the black boxes show the uniform sampling pattern 
that was laid down with a random start on the WSDI. The analysis software identifies and only performs analysis on lung tissue. This is 
illustrated by the black fill in each of the boxes. (C) The Visiopharm deep learning module was used to train the computer to accurately 
identify nuclei (gray) for nuclear segmentation. (D) Image analysis protocols were used to identify nuclei that were positively stained for 
versican mRNA alone (red), PDGFRB mRNA alone (green) or versican and PDGFRB mRNA in the same nuclei (yellow). (E) Workflow for 
generating objective data on the colocalization of versican and PDGFRB. Scale bar (A, C, D), 85 μm; (B), 1 mm. Abbreviations: AV, alveolus; 
BL, bronchiole lumen; dpi, days post-infection; PDGFRB, platelet-derived growth factor receptor beta; WSDI, whole slide digital images

Figure 6. (continued)
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important to follow guidelines set out for preserving 
physiological volumes in different tissues. Examples 
are the principles for standardization of study design 
outlined by the American Thoracic Society to promote 
comparability of morphometric studies of lungs.69

Histochemical Stains

Histochemical stains not only provide the ability to 
visualize biological structures, they also provide the 
contrast required to perform quantitative analysis. For 
example, the identification of hematoxylin-stained 
nuclei in tissue biopsies was used to measure the shift 
in mast cell infiltration to the airway epithelium using 
stereology (Fig. 5A). Hematoxylin staining of nuclei 
was also used for the deep learning segmentation pro-
tocol developed to identify the colocalization of versi-
can and PDGFRB mRNA in nuclei (Fig. 6). 
Histochemical stains have been used for many years 
to define the location of PGs and GAGs in tissue. A 
number of these special stains, which are cationic and 
therefore bind to GAGs, include alcian blue, toluidine 
blue, and basic fuchsin.70–72 Movat’s pentachrome 
stain is another histochemical stain that is used for 
studies of the extracellular matrix as it stains elastic 
fibers black; collagen, yellow; and GAGs, blue.73,74 To 
define the nature of staining patterns observed with 
histochemical dyes such as alcian blue, enzymatic 
digestion of tissue sections with hyaluronidase, chon-
droitinase ABC, or heparinase can be performed to 
remove specific classes of GAGs and create negative 
controls. Several excellent references provide meth-
ods and technical descriptions of the many histochem-
ical stains used on tissues.75,76

Preanalytical Elements for IHC

Validation of an Antibody for IHC

IHC takes advantage of the specificity inherent to 
antibodies to detect a vast number of antigens, 
including, but not limited to, proteins, peptides, carbo-
hydrates including GAGs, lipids, amines, sugars, 
amino acids, drugs, phosphorylated proteins, and the 
inactive and active forms of proteases. All too often, 
researchers obtain an untested antibody and use it 
for IHC without validating and optimizing the antibody 
for its target antigen in tissue. This can cause errone-
ous interpretations if antibody staining reflects off-
target binding, which is defined as binding of an 
antibody in tissues to sites other than the target anti-
gen. Antibody validation and optimization for IHC will 
only be introduced here as there are additional guide-
lines for both described in more detail elsewhere.1,77–79 

It is important to point out that one can never prove 
that an antibody specifically binds to its epitope in a 
tissue section using immunohistochemical tech-
niques.80 Therefore, the purpose of antibody valida-
tion and optimization is to increase one’s confidence 
that the IHC protocol being developed is providing 
accurate and reproducible information.

The first step of antibody validation includes bio-
chemical analysis, with the Western blot being the 
most commonly used method.79 When performing a 
Western blot, tissue homogenates are the most appro-
priate sample to use to validate an antibody. If tissue 
homogenates are not available, at minimum a cell 
lysate using a cell known to express the target antigen 
should be used. If an antibody specifically recognizes 
its target antigen, there should be a single band of the 
appropriate molecular weight on the Western blot. If 
multiple bands are observed on the Western blot, 
potential considerations include the presence of pro-
tein isoforms, posttranslational modifications, and pro-
teolytic degradation or the nonspecific binding of the 
antibody to other proteins. If no bands are visualized 
on the Western blot, that could indicate that the anti-
body recognizes a conformational epitope that was 
lost during the protein denaturation protocol for 
Western blotting. If this is suspected, native gels or 
other assays, such as immunoprecipitation, dot blots, 
and ELISA, should be considered to confirm biochemi-
cal specificity. Finally, evidence of biochemical speci-
ficity of an antibody does not guarantee that the 
antibody will specifically identify the target antigen in 
preserved tissue.

Optimization of an Antibody for IHC

Evaluating whether antigen retrieval is required is an 
important step used to enhance the ability of an anti-
body to bind its target epitope in formalin FFPE. The 
two commonly used antigen retrieval protocols are 
heat-induced epitope retrieval (HIER) and proteinase 
digestion. The single most significant advance in IHC 
in the last 70 years was the development of HIER 
antigen retrieval techniques. These techniques have 
increased the likelihood that an antibody will detect its 
epitope in archived FFPE tissue and have greatly 
expanded the use of IHC in clinical and research 
pathology laboratories.81,82 Two commonly used HIER 
protocols include the use of buffers of citrate at pH 6.0 
or EDTA at pH 9.0 with or without detergent additives 
heated to approximately 100C, with immersion of 
slides in the buffer typically for 10 to 30 min. The 
mechanisms by which HIER antigen retrieval 
increases the ability of the primary antibody to detect 
its epitope in tissue are still not known. However, one 
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potential mechanism is that these techniques break 
aldehyde-induced protein–protein crosslinks, which 
dissociates irrelevant proteins from the target epitope 
and restores immunoreactivity.83 The second type, 
proteolytic-induced epitope retrieval (PIER), uses pro-
teinases, such as proteinase K, trypsin, or pronase, to 
digest tissue sections either at room temperature or at 
37C, exposing previously masked epitopes. For both 
HIER and PIER, it will be necessary to optimize con-
ditions of time, temperature, and pH for each antibody. 
Interestingly, PGs are often less sensitive to differ-
ences in antigen retrieval.84

An antigen retrieval step often required when work-
ing with proteoglycans is the treatment of tissue sec-
tions with enzymes to allow the primary antibody to 
bind to their epitope. An example is the use of chon-
droitinase ABC on tissues to remove the chondroitin 
sulfate side chains of versican, which is required when 
performing IHC with the polyclonal rabbit anti-mouse 
versican antibody directed against a.a. 1360–1439 of 
mouse versican (EMD Millipore, cat. no. AB1033; Fig. 
1C).85 An extensive review of immunohistochemical 
labeling methodologies for FFPE and cryopreserved 
tissues for studying PGs and GAGs is provided by 
Hayes et al.86

Performing a proper dilution series, typically over 
one to two logs of antibody concentrations, is a critical 
step in IHC protocol optimization. The goal of the anti-
body dilution series is to find the concentration of anti-
body at which high-affinity binding of an antibody to its 
epitope in tissue is maintained but low-affinity nonspe-
cific interactions do not occur. Taking an antibody dilu-
tion out until the intensity of staining diminishes or is 
extinguished is essential. Many antibodies against 
PGs will provide a clean signal devoid of background 
across a broad working range; however, higher dilu-
tions (less antibody) are preferred as they result in a 
cleaner cytomorphological pattern as well as 
decreased assay costs. Due to the lot-to-lot variability 
observed with antibodies, it is also recommended that 
a dilution series be performed when a new lot of a 
previously validated antibody is obtained.

Other optimization steps for minimizing nonspecific 
binding can be included in staining protocols. Thorough 
washing of tissue sections at all stages of the IHC pro-
tocol helps to minimize hydrophobic or ionic interac-
tions. Protein blocks using serum, antibodies, or casein 
reduce binding to nonspecific sites in tissues. Several 
of the detection systems rely on peroxidase, alkaline 
phosphatase, and biotin, all of which can be endoge-
nous factors in tissue, which may add to nonspecific 
staining. To minimize the effect of these endogenous 
factors, hydrogen peroxide is used to quench endoge-
nous peroxidases; levamisole is used to block endog-
enous alkaline phosphatases; and the avidin–biotin 

block method is often used to minimize the potential of 
endogenous biotin causing nonspecific staining.

Following the optimization of an IHC protocol, 
additional steps are often used to increase one’s 
confidence that the positive staining for an antibody 
in tissue is specific for recognizing the desired target 
antigen. (1) This includes demonstrating that two 
antibodies recognizing distinct epitopes in the target 
antigen have the same IHC staining pattern in a tis-
sue section.87 The in situ proximity ligation assay 
extends this step by only detecting signals when two 
antibodies bind the target jointly, ruling out crossre-
active off-target binding in tissue.88 (2) The use of 
genetic strategies such as tissues from mice that 
lack the target antigen as biological negative control 
tissue.89 (3) The use of recombinant strategies to 
overexpress or delete the target antigen in cells.1 (4) 
The use of statistically independent assays such as 
quantitative real-time PCR or flow cytometry to show 
that the data collected with these techniques  
correlate with changes measured with quantitative 
assessment of a target antigen in IHC-stained tis-
sues.55,79 (5) The use of ISH to show that the mRNA 
and the IHC-positive staining for the analyte of inter-
est are in the same location. Validation an antibody 
using ISH has limitations because the tissue half-life 
of a protein and mRNA may differ, especially for pro-
teins such as PGs, which can have long tissue 
half-lives.

Controls

IHC is no different than any other biological assay in 
that appropriate negative and positive controls need to 
be included as part of each experiment.80 The goal of 
antibody and tissue controls is to provide evidence 
that the primary antibody is specifically binding its epi-
tope in tissue. Controls also account for the day-to-day 
variability inherent to biological assays and can help to 
troubleshoot problems as they arise.

The simplest and probably most critical negative 
control for IHC is replacement of the primary antibody 
with a negative antibody control. Negative antibody 
controls are used because they do not detect the epi-
tope of interest but maintain many of the nonspecific 
binding characteristics of primary antibodies. When 
using polyclonal antibodies for IHC protocols, one 
should use preimmune serum or commercial sera 
from the same species used to raise the primary anti-
body. When using monoclonal antibodies for IHC pro-
tocols, a negative control antibody of the same 
species, antibody isotype, and concentration matched 
need to be used. Replacement of the primary anti-
body with phosphate-buffered saline is not an accept-
able negative antibody control and should only be 
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used to identify the nonspecific binding of the second-
ary antibody in tissue. When using chromogenic 
stains that require peroxidases or alkaline phospha-
tases linked to the primary antibody, negative anti-
body controls help to identify staining caused by 
endogenous enzymes that maintain enzymatic activ-
ity even in FFPE tissues. Similarly, when performing 
IHC using fluorescent probes, the use of negative 
control antibodies assists in the identification of auto-
fluorescence in tissue.90

The use of negative and/or positive tissue controls 
to identify nonspecific binding of the primary antibody 
in tissue is especially necessary when validating a 
new antibody.1,78 Positive and negative tissue con-
trols are performed at the same time as the test tis-
sues to help confirm that positive staining for the 
target antigen is valid. Negative tissue controls use 
cells or tissues known to lack the target antigen. 
Positive tissue controls use cells or tissues where the 
target antigen is known to be present or is overex-
pressed. When using cell pellets as a tissue control, 
the cell pellet should be fixed and processed into par-
affin to allow antibodies to be evaluated under condi-
tions similar to those of the tissue being studied. A 
commonly used negative tissue control is from mice 
lacking the target antigen. For example, negative tis-
sue controls obtained from mice with a global dele-
tion of versican (i.e., Vcan−/− mice) treated with 
polyinosinic-polycytidylic acid showed minimal posi-
tive immunostaining for versican in lungs compared 
with the wild-type controls.89 For many proteins, the 
cellular or subcellular location of the target antigen in 
tissue is known. Therefore, when using positive tis-
sue controls, if positive staining for a target antigen is 
observed in a structure, cell, or subcellular compart-
ment (e.g., plasma membrane, cytoplasm, or nucleus) 
where the target protein is known to be located, then 
confidence that the antibody binding is specific to its 
epitope in tissue is increased.

For studies where ISH is performed, appropriate 
positive and negative controls are required. When per-
forming ISH using RNAscope reagents (ACD), the 
probes for the target RNA and the positive and nega-
tive controls are included with the assay. These are 
typically species and target tissue–matched probes for 
housekeeping genes for the positive control and 
probes for bacterial dapB for the negative control. As 
with IHC, positive and negative tissue controls for ISH 
are necessary to help assess the quality of the RNA in 
a tissue section and to assist in troubleshooting prob-
lems that arise during a study.

To conclude, advances in quantitative analysis of 
images have been made by leveraging the field of digi-
tal pathology, WSDI, and novel computational tools 

that have automated many of the processes required 
to obtain contextual data from histochemical, IHC, and 
ISH studies. When performed correctly, quantitative 
digital pathology generates unbiased data that are 
testable with statistics. It also allows for single-cell 
analysis within architectural tissue context. The ability 
to obtain spatial information is important because it 
provides increased knowledge about cellular pheno-
types and cell-to-cell interactions in the context of their 
microenvironment, which includes specialized cells, 
structures—blood vessels and airways—and patho-
logical changes. For individuals interested in PGs, 
GAGs, and the extracellular matrix, it enables investi-
gation into how alterations in the extracellular microen-
vironment impact cellular phenotypes in situ. This high 
content analysis extends our ability to define mecha-
nisms of action for specific molecules and cells to bet-
ter understand biological processes occurring in health 
and disease.
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