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Aims Atrial fibrillation (AF) is the most common sustained arrhythmia and an important risk factor for stroke and heart
failure. We aimed to conduct a systematic review of the literature and summarize the performance of mobile
health (mHealth) devices in diagnosing and screening for AF.

Methods and We conducted a systematic search of MEDLINE, Embase, and the Cochrane Central Register of Controlled Trials.

results Forty-three studies met the inclusion criteria and were divided into two groups: 28 studies aimed at validating
smart devices for AF diagnosis, and 15 studies used smart devices to screen for AF. Evaluated technologies included
smartphones, with photoplethysmographic (PPG) pulse waveform measurement or accelerometer sensors, smart-
bands, external electrodes that can provide a smartphone single-lead electrocardiogram (iECG), such as AliveCor,
Zenicor and MyDiagnostick, and earlobe monitor. The accuracy of these devices depended on the technology and
the population, AliveCor and smartphone PPG sensors being the most frequent systems analysed. The iECG pro-
vided by AliveCor demonstrated a sensitivity and specificity between 66.7% and 98.5% and 99.4% and 99.0%, re-
spectively. The PPG sensors detected AF with a sensitivity of 85.0-100% and a specificity of 93.5-99.0%. The inci-
dence of newly diagnosed arrhythmia ranged from 0.12% in a healthy population to 8% among hospitalized
patients.

Conclusion Although the evidence for clinical effectiveness is limited, these devices may be useful in detecting AF. While
mHealth is growing in popularity, its clinical, economic, and policy implications merit further investigation. More
head-to-head comparisons between mHealth and medical devices are needed to establish their comparative
effectiveness.
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Introduction

The prevalence of atrial fibrillation (AF) is increasing, estimated at 1%
of the population and 5% among those aged >65 years.! Untreated
AF accounts for 15% of all strokes and is independently associated
with heart failure, cognitive impairment, and death.” Atrial fibrillation
manifestations can range from asymptomatic to highly symptomatic
and can negatively affect patients’ quality of life if left untreated.’ Early
diagnosis of AF may have several benefits, including the potential for
individualized risk factor evaluation and modification, ablation for
symptomatic individuals, and anticoagulation, which can reduce the
risk of stroke and mortality by ~65% and 25%, respectively.*
Smartphones, tablet computers, and their applications (apps) have
become ubiquitous across the globe. Mobile health (mHealth) tech-
nology characterized by portability, instantaneous access, and direct
communication allows for faster transfer of physiologic parameters
and patient-reported symptoms to healthcare providers, and has the
potential to revolutionize clinical care in a cost-efficient manner.
Recent studies have shown that the use of mHealth apps has a posi-
tive impact on health-related behaviours and clinical health out-
comes.® The current mobile devices to diagnose AF can be divided
into five types: smartphones, smartbands or smartwatches, earlobe
sensors, and handheld electrocardiogram (ECG) devices such as
MyDiagnostick or Zenicor (Figure 1). These devices present potential
compared to conventional monitoring systems. They are accessible,
non-invasive, safe, and easy to use for patients. However, the effec-
tiveness of these devices in reliably diagnosing paroxysmal AF (PAF)
and screening for AF is unclear. Advances in wearable technology
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and algorithms may yield practical options to determine AF burden
and help stratify stroke risk.”® Here, we aimed to conduct a system-
atic review of the literature and summarize the performance of
mHealth devices in diagnosing and screening for AF.

Methods

Search strategy

We used the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) statement to guide this review. We systemati-
cally searched MEDLINE, Embase, and the Cochrane Central Register of
Controlled Trials for articles published from 1 January 2012 to 30
September 2019, inclusive. Search strategy and details of databases
searched are available in Supplementary material online, Appendix 1.

Eligibility criteria

We included randomized controlled trials (RCTs), non-randomized trials,
case—control, cohort or cross-sectional studies reporting the effective-
ness of mHealth devices in detecting the primary outcome of AF detec-
tion among adults >18 years. We also included studies that reported the
cost of the intervention or clinical endpoints related to AF. We included
published conference abstracts if demographic and outcome data were
available. We excluded studies that did not meet inclusion criteria or
those that only included routine methods of cardiac monitoring (pace-
maker, implantable loop recorders, event recorders, and inpatient telem-
etry). Although the 12-lead ECG s still the gold standard method to
diagnose AF, pacemaker and implantable cardioverter-defibrillator elec-
trograms and cardiac telemetry monitoring are also well-validated tools
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to detect AF. Therefore, those studies comparing mHealth devices with
routine methods of cardiac monitoring were also included in this review.
Since the recommendations for screening for AF in patients with prior
ischaemic stroke differs substantially from general population, we ex-
cluded studies screening for AF in post-stroke patients.

Study eligibility
We assessed studies for inclusion according to the latest version of the
PRISMA statement (www.prisma-statement.org).” Manuscripts that met
inclusion criteria on the basis of title and abstract review were reviewed
in full to confirm eligibility.

Data extraction

A pair of reviewers independently abstracted each article (CRLP, RCA).
We extracted data regarding publication date, source, corresponding au-
thor and country, study design, number and clinical characteristics of indi-
viduals assessed, category of mHealth device and method for AF
detection, sensitivity, specificity, positive predictive values (PPVs), and
negative predictive values (NPVs) for each test, newly diagnosed AF in
screening studies, percentage of patients with newly diagnosed AF who
received oral anticoagulation (OAC), monitoring time (single point in
time or period of recording) if available, and the incremental cost-
effectiveness and clinical outcomes if provided.

Data synthesis

We presented descriptive data as counts and percentages for categorical
variables and mean (standard deviation) or median (interquartile range)
for continuous variables. We presented sensitivity, specificity, PPV, and
NPV as percentages with 95% confidence intervals when provided.

Risk of bias

We assessed risk of bias according to the Grading of Recommendations
Assessment, Development and Evaluation (short GRADE). We assessed
observational studies for risk of bias using the Newcastle-Ottawa Scale
(NOS) for non-randomized studies. The NOS quality scale contains eight
items partitioned into three categories (selection, comparability, and out-
come); a maximum of one star is allocated to a high-quality study for each
of selection and outcome and a maximum of two stars for comparability,
giving an overall maximum of nine stars.'® We used a modified NOS scale
to assess cross-sectional studies, using 3 categories (selection, compara-
bility, and outcome) and a maximum of 10 stars."’ The main advantages
of this scale are that it is easy to use, considers many of the important ele-
ments that have empirically been shown to correlate with bias; and has
known reliability and external validity."> We considered studies to be
high quality if they had six or more stars in the NOS scale or seven stars
in the modified NOS scale." Supplementary material online, Appendix
2 presents the risk of bias table.

Description of technology

Smartphone
There are three methods of using a smartphone to detect and moni-
tor AF.

The first method uses a downloadable application and
existing smartphone hardware, and relies on smartphone camera
photoplethysmographic (PPG) pulse waveform measurement.
Photoplethysmographic measures the blood volume changes
through the skin capillary bed optically by illuminating the skin with a
light-emitting diode and measuring the changes in light absorption.'

Changes in blood volume are synchronous with the heart beats, such
synchrony is manifested by the concordance of inter-beat intervals
(RR intervals). In a PPG signal, AF is manifested as varying pulse-to-
pulse intervals and pulse morphologies. Multiple smartphone apps to
detect AF exist. One of them is FibriCheck, which was cleared by the
Food and Drug Administration (FDA) in September 2018.'¢

The second method uses a pair of external electrodes that com-
municate with an application downloaded to the phone; AliveCor
heart monitor represents an example of this kind of devices. It is a
smartphone-dependent device that converts the electrical signals
from fingertips into ultrasound signals; these signals are then transmit-
ted to the smartphone and a single-lead electrocardiogram (IECG) is
recorded. Importantly, Kardiomobile 6L was recently released by
AliveCor, which was cleared by the FDA in May 2019. Like the single-
lead Kardia, the 6L has two sensors on top for left and right hand con-
tact. In addition, there is a third on the bottom which can be put on a
left knee or ankle. The combination of these sensors and contact
points yield the six classic frontal leads of a full 12-lead ECG."”

The third method is based on mechanocardiography principles. The
approach is also smartphone-based, but the acquisition of the heart
signal is made in an alternative way. The patient lies down in a supine
position and the smartphone is placed on the chest of the patient. The
mechanical cardiac activity is recorded with accelerometers and gyro-
scopes, registering the tiny cardiogenic micromovements of the

patient’s chest for signal acquisition.®

Wrist-worn wearables

Heart rate sensors on the majority of wrist-worn devices, including
the Apple Watch (Apple Inc.), utilize PPG. The Apple Watch records
a tachogram (which is a plot of the time between heartbeats) and
then applies its proprietary algorithm to determine pulse irregularity
and thus AF. The Apple Watch algorithm received FDA clearance for
the consumer market. An iECG can be recorded through a circuit be-
tween the detector on the watch back and the digital crown. The first
smartwatch accessory cleared by the FDA for detection of AF via its
ability to record a single-lead ECG signal was the Kardia Band. It uti-
lizes a paired iPhone and Apple Watch to function. Finally, another
smartwatch ECG technology cleared by the FDA is Verily’s study
watch, which is only intended for research purposes.'’

Other devices

It is possible to detect rhythms with a pulsatile facial PPG signal obtained
by the smartphone camera; no physical contact is used. PPG technology
can also be used by devices on the ear lobe to assess rhythm. Other
solution, like MyDiagnostick, similar to AliveCor in functionality, is a rod-
like device with two electrodes on the endings. While holding the de-
vice, it will flash on the rhythm of the detected heartbeat. Time and date
stamped stored ECGs can be made available by returing the
MyDiagnostick to the physician, who can connect it to a web-portal
(USB connection to internet-enabled PC). Zenicor is a handheld ECG
device with which patients register their iECG themselves by placing
their thumbs on two electrodes for 30s. It automatically transmits the
encrypted recording to a password-protected database.” Technology
description is summarized in Figure 2.
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Device Image Description

Smartphone (PPG signals) It involves a downloadable application and
a smartphone camera PPG pulse wave-
form measurement. PPG measures the
blood volume changes through the skin
capillary bed optically (typically fingertip)
by illuminating the skin and measuring
the changes in light absorption

AliveCor® It is a smart phone-dependent device that

o~ converts the electrical signals from fin-
gertips into ultrasound signals; these sig-

nals are then transmitted to the

smartphone and a single-lead electrocar-
diogram (iECG) is recorded

MyDiagnostick” It is an ECG recorder and has the shape of
a stick with metallic handles (electrodes)
at both ends. It only takes holding the
device by the handles with both hands
for just 1 min and a single-lead electro-

cardiogram (iECG) is recorded

Accelerometer The patient lies down in a supine position

and gyroscope and the smartphone is placed on his
sensor chest. The mechanical cardiac activity is
recorded with accelerometers and gyro-
scopes, registering the tiny cardiogenic
micromovements of the patient’s chest

for signal acquisition

Smartband (PPG signals) A PPG recording on one wrist using the

built-in sensors of a smartwatch

Figure 2 Devices description.
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.®
Zenicor

Earlobe sensor
(HeartSensor)

Description

Handheld ECG device, with which patients
register their ECG data by placing their
thumbs on two electrodes for 30 s. By
pressing a button the readings are trans-
ferred via the mobile network to a cen-
tral ECG database

It consists of a single earlobe sensor that
can record the PPG signals of the ear-

lobe skin

ECG, electrocardiogram; iECG, single-lead electrocardiogram; PPG, photoplethysmographic.

Figure 2 continued

Results

Study characteristics

The PRISMA flow chart of our included studies is shown in Figure 3.
Our initial search strategy identified 246 studies, with another nine
identified through other sources. We identified 189 potentially eligi-
ble full-text studies for review, of which we included 43 studies that
met inclusion criteria in our systematic review.

Studies design

Of the 43 studies included, 28 studies aimed at validating smart devi-
ces for AF diagnosis, while the remainder 15 studies used smart devi-
ces to screen for AF diagnosis (Figures 4 and 5).

Validation of smart devices in the
detection of known atrial
fibrillation

Studies design

The review included 14 studies with a single set of inclusion criteria
(cohort s'cudies),m’34 nine studies with two sets of inclusion criteria
(case—control studies).>>™** One of the case—control studies grouped
participants into those with known sustained AF, those with other
non-AF arrhythmias and those in sinus rhythm.44 There were four
studies of unclear design.**~*®

Population and setting
Population and setting of validation studies are summarized in
Table 1.

Type of device
The type of device and the gold standard reference used in validation
studies are summarized in Table 1.

Diagnostic accuracy

The accuracy of devices for arrhythmia detection depended on
the technology used and the population evaluated. The PPG sen-
sors found in smartphones detected AF with a sensitivity of 95.0—
97.6% and a specificity of 95.0-99.6% in a 70years old Chinese
population.?’ The AliveCor device had a sensitivity from 64.5% to
98.5% and a specificity from 97.5% to 98.0%, depending on the al-
gorithm employed for detection.***¢*® MyDiagnostick had a sen-
sitivity from 81.8% to 94% and a specificity from 94.2% to 93%
among cardiac ward®? and primary care patients,’’ respectively.
The accelerometer and gyroscope based algorithms showed sen-
sitivities of between 94% and 95%, specificities of 96% with a
global accuracy of 97.0%.3**" The diagnostic accuracy of smart-
bands and smartwatches was variable among studies depending
on the different algorithms utilized, populations studied, and the
testing conditions (most of the good quality data will be acquired
when subjects are sleeping or sitting still). Sensitivity and specific-
ity of smartbands were found to be in a range between 75.4% and
97.0% and 94% and 100%, respectively,”>** while smartwatches
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Figure 3 PRISMA flow chart of included studies. AF, atrial fibrillation; mHealth, mobile health.

showed a sensitivity 67.7-100% and a specificity of 67.6-98%
(Take-home figure).>>*? The characteristics and diagnostic accu-
racy of different studies are summarized in Table 1.

Use of smart devices to screen for
atrial fibrillation

Studies design

Six studies were prospective observational cohort studies
were cross-sectional and>>®° three studies were designed as
RCTs 61-63

4954 o

Population and setting
Population and settings of the included screening studies are summa-
rized in Table 2.

Type of device
The type of device and the gold standard reference used in screening
studies are summarized in Table 2.

Main outcome measures

The incidence of newly diagnosed AF varied according to the charac-
teristics of the screened population, ranging from 0.12%, in healthy
community-dwelling citizens™ to 8% in a Kenyan inpatient cohort
with an increased risk of AF.*° The study comparing the diagnostic
performance of a smartphone PPG application and the AliveCor de-
vice showed higher sensitivity of PPG than AliveCor (92.9% vs.
71.4%) with comparable specificity (97.7% vs. 99.4%), lower PPV
(53.1% vs. 76.9%) and similar NPV (99.8% vs. 99.2%) relative to
AliveCor>" Interestingly; in the Huawei Heart Study (HHS) auto-
matic periodic measurements were more likely to identify episodes
of AF compared to patient triggered events (37.0% vs. 7.5%).>*
Similar data were found in the STROKESTOP study, where new AF
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Study design

Validation
studies

(N=238)

\ Type of device

Cohort/one
gate(N=14)

Smartphone (N=11)

Case-controlt/two
gates (N=10)

Unclear design (N=4)

iECG (AliveCor/
Mydiagnostick)

PPG (N=8)
(N=5)

Accelerometer (N=2)

Smartband/watch iIECG and PPG (N=1)

(N=11)

Earlobe PPG (N=1)

Figure 4 Study design and type of device in validation studies. iECG, single-lead electrocardiogram; PPG, photoplethysmographic.

was found in 3.0% and intermittent ECG screening increased the
prevalence of AF in the screened population by 33% (Table 2).°"

Clinical outcomes

Only eight studies reported information regarding AF management,
showing an incremented use of OAC among the screened popula-
tion (Table 3).*7°*°8%* Among the participants in the
STROKESTOP study, OAC therapy was started in 93% of the
patients with newly diagnosed AF.®" In the Apple Heart Study
(AHS), the notification subgroup (i.e. the group notified of an ir-
regular pulse) was more likely to start receiving warfarin (2.2% vs.
0.1%), direct oral anticoagulant (22% vs. 0.3%) or aspirin (36% vs.
14%). Of the 404 notified participants who reported new AF, 24%
reported undergoing cardioversion, 3% received an implantable
loop recorder, 20% started antiarrhythmic therapy, and 18%

underwent catheter ablation.>

Cost-effectiveness of screening for
atrial fibrillation using mobile
health

Four studies provided data regarding costs3>*¢043

A cost-
effectiveness simulation based on the screening results and time-

investment measurements was performed in Belgium, accounting for
cost of staff, hospital, and screening with iECG provided by AliveCor;
patients had a mean CHA2DS2-VASc score of 3.90 and hospitalized
mainly for elective coronary revascularization or acute coronary syn-
drome, electrophysiological examination, heart failure or device im-
plantation. The cost per preventable stroke to identify one new AF
patient was reported as €7535 and €1916 at cardiology and geriatrics
wards, respectively.®® An Australian study reported that screening
1000 pharmacy customers aged >65 years (mean 76 years; 44% male,
7% with prior stroke, and mean CHADS-VASc 3.3) with AliveCor had
an incremental cost-effectiveness of $AUD 5988 per quality-adjusted
life year (QALY) and $AUD 30481 for the prevention of one stroke.*’
Halcox et al®® showed a cost per AF diagnosis of $10780 using
AliveCor (£8255) in persons aged >65years with a CHADS-VASc
score >2 free from AF. The STROKESTOP screening programme esti-
mated a cost of €4164 per QALY and €6583 per avoided stroke in this
75- and 76-year-old Swedish population. Based on this analysis, screen-
ing of 1000 individuals resulted in 263 fewer patient-years with unde-
tected AF, 8 fewer strokes, 11 more life-years, and 12 more QALYS‘M

Risk of bias

Six studies (19%) were at high risk of bias due to absence of a compari-
son group and absence of data on attrition rate. Most studies were
non-randomized and recruited selected patients at risk of stroke (de-
fined as CHADS-VASc > 1), as in Chan et al>"* The assessment of
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Study design

Screening
Studies
(N=15)

\

Type of device

Randomized clinical trial (N=3)

Prospective cohort
(N=6)

Cross-sectional
(N=6)

| Smartphone (N=1)

AliveCor (N=9)

Smartband and AliveCor (N=1)

Zenicor (N=2)

Smartband (N=2)

Figure 5 Study design and type of device in screening studies. iECG, single-lead electrocardiogram; PPG, photoplethysmographic.

cardiac rhythm was blinded in just three studies.**¥*2 Six studies did
not provide information about baseline characteristics of the enrolled
population 2735363
the sample size.>*” Seven studies (22%) were at low risk of bias.

647 Only two studies provided the calculation of

Discussion

In this review of 43 studies (>680 000 patients), we show that the use
of mHealth devices is feasible and reliable for the detection of AF. The
performance of these devices in detecting AF depends on the charac-
teristics of the population being studied, their risk of developing AF,
and the technology used to detect AF. There are limited head-to-head
comparisons between medical devices, so their comparative effective-
ness within any given population is unclear. The only direct compari-
son between automated PPG and AliveCor algorithms in real-life
conditions found that the smartphone PPG algorithm had the greatest
sensitivity, with the highest NPV to exclude AF, while automated
AliveCor algorithm had the greatest specificity and PPV to rule in this
condition.>! The lower specificity achieved by PPG algorithm may be
explained by finger movement artefacts that can affect the detection al-
gorithm, leading to a reduction in specificity when the smartphone ap-
plication is used outside the clinic. The lower sensitivity of AliveCor
algorithm was a surprising finding and was attributed to the use of the
most updated version of the application. Nonetheless, a benefit of us-
ing ECG-based systems to screen for AF is having the option to over-
read the ECG tracings, which can help a clinician rule in or rule out AF.

Our findings are important given the limitations of current meth-
ods for AF detection. Pulse palpation can result in greater false-
positive cases by falsely assigning a diagnosis of AF to patients with
transient pulse irregularities (e.g. ventricular or atrial ectopy). The
use of 12-lead ECG for screening purposes is limited by its lack of
portability. Continuous Holter monitoring is commonly used in clini-
cal practice but disadvantages of this technology include cost, the
need for skin electrodes with artefacts resembling cardiac arrhyth-
mias, and a limited screening duration of 24—48h.

A national screening programme for AF is likely to represent a
cost-effective use of resources. Systematic opportunistic screening is
more likely to be cost-effective than systematic population screen-
ing.* Mobile health devices offer a feasible option for mass screening
of AF in diverse settings as they are user-friendly, leadless, and widely
used by the general population. Screening is suggested as one strategy
to increase AF detection rates and start OAC early. Atrial fibrillation
detection has the potential to support behavioural changes that ad-
dress risk factors, expedite treatment of AF, and avoid complications
(e.g. heart failure or stroke).

Challenges with use of mobile health to
detect atrial fibrillation

The sensitivity and specificity of these mobile devices is a major con-
cern. Ultimately, ECG confirmation is mandated by guidelines for the
diagnosis of AF. Therefore, transmission of the PPG waveform would
not really help to confirm an AF diagnosis if a 12-lead ECG or ECG-



MHealth apps for the detection of AF

19

N=680 541 patients

Smartband | > Sensitivity: 68-97%
‘ Specificity: 67-100%
PPG
S Fouis Sensitivity: 95-98%
martphone - Specificity: 95-99.6%
Accelerometer
AliveCor

iECG - Zenicor |:>
D Mydiagnostick
g

Earlobe | >

i
8

Sensitivity: 66.7-98.5%
Specificity: 99.4-99%

Sensitivity: 91%
Specificity: 91%

s for AF detection

I 28 validation studies |

| 15 screening studies

4

Incidence of AF

Healthy
population

}@ 0.12% @ 8%

Hospitalized
patients
Teaching points

1. Screening for AF with mHealth is feasible.

2. Its perfomance varies with the patient
population.

3. More research is needed to establish its real

= __d value.

Take-home figure Summary of findings for mHealth apps in atrial fibrillation detection. AF, atrial fibrillation; iECG, single-lead electrocardio-

gram; PPG, photoplethysmographic.

based device is not available. Consequently, many patients with PAF
would be missed. Similarly, if only patients with persistent AF are in-
cluded, they will be easier to be diagnosed by monitoring, falsely ele-
vating the sensitivity, since accurately detecting a long-standing
arrhythmia is not the same as accurately detecting ‘bursts’. Besides,
the performance in AF detection may be limited by the intrinsic accu-
racy of the automated algorithm. In one study assessing Kardia
Mobile, 28% of recordings were unclassified by the algorithm.** Of
these unclassified recordings, only 8% were non-interpretable by the
physician. In another study, 3.7% of the samples were excluded from
the statistical analysis due to poor device fitting, technical malfunc-
tion, or too short recording length3® Including those un-
interpretable data in the analysis would probably result in lower sen-
sitivity and specificity values. The main concern is the rate of false
positives when it comes to using the app in a low-risk healthy popula-
tion (i.e. 52% of the people in the AHS were under age 40). Since
PPV and NPV largely depend on the prevalence of AF in the popula-
tion tested, even given an accurate test, the sheer number of false-
positive results may be too high, with the consequent stress for
patients, unnecessary tests, and costs for the society. In the AHS,
only 2161 (0.52%) of the included patients received a notification of
irregular pulse and just 450 (20.8%) eventually wore and returned an
ECG patch. Of these, 153 (34%) had AF detected. But of the 293015
in the study who did not receive a notification and completed the
end-of-study survey, 3070 said they had received a new diagnosis of

AF. Since only subjects who had a positive trigger on the iWatch
were evaluated further, sensitivity cannot be determined at all.
Another important limitation in the AHS and HHS is that the per-
centage of people who dropped out was high and full follow-up was
low. In the HHS, 0.23% of the monitored patients had suspected AF
and 38% of those suspected of having AF were unable to be followed
up. In the AHS, close to 30% of participants were lost to follow-up.
This represents a potential compliance bias that may affect the con-
clusions about the true frequency of AF. In addition, obtaining long-
term participant commitment and compliance may become a greater
challenge if consent is performed electronically.

The widespread adoption of a screening programme with wear-
able devices can also lead to measurement burden, over-diagnosis,
and overtreatment, and studies demonstrating clinical benefit are
largely pending. Identifying those at higher risk of AF is a reasonable
way to boost the pre-test. A recent study showed that N-terminal B-
type natriuretic peptide-stratified systematic screening for AF may be
useful to select patients at highest risk of stroke, with a number
needed to screen to diagnose 1 AF of 38.4%

Technical limitations of mobile health
device

Photoplethysmographic monitoring apps are sensitive to errors
caused by finger pressure, skin tone, user movement, and bright
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ambient light, potentially leading to artificial measurements which
might limit diagnostic accuracy if PPG recordings are collected in the
ambulatory free-living setting. Tattoos can be a problem as they may
block the light from penetrating the skin.®® Extreme temperatures
could result in peripheral vasoconstriction, impeding pulse recording,
and performance of the application. Besides, a minority of studies
provided information about the number of samples analysed or the
filter used to smooth the tracings (Table 7). Furthermore, apps are
not optimized to detect atrial flutter with a fixed atrioventricular con-
duction ratio and several algorithms were not designed to detect
short episodes of AF (e.g. AHS).>> On the other hand, the use of RR-
interval variability analysis implies that atrial or ventricular extrasys-
toles might be misdiagnosed as AF.

Outside mHealth, artificial intelligence may improve diagnostic ac-
curacy and boost the effectiveness of AF detection. A recent study
demonstrated detection of AF by analysing facial PPG signals without
physical contact using a smartphone camera and a pretrained deep
convolutional neural network®® A recently presented wearable
smart ring device with a deep learning algorithm detected AF with
PPG monitoring signals, achieving a sensitivity, specificity, PPV, and
NPV of 99.0%, 94.3%, 95.6%, and 98.7%, respectively.®’

Economic aspects

While studies have found that a screening strategy for AF with hand-
held devices may be cost-effective in hospitalized and ambulatory
patients, 32606368
for the costs of mass screening vs. savings from improved clinical out-
comes have not been undertaken. Cost comparisons between
mHealth devices and routine monitoring techniques such as Holter
have not been described. Therefore, the overall cost-effectiveness of
this technology is currently unclear.®®”°

comprehensive cost-effective analyses accounting

Policy implications of mobile health
development

The findings of this review have important policy implications at a
population level. Our study provides evidence that screening of
healthy, ambulatory patients can be low-yield, but that there may be
benefit to screening older patients who are at risk for AF. The impli-
cations of accessible mHealth technologies on health care resource
costs are unclear, and there are concerns related to privacy, data
ownership, and implications on health care insurance plans. Policy
should be driven by the evidence for safety, efficacy, and cost-
effectiveness, and widespread adoption of digital health technology
should be informed by rigorous studies and clinical validation in the
real world before implementation in patient care.

Strengths and limitations

This is the first systematic review of studies evaluating the diagnostic
performance of these mHealth devices in screening for and detecting
AF. We used a comprehensive literature search strategy across mul-
tiple databases with no data restrictions. Nonetheless, several limita-
tions should be noted. First, the variation in interventions, settings,
and study designs precluded meta-analyses. Second, several studies
did not provide sufficient data around the clinical characteristics of
the selected population such as cardiovascular risk factors or
CHADS-VASc scale (missing in 21 studies) which impact the

sensitivity and specificity of the technology in screening for AF. Third,
the methodological quality of the primary studies was suboptimal and
prone to bias as most were observational and quasi-experimental.
Only a minority of studies (3/43) were RCTs, but this is not unusual
in studies of health service and digital health interventions; for exam-
ple, in a recent review of interventions that improved physician ad-
herence to heart failure guidelines, only a minority of the studies (10/
35) were RCTs.”" Fourth, screening studies did not distinguish be-
tween paroxysmal or persistent AF in the population analysed. As
the clinical characteristics of these two groups are likely to be differ-
ent, the performance of each test might differ in each population.
Fifth, the technique used for screening has an impact in the detection
of the arrhythmia, and short-term devices have different performance
than long-term devices. Sixth, surface ECG is the cornerstone of the
diagnosis of AF. Current guidelines advocate the confirmation of a
possible diagnosis of AF with a surface 12 leads ECG.”*

Future considerations

While mHealth has the potential to change the paradigm of health
care, its reliability and safety must be carefully assessed. Although the
number of mHealth-related publications is growing gradually, the ma-
jority of the published evidence is limited to underpowered pilot data.
Patient selection, technology, and control groups vary widely in differ-
ent studies. Robust scientific evaluation through appropriately
designed studies with clinical endpoints is critical for establishing the
on-field effectiveness of mHealth initiatives. There is a need for
highest-quality scientific data regarding the clinical effectiveness and
cost-efficiency of AF screening in specific patient populations or set-
tings before roll-out and implementation in patient care. The volume
of data derived from long-term monitoring will offer opportunities and
through big-data analysis and machine learning, meaningful trends and
information can be extracted and turned into valuable knowledge.

Conclusions and relevance

Mobile health technologies can reliably screen for and detect AF but
its performance varies with the patient population. While mHealth is
growing in popularity, its clinical and cost-effectiveness are unclear
and merit further investigation. Specifically, more head-to-head com-
parisons between mHealth and medical devices are needed to estab-
lish their comparative effectiveness.

Supplementary material

Supplementary material is available at Europace online.
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