
Catalytic Mechanism of Non-Target DNA Cleavage in CRISPR-
Cas9 Revealed by Ab Initio Molecular Dynamics

Lorenzo Casalino,
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, 
California 92093, United States

Łukasz Nierzwicki,
Department of Bioengineering, University of California Riverside, Riverside, California 92521, 
United States

Martin Jinek,
Department of Biochemistry, University of Zürich, CH-8057 Zürich, Switzerland

Giulia Palermo
Department of Bioengineering and Department of Chemistry, University of California Riverside, 
Riverside, California 92521, United States

Abstract

CRISPR-Cas9 is a cutting-edge genome editing technology, which uses the endonuclease Cas9 to 

introduce mutations at desired sites of the genome. This revolutionary tool is promising to treat a 

myriad of human genetic diseases. Nevertheless, the molecular basis of DNA cleavage, which is a 

fundamental step for genome editing, has not been established. Here, quantum–classical molecular 

dynamics (MD) and free energy methods are used to disclose the two-metal-dependent mechanism 

of phosphodiester bond cleavage in CRISPR-Cas9. Ab initio MD reveals a conformational 

rearrangement of the Mg2+-bound RuvC active site, which entails the relocation of H983 to act as 

a general base. Then, the DNA cleavage proceeds through a concerted associative pathway 

fundamentally assisted by the joint dynamics of the two Mg2+ ions. This clarifies previous 

controversial experimental evidence, which could not fully establish the catalytic role of the 

conserved H983 and the metal cluster conformation. The comparison with other two-metal-

dependent enzymes supports the identified mechanism and suggests a common catalytic strategy 

for genome editing and recombination. Overall, the non-target DNA cleavage catalysis described 
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here resolves a fundamental open question in the CRISPR-Cas9 biology and provides valuable 

insights for improving the catalytic efficiency and the metal-dependent function of the Cas9 

enzyme, which are at the basis of the development of genome editing tools.
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INTRODUCTION

CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 is a revolutionary 

genome editing tool, which is bearing innovative discoveries across the field of Life 

Sciences.1 By enabling the correction of DNA mutations, this technology offers promise to 

treat a priori a myriad of human genetic diseases. Recent advances have shown the first 

cancer patients being infused with CRISPR-Cas9-modified T cells to increase a natural 

antitumor immune response.2 The CRISPR-Cas9 “molecular scissors” use the RNA-guided 

endonuclease Cas9 to precisely cleave DNA sequences of interest.3 In spite of a ground-

breaking impact and widespread utilization, the catalytic mechanism of DNA cleavage, 

which is a fundamental step in genome editing, is not understood, potentially limiting the 

use of CRISPR-Cas9 for further biomedical applications. Its knowledge is paramount for 

improving the catalytic efficiency of the Cas9 enzyme and, in turn, for the development of 

novel and more specific Cas9-based genome editing tools.

Similarly to several other nuclease enzymes, Cas9 is a metal-dependent nuclease that 

performs Mg2+-aided DNA cleavages and is inhibited by Ca2+.3,4 In the activated form of 

the enzymatic complex, the DNA binds Cas9 by matching a guide RNA with one strand (the 

target strand), while the other non-target strand is displaced and accommodated within the 

catalytic RuvC domain. The latter shares the structural fold of the RNA Ribonuclease H 

(RNase H) and is likewise thought to perform phosphodiester bond cleavages through a two-
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metal-ion mechanism (Figure 1A).4,5 Nevertheless, the mechanism of DNA cleavage 

operated by RuvC remains nebulous and appears controversial from the available structural 

and biophysical studies. Structures of CRISPR-Cas9 have shown that the RuvC active site 

hosts three carboxylates (D10, D986, and E762),4,6–8 which constitute the highly conserved 

DDE (or DEDD) motif, a fingerprint of the two-metal-dependent nucleases (Figure 1B).9 

The metal-bound X-ray structure obtained in the presence of Mn2+ ions revealed that the 

DDE motif coordinates the two catalytic metals,3,6 while the H983 residue also approaches 

the active site coordinating the A-site metal (MeA) with the nitrogen ligand. Previous 

computational studies employing extensive classical molecular dynamics (MD)10–12 

conveyed the observation that one water molecule stably coordinates MgA, in close 

proximity to the scissile phosphate and suitable to act as a possible nucleophile (Figure 1B, 

Movie S1). In this scenario, critical open questions remain unmet. First, it is unknown how 

the catalytically relevant Mg2+ ions, rather than the crystallographic Mn2+, would rearrange 

within the active site to accomplish the catalysis. Moreover, the intricate features of the 

chemical mechanism, including the origin of the nucleophile initiating the chemical step and 

the type of catalysis leading to phosphodiester bond cleavage, have not been described. 

Although biochemical experiments have suggested that H983 could have a role in this 

chemical step,7 crystallographic data trapping H983 in the coordination sphere of MeA arise 

debates on how this residue could engage in the catalysis. The efficiency and specificity of 

the enzyme depend on the clarification of these and on other unresolved mechanistic aspects, 

such as the dynamical pathway leading from the reactants (R) to the products (P), the exact 

mechanism for transition state (TS‡) stabilization, and the pivotal role and dynamics of the 

catalytic metals.5,13,14 Their understanding is crucial to improve the enzyme specificity and 

reduce off-target cleavages, a key goal of biomedical applications of CRISPR-Cas9 genome 

editing.15 Molecular simulations have contributed to understanding the biophysical function 

of CRISPR-Cas9.10,12,16 By using classical and enhanced simulation methods, we 

previously aided the clarification of the conformational activation,10,17,18 the selectivity,19,20 

and the allosteric function21–23 of this genome editing tool.

Here, we establish the mechanism of phosphodiester bond cleavage within the RuvC active 

site through high-level quantum–classical QM(Car–Parrinello)/MM MD simulations (ab 
initio MD)24 and free energy methods. Extensive ab initio MD has been carried out over 

multiple replicas and independent runs, reaching sub-ns collective sampling. The 

simulations reveal a conformational change of the RuvC active site upon substitution of the 

crystallographic Mn2+ ions with the catalytically relevant Mg2+, which results in the loss of 

the H983 ligand by the A-site ion (MgA) and in the formation of a stable catalytic site, 

prone for the in-line nucleophilic attack. Then, the two-metal-dependent catalytic 

mechanism proceeds through a concerted (SN2-like) associative pathway, activated by the 

conserved H983 and fundamentally assisted by the joint dynamics of the catalytic Mg2+ 

ions. Interestingly, a second set of ab initio simulations retaining the crystallographic 

configuration reveals an alternative phosphate-mediated cleavage, which proceeds through a 

concerted dissociative pathway and is unfavorable. Mutagenesis experiments showing that 

the H983A mutation abolishes the RuvC catalysis7 support the active role of H983 and 

advocate for the H983-activated mechanism revealed here. Notably, the dynamics of the 

catalytic metals remarkably differs in the two chemical pathways and can be considered as a 
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feature distinguishing the nature of phosphodiester bond cleavage in the two-metal-ion 

enzymes. Comparison with the two-metal-dependent enzymes further supports the identified 

mechanism and also suggests a common catalytic strategy for genome editing and 

recombination. Overall, the findings and chemical details of DNA cleavage proposed in this 

work provide foundational knowledge on how the endonuclease Cas9 cleaves nucleic acids 

and pose the basis for future investigations aimed at completing the understanding of the 

CRISPR-Cas9 mechanism of action. This work also represents a valuable contribution for 

future mechanism-based design of improved CRISPR-Cas9 genome editing tools.

RESULTS

Conformation of the Reactant (R).

Quantum mechanical/molecular mechanical (QM/MM) MD simulations have been based on 

the most complete X-ray structure of CRISPR-Cas9 (PDB ID: 5F9R).6 The active site has 

been treated at the DFT-BLYP25,26 level of theory, while the surrounding molecular 

environment has been described by MM force fields, resulting into a box of ~340 000 atoms. 

The QM part (105 atoms) includes the scissile and adjacent DNA phosphates groups, the 

two metal ions, and their coordination sphere, composed by the DDE motif and H983 

(protonated in ε, as arising from previous investigations).4,11,12 Six solvation waters have 

also been treated at the QM-BLYP level of theory (details are reported in the Supporting 

Information (SI)). The choice of simulating an enlarged QM part—including six solvation 

waters and protein residues, as well as the adjacent DNA phosphate groups—enabled to 

assess whether these chemical groups engage in the catalysis and the related proton transfer 

events. This is a key point because the activation of the nucleophile could occur in different 

ways, such as through an amino acid27,28 or a phosphate group29–32 serving as a general 

base or even through the bulk water.33,34 Notably, these ab initio simulations have been 

performed by substituting the crystallized Mn2+ ions with the catalytically active Mg2+ ions.
4

The investigation of the reactant (R) state has been initially performed through 

unconstrained ab initio MD (two replicas of ~40 ps) in order to assess its stability and ensure 

that the chemical requirements for a two-metal-ion catalysis were satisfied. As a result, we 

observe a conformational rearrangement of the catalytic site, whereby H983 detaches from 

MgA while the nucleophilic water molecule simultaneously moves in between H983 and the 

scissile phosphate (Figure 1B). This change of the interaction network established by H983 

and by the water nucleophile (Figure 2C) is observed in both simulation replicas (Figure 

S3). However, during these events, the water nucleophile preserves the contact with MgA, 

whose coordination sphere is saturated by the side-chain oxygen of S15 (Figure S3). In the 

final configuration, the DDE motif steadily coordinates the Mg2+ ions, while the scissile 

phosphate locates in between the two metal ions, which are jointly coordinated by the pro-

Sp oxygen. This is a key condition for the catalysis, as it allows for the scissile phosphate to 

assume a configuration prone for an in-line nucleophilic attack.5,35 Noteworthy, a similar 

structural organization of the catalytic site has been also observed in a previous study 

performed by us as a result of ~2.4 μs of force field-based accelerated MD followed by ~40 

ps of ab initio MD (Figure S4).11 Moreover, the detachment of the H983 ligand from MgA 
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has also been reported in some classical MD simulations, including ours,10,12 which 

however do not allow for conclusive remarks on the catalysis and on the metal ions 

geometry, given the well-known limitations of the employed classical force-field models.36 

Interestingly, Mg2+ poorly binds to nitrogen, whereas Mn2+ shows high affinity.37–39 In fact, 

it has been suggested that Mn2+ can contact nitrogen atoms in crystallization buffers.39 

Although one cannot generalize,39,40 this supports the loss of the Mg2+–N coordination 

patterns observed during classical and ab initio MD. To cross-validate this observation 

within the RuvC site, we performed unconstrained ab initio MD also in the presence of the 

crystallographic Mn2+ ions. As a result, MnA preserves the nitrogen ligand and the 

crystallographic coordination sphere over ~40 ps (Figure S5). Taken together, these findings 

suggest that the coordination of MgA by means of H983 is unlikely in the RuvC site. Yet, 

H983 interacts with the attacking water, which in turn is stably positioned in proximity to 

the scissile phosphate and coordinates MgA (Figure 1B). The resulting stable configuration 

of the metal cluster and of the surrounding protein residues in the reactant state (R) laid the 

foundation for the investigation of the catalytic mechanism.

Mechanism of Phosphodiester Bond Cleavage.

To probe the catalytic mechanism of phosphodiester bond cleavage, we performed QM/MM 

MD simulations in combination with free energy methods. Specifically, we employed the 

“blue moon ensemble” method, along with thermodynamic integration.24 In this approach, 

the reaction mechanism is investigated along a selected and appropriate reaction coordinate 

(RC). This is progressively evolved from the R to the P through a series of sequential steps, 

wherein its value is kept fixed. By integrating the average (converged) constraint forces 

obtained along the pathway, we derived the associated free energy profile (details are 

reported in the SI). In the present study, we used as a RC the difference in distance between 

the breaking (O3′DNA–PDNA) and forming (OWAT–PDNA) bonds (Figure 2A). The 

appropriateness of this RC for the study of phosphodiester bond cleavage has been shown in 

several studies of RNA/DNA processing enzymes29,30,33,41 and is discussed in the SI. 

Overall, this method has been widely employed to investigate biochemical reactions,24 

including the two-metal-ion mechanism in several enzymes,13 such as the prototypical 

RNase H,29,30 and non-coding RNAs like group II intron ribozyme33 and the spliceosome.42 

This enables a direct comparison with the current investigations of the catalytic mechanism 

in CRISPR-Cas9.

The simulations show that the system evolves from the reactants (R) to the products (P), 

separated by a transition state (TS‡) maximum (Figure 2 and Figure S6). The reaction is 

activated by H983, which acts as a general base, and proceeds through a concerted (SN2-

like) associative mechanism (Movie S2).43,44 In detail, at a RC = 0 Å, a proton transfer (PT) 

event is observed, where H983 activates the nucleophilic water into a hydroxide ion by 

abstracting a proton right before the TS‡. Indeed, from RC = 0 Å (corresponding to the PT) 

to RC = 0.2 Å (highest peak of the free energy profile, corresponding to the TS‡), the free 

energy profile displays a plateau, indicating that the barrier for the proton abstraction by 

H983 is negligible (i.e., free energy barrier for PT of less than 1 kcal mol−1) with respect to 

the TS‡ (details are reported in the SI). In support of this observation, a similar histidine-

activated mechanism and similar energetics have been recently observed in the catalysis of 
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the HIV-1 RNase H.28 Upon activation, OH− becomes fully aligned with the scissile P–O3′ 
bond, resulting in the formation of TS‡. At RC = 0.4 Å, the reaction evolves downhill 

toward P formation. The associative phosphodiester bond cleavage proceeds with an overall 

Helmholtz free energy (ΔF#) of ~16.55 ± 1.22 kcal mol−1 (the convergence of the free 

energy profile is shown in Figure S7). The backward free energy profile (i.e., obtained by 

sampling along the RC in the opposite direction) was also computed, revealing no large 

hysteresis between the forward and backward processes (Figure S6A). The calculated 

activation barrier of ~16.55 ± 1.22 kcal mol−1 is in agreement with the experimental 

catalytic rate of 3.5 s−1 (corresponding to ΔG# ~ 16/17 kcal mol−1).45 This rate constant has 

been measured by distinguishing the catalysis from nucleic acid binding and providing a 

measure for the RuvC domain, enabling proper comparison with our computations. 

Importantly, biochemical experiments performed in a previous study showed that the H983A 

mutation abolishes the RuvC activity, therefore supporting the active role of H983 in the 

catalysis.7 A full description and cross-validation of this mechanism, including the 

calculation of the PT mechanism, is given in the SI (Figure S8).

The variation of the significant interaction distances along the investigated reaction step 

(Figure 3A) provides insights into the role of the catalytic metals. During multiple 

picoseconds dynamics of the R state and following windows, the Mg–Mg distance remains 

stable around ~4.9 Å. At the TS‡, the two Mg2+ ions move closer to each other, displaying a 

~1 Å shorter separation distance. At this point, the pro-Sp (OSp) oxygen approaches MgB 

(i.e., d5 in Figure 3A decreases). This is consistent with the two-metal-ion catalysis,5,13 

where the two metal ions get closer and cooperatively coordinate the reactant groups (i.e., 

leaving group, nucleophile and electrophile) to stabilize the TS‡. During the evolution from 

the R to the TS‡, MgA establishes a close contact with the water’s oxygen (as shown by 

constant values of d3). In this way, MgA acts as a Lewis acid, properly orienting and 

activating the nucleophile. Subsequently (from the TS‡ to the P), MgA detaches from the 

OH− group (i.e., d3 increases). Simultaneously, the pro-Sp (OSp) oxygen detaches from 

MgB (i.e., d5 increases), while MgB stably interacts with O3′ (i.e., d6 slightly decreases), 

facilitating its exit as a leaving group. Finally, starting from a RC = 0.4 Å, when the reaction 

evolves toward P formation, the Mg–Mg distance increases, as a sign that the Mg2+ ions 

move apart to facilitate the P release.

Alternative Reaction Pathways.

To examine possible alternative reaction pathways that could take place within the RuvC 

active site, we performed a second set of QM/MM MD simulations always starting from the 

same crystal structure (PDB ID: 5F9R).6 This time, with the aim of preserving the original 

crystallographic active site conformation, the initial ~40 ps long equilibration was 

performed, keeping the distance between H983 and MgA constrained to the crystallographic 

value (details in the SI). As a result of the ab initio MD equilibration, the water molecule 

does not directly interact with H983, but it forms a hydrogen bond with the adjacent 

phosphate (Figure 4 and Figure S6). The obtained reactant was then subjected to QM/MM 

free energy simulations following the same protocol adopted in the H983-activated chemical 

mechanism and using the same RC (details are reported in the SI). Interestingly, the catalysis 

proceeds though a concerted (SN2-like), phosphate-mediated pathway (Figure 4).43,44 
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Peculiarly, this mechanism shows a dissociative TS‡′ at RC = 0.5 Å, where the breaking of 

the PDNA–O3′ bond is more advanced than the formation of the OWAT–PDNA bond (Figure 

3B). Immediately after the TS‡′, the water nucleophile spontaneously releases its proton to 

the adjacent phosphate (Figure 3A, PT′), leading the chemical step to completion. A full 

description and cross-validation, including the PT mechanism, are reported in the SI (Figure 

S9). The overall computed Helmholtz free energy reaches a ΔF# value of ~18.55 ± 1.26 

kcal/mol, including no large hysteresis (Figures S6B and S7). This pathway appears to be 

energetically unfavorable when compared to the H983-activated pathway (Figure 4). 

However, the difference in energy (~2 kcal mol−1) lies within the statistical error of the 

simulations, thus suggesting that both mechanisms are theoretically possible.

In light of the in-depth description of phosphoryl transfer reactions previously reported,43,44 

our H983-mediated mechanism displays a concerted (SN2-like) associative pathway, with a 

similar extent of partial bond formation to the nucleophile and partial bond cleavage to the 

leaving group at the transition state (TS‡, Figures 2 and 3A). The phosphate-mediated 

pathway displays instead a shifted TS‡, with slightly more bond cleavage to the leaving 

group than bond formation to the nucleophile (Figures 3B and 4). This was defined as a 

concerted (SN2-like) dissociative pathway.43 By inspecting the variation of the significant 

interaction distances along the phosphate-mediated pathway (Figure 3B), we note that, 

differently from the H983-mediated path (Figure 3A), MgA loosely binds the attacking 

water, as a sign that it does not act as a Lewis acid. Intriguingly, the distance between MgA 

and the water nucleophile (d3′ in Figure 3B) shows a similar trend to the distance between 

the pro-Sp oxygen and MgB (d5′). This indicates that, when the pro-Sp oxygen of the 

scissile phosphate loses coordination to MgB and fully moves onto MgA, the water 

nucleophile concertedly moves away from MgA. These evidences suggest that, in the 

dissociative mechanism, the Mg2+ cluster activates the electrophile (i.e., the scissile 

phosphate) rather than the nucleophile. A similar synchronized dynamics of the MgA–OWAT 

and MgB–Opro‑Sp coordination distances has also been observed in a group II intron 

ribozyme,33 which displayed an analogous concerted dissociative pathway. Therefore, this 

suggests that this dynamical pattern of the metal cluster, and of MgA in particular, might be 

a hallmark of the concerted (SN2-like) dissociative cleavage of phosphodiester bonds. On the 

contrary, analogously to the associative catalysis, MgB stabilizes the oxyanion leaving 

group. Our simulations show that throughout the entire chemical step (i.e., from R′ to P′) 

MgB remains in close contact with O3′, with the d6′ distance displaying a slight decrease 

toward products formation. Overall, in agreement with previous findings,5,13,33 the observed 

differences in the dynamics of the catalytic metals can be seen as a signature of phosphoryl 

transfer events in the two-metal-ion enzymes, facilitating the interpretation of their chemical 

nature.

DISCUSSION

The mechanism of phosphodiester bond cleavage has been studied in several two-metal-ion 

enzymes,13,27–31,34 enabling comparison with the current investigations. These studies 

conveyed on the associative nature of the chemical step, which requires the activation of the 

nucleophile, before the leaving group is dissociated. Differences in the activation of the 

nucleophile—i.e., whether mediated by a phosphate group,29–32 an amino acid,27,28 or the 
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bulk water34 as a general base—have been shown to be crucial for accomplishing the 

specific enzymatic function and for the mechanism-based design of artificial enzymes and/or 

selective inhibitors.46 These previous studies support our finding of a concerted (SN2-like) 

associative mechanism of DNA cleavage in CRISPR-Cas9, proceeding upon activation by 

H983 general base and fundamentally assisted by the joint dynamics of the two catalytic 

Mg2+ ions (Figure 2). A recent study of the HIV-1 RNase H,28 employing a finite-

temperature string method and the B3LYP functional,26,47 disclosed a reaction mechanism 

similar to that of our H983-activated catalysis, with comparable energetics. In that study, a 

thermally accessible (i.e., with a PT free energy barrier less than ~1 kcal mol−1 and a 

plateau in the free energy profile of the hydrolysis) proton abstraction by an active site 

histidine occurs right before a TS‡ exhibiting the same extent of bond cleavage to the 

leaving group and bond formation to the nucleophile, analogously to the H983-mediated 

mechanism described here (Figure 2). A similar associative two-metal-ion mechanism 

involving an active site histidine has also been found in the DNA polymerase III with 

exonuclease activity.27 Taken together, these studies support an associative catalysis of DNA 

cleavage activated by H983 (a full discussion is reported in the SI).

Our ab initio investigations also revealed an alternative phosphate-mediated cleavage, which 

proceeds through a concerted dissociative pathway energetically unfavorable than the H983-

activated catalysis (Figure 4). Notably, mutagenesis and DNA cleavage experiments have 

probed that the H983A substitution abolishes the RuvC catalysis in CRISPR-Cas9,7 

supporting the active role of H983 evinced in our H983-activated catalytic mechanism 

(Figure 2). Moreover, a dissociative pathway has been rarely observed in the two-metal-

dependent enzymes as either aided by Zn2+,48 promoted by a non-Mg2+-coordinated water,
49,50 or assisted by a single Mg2+ ion as recently suggested for GTP hydrolysis.51 A similar 

pathway has also been reported in a group II intron ribozyme,33 where a solvent-mediated 

mechanism has been proposed. However, nucleolytic ribozymes commonly react through an 

associative catalysis, activated by guanine nucleobases.35,52–54 These previous studies 

indicate that the dissociative catalysis is rare in the two-Mg2+-dependent enzymes, 

suggesting that the alternative phosphate-mediated dissociative mechanism proposed here 

could be less likely for the RuvC catalysis in CRISPR-Cas9. Notably, RuvC active site 

resembles that of RuvC resolvase,55 which processes Holliday junctions during genetic 

recombination and postreplication repair. In this enzyme, Mg2+-coordinating ligands 

strongly match the DDE motif in Cas9 (i.e., D7, E70, and D146 correspond to the Cas9 

residues D10, E762, and D986), while the catalytic H143 locates in the position of H983 in 

Cas9 (Figure S10). This hints to a similar histidine-activated mechanism, advocating for a 

common catalytic strategy for genome editing and recombination. Remarkably, a conserved 

histidine flanking the DDE motif composes the active site of other Cas9 species,8 most 

likely implying a similar two-metal-dependent mechanism. It is also important to mention 

that we cannot exclude that a third metal could engage in the RuvC catalysis, as suggested 

for RNA hydrolysis.56 However, the lack of biochemical and structural data currently 

hampers the investigation of this hypothesis in CRISPR-Cas9. Finally, it is interesting to 

note that both chemical pathways identified in this study (Figures 2 and 4) display an 

endothermic nature, in which, according to the Hammond’s postulate, the TS‡ more closely 

resembles the products. Hence, the protonation of the O3′ could have an important 
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contribution to the overall drive of the reaction. Considering that the pKa of 

phosphomonoester groups is ~7,57 while that of an alkoxide is ~16,58 it is reasonable to 

expect that the proton transfer to the O3′ would lead to a gain in free energy of ~12–13 kcal 

mol−1 (accordingly to the general relation ΔG = −RT ln K). Moreover, in CRISPR-Cas9, 

upon initial phosphodiester bond cleavage, RuvC can further process the DNA strand, due to 

not yet clearly characterized conformational changes within the active site.59 This suggests 

that the postcleavage events could further contribute to the stabilization of the product. This 

grants future investigations employing both classical and quantum mechanical approaches to 

better portray the postcleavage events.

Overall, our ab initio approach characterizes the two-metalion mechanism of non-target 

DNA cleavage in the RuvC active site of CRISPR-Cas9, as mediated by the catalytically 

relevant Mg2+, in agreement with experimental data.

CONCLUSIONS

Here, quantum–classical MD and free energy methods have been used to establish the two-

metal-dependent mechanism of DNA cleavage in CRISPR-Cas9. Ab initio MD simulations, 

reveal that the cleavage of the DNA non-target strand occurs through a concerted associative 

mechanism, activated by the conserved H983 and fundamentally assisted by the joint 

dynamics of the two catalytic Mg2+ ions. The catalysis is achieved upon a critical 

conformational rearrangement within the RuvC active site, which occurs in the presence of 

the catalytically active Mg2+ ions and leads H983 to properly position to act as a general 

base. This finding resolves prior structural and biophysical controversial evidence that could 

not ultimately clarify the catalytic role of the conserved H983 and the metal cluster 

configuration.3,6,7 The comparison with other two-metal-dependent enzymes further 

supports the identified mechanism and suggests a common catalytic strategy for genome 

editing and recombination. By carrying out a second set of ab initio simulations retaining the 

crystallographic configuration, we further characterized an alternative phosphate-mediated 

cleavage, which appears energetically slightly unfavorable. Notably, experimental evidences 

depict H983 as an essential active element for retention of catalysis in CRISPR-Cas9.7 This 

strongly advocates for the H983-activated mechanism observed here upon the 

conformational change of the RuvC active site. Intriguingly, the joint dynamics and the role 

of the metal ions are shown to remarkably differ in the in the two chemical pathways, 

revealing a hallmark of the enzymatic two-metal-ion mechanism. Overall, this work 

addresses a fundamental open question in the CRISPR-Cas9 biology, which has remained 

unclear from previous experimental studies. The chemical aspects and the mechanistic 

details of the DNA cleavage provided here are critical for understanding the catalytic 

function of CRISPR-Cas9, which is at the basis of its use as a genome editing tool. This 

knowledge lays the foundation for improving the catalytic efficiency and the specificity of 

CRISPR-Cas9, paving the way for future therapeutic applications of this gene editing 

technology.
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MATERIALS AND METHODS

Structural Models.

Molecular simulations have been carried out on the activated form of the Streptococcus 
pyogenes CRISPR-Cas9 enzymatic complex, which has been based on the most complete X-

ray structure of Cas9 in complex with RNA and DNA (PDB: 5F9R).6 This model system has 

been embedded in explicit waters, and counterions have been added to neutralize the total 

charge, leading to a periodic simulations cell of ~180 × 120 × 140 Å3 and a total of ~340 

000 atoms. Full details are reported in the SI.

Classical Molecular Dynamics (MD).

Classical MD has been performed to equilibrate the system prior to ab initio MD, using the 

Amber ff12SB force field, which includes the ff99bsc0 corrections for DNA60 and the 

ff99bsc0+χOL3 corrections for RNA.61,62 The TIP3P model was employed for water 

molecules,63 while the Åqvist force field was used for Mg2+ ions.64 An integration time step 

of 2 fs was used. Hydrogen atoms were added assuming standard bond lengths and were 

constrained to their equilibrium position with the SHAKE algorithm. A temperature control 

(300 K) was performed via Langevin dynamics,65 with a collision frequency γ = 1. Pressure 

control was accomplished by coupling the system to a Berendsen barostat,66 at a reference 

pressure of 1 atm and with a relaxation time of 2 ps. The simulations were carried out with 

the following protocol. The system was subjected to energy minimization to relax the water 

molecules and the counterions, keeping the protein, as well as the RNA, DNA, and Mg2+ 

ions fixed with harmonic position restraints of 300 kcal/mol·Å2. Then, the system was 

heated from 0 to 100 K in the canonical ensemble (NVT), by running two NVT simulations 

of 5 ps each, imposing position restraints of 100 kcal/mol · Å2 on the above-mentioned 

elements of the system. The temperature was further increased up to 200 K in ~100 ps of 

MD in the isothermal–isobaric ensemble (NPT), in which the restraint was reduced to 25 

kcal/mol·Å2. Subsequently, all restraints were released and the temperature was raised up to 

300 K in a single NPT simulation of 500 ps. After ~1.1 ns of equilibration, ~10 ns of NPT 

production was carried out allowing for the density of the system to stabilize around 1.01 

g/cm−3. The obtained systemwas used as a starting point for QM/MM simulations. Classical 

MD was performed with the GPU version of AMBER 18.67

Ab Initio Quantum Mechanics/Molecular Mechanics (QM/MM) Simulations.

In the QM/MM simulations, the RuvC active site was treated at a QM level of theory, while 

the rest of the system (including explicit waters) has been described using the classical force 

field. The QM part included the catalytic Mg2+ ions and their coordinating protein residues 

E762, D986, D10, S15, I11, and H983 (protonated in ε, as shown by a number of previous 

studies),4,11,12 part of the DNA nucleobases C-3 and A-4 and six water molecules (Figure 

S1). This resulted in a total of 105 QM atoms and an additional 13 capping hydrogen atoms 

used to saturate the valence of the terminal QM atoms. The QM atoms were described at the 

QM DFT/BLYP25,26 level, while the remaining MM part was treated using the force field 

described above. QM/MM simulations were performed using the CPMD code 

(www.cpmd.org). The wave functions were expanded in a plane wave basis setup to a cutoff 

of 75 Ry in a QM cell of dimensions ~26 × 22 × 26 Å3. The interactions between the 
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valence electrons and ionic cores were described with norm-conserving Martins-Troullier 

pseudopotentials.68 The QM part was treated as an isolated system, and electrostatic 

interactions between periodic images were decoupled by the scheme of Tuckerman.69 A 

rigorous Hamiltonian treatment of the electrostatic interaction between the QM and MM 

regions was used.70 The QM/MM protocol consisted of an initial optimization of the wave 

function, followed by ~6 ps of careful equilibration carried out with Born–Oppenheimer 

(BO) MD in the canonical (NVT) ensemble using an integration time step of 20 au (~0.48 

fs). The temperatures of the QM and MM subsystems were kept constant at 300 K using a 

Nosé–Hoover thermostat.71,72 After this initial phase, Car–Parrinello (CP) QM/MM 

simulations73 were carried out with a time step of 5 au (~0.12 fs) and a fictitious electron 

mass of 600 au. These unconstrained ab initio simulations were carried out reaching ~40 ps 

of sampling in two replicas, initialized from different coordinates and velocities. The final 

configuration was simulated for other ~40 ps of unconstrained ab initio MD. An additional 

~40 ps of ab initio MD was also carried out in the presence of the crystallized Mn2+ ions.4 

Full details are reported in the SI.

Free Energy Simulations.

The free energy profiles associated with phosphodiester bond cleavage were obtained 

through QM/MM simulations and free energy methods. The “blue moon ensemble” method,
74 along with thermodynamic integration, were employed to investigate phosphodiester bond 

cleavage, using the difference in distance between the breaking (O3′DNA–PDNA) and 

forming (OWAT–PDNA) bonds as a reaction coordinate (RC). The appropriateness of this 

approach and of the employed RC have been shown in several studies of DNA/RNA 

processing enzymes,28–30,33 and are further discussed in the SI. Starting from a value of the 

RC = −1.5 Å (i.e., the reactant R state), we sampled in 20 sequential windows along the RC, 

with a resolution of 0.2 Å (0.1 Å in the region in the vicinity of the TS‡). A growth rate of 

0.1 Å/ps was used to move from a window to the following one. Then, each window has 

been simulated for ≥6 ps, reaching convergence of the constraint force and collecting a total 

of ab initio QM/MM MD of ~120 ps. By using this approach, we computed two free energy 

profiles, starting from two different configurations shown in Figure 1B (right and left panels, 

respectively). This resulted in a total of ~240 ps of sampling. In order to estimate the error 

associated with hysteresis, we also computed the backward reaction pathways. For each free 

energy profile, we selected a point after the TS‡ was reached and we followed the backward 

pathway by sampling over eight consecutive windows for ≥6 ps each (a complete description 

is given in the SI). This reached a total sampling of an additional ~90 ps. Notably, these 

calculations revealed no large hysteresis between the forward and backward pathways 

(Figure S6). Finally, for both free energy profiles, at a RC = 1.2 Å, the constraint was 

released for ~5 ps, enabling the system to spontaneously reach the product state. The 

derivation of all free energy profiles (both forward and backward pathways) was performed 

by considering the average constraint force within each window from the points in which the 

force reached the convergence along the equilibrated trajectory. The statistical error at each 

point of the free energy profiles (both forward and backward pathways) was computed by 

error propagation analysis. Finally, the overall error on the free energy barrier was estimated 

as the sum of the statistical error and the error due to hysteresis between the forward and 

backward pathways (Figure S6). This resulted in a total Helmholtz’s free energy of ~16.55 ± 
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1.22 kcal mol−1 for the H983-mediated free energy profile (Figure 2) and ~18.55 ± 1.26 kcal 

mol−1 for the phosphate-mediated free energy profile (Figure 4). As in previous studies 

based on ab initio MD,24,29,42 further exploration of the identified chemical mechanism 

included the explicit calculation of the proton transfer in the H983-activated pathway. These 

simulations required an additional ~33 ps of sampling and are described in the SI. Overall, 

unconstrained ab-initio MD and free energy simulations have been carried out collecting a 

total of ~640 ps. Considering the high cost of ab-initio MD, the sampling collected here has 

been at the limits of our computational facility at the San Diego Supercomputing Center 

(SDSC). The SI comprehensively describes the application of ab initio MD and free energy 

methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of the CRISPR-Cas9 complex bound to a guide RNA and to a target DNA. (A) 

Cas9 protein is shown in the molecular surface, highlighting the HNH (green) and RuvC 

(blue) domains. The RNA (violet) and the DNA (black) strands are shown as ribbons. (B) 

Inset of the RuvC active site, displaying the catalytic metals (A and B, orange), the 

surrounding protein residues, and water molecules (left panel). The configuration of the 

active site resulting from ab initio molecular dynamics (MD) is shown in the right panel. 

The water nucleophile locates in between H983 and the scissile phosphate, positioning for 

the chemical reaction. (C) Time evolution along ~40 ps of ab initio MD of the interaction 

network established by H983 and by the water nucleophile. The complete set of interactions 

established by the metal cluster is reported in Figures S3 and S4.
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Figure 2. 
Structural and energetic properties of the two Mg2+-aided catalysis in CRISPR-Cas9. (A) 

Representative snapshots of the reactant (R), (B) proton transfer (PT), (C) transition state 

(TS‡), and (D) product (P) states along phosphodiester bond cleavage. (E) Free energy 

profile (ΔF#, in kcal mol−1) has been computed by using the difference in distance between 

the breaking (O3′DNA–PDNA, d1) and forming (OWAT–PDNA, d2) P–O bonds as a reaction 

coordinate (RC = d1 – d2, highlighted in panel A. The RC windows corresponding to the R, 

PT, TS‡, and P states are highlighted using colored bars.
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Figure 3. 
Interaction distances along phosphodiester bond cleavage. (A) Variation of the significant 

interaction distances (i.e., the Mg–Mg and the d1–d7 distances, shown on the right panel), 

computed at each step of the reaction coordinate (RC) in the associative reaction pathway 

activated by H983 (described in Figure 2). (B) Variation of the critical interaction distances 

along the alternative dissociative reaction pathway (described in Figure 4). The RC windows 

corresponding to the reactant (R), proton transfer (PT), transition state (TS‡), and product 

(P) states are highlighted using colored bars. The RC (i.e., difference in distance between the 

breaking and forming P–O bonds) and the interaction distances are described on the R in the 

right panels.

Casalino et al. Page 19

ACS Catal. Author manuscript; available in PMC 2021 January 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Alternative phosphate-mediated reaction pathway. (A) Free energy profile (ΔF#, in kcal mol
−1) for the phosphate-mediated dissociative mechanism (blue line), highlighting regions 

corresponding to the reactant (R′), transition state (TS‡′), proton transfer (PT′), and 

products (P′). The free energy profile for the associative pathway activated by H983 is also 

shown (red line). (B) Snapshots of the R′, TS‡′, PT′, and P′ states, as from the dissociative 

pathway.
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