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Events that overlap with previous experience may trigger reactivation of existing memories. However, such reactivation may have dif-
ferent representational consequences within the hippocampal circuit. Computational theories of hippocampal function suggest that
dentate gyrus and CA2,3 (DG/CA2,3) are biased to differentiate highly similar memories, whereas CA1 may integrate related events by
representing them with overlapping neural codes. Here, we tested whether the formation of differentiated or integrated representa-
tions in hippocampal subfields depends on the strength of memory reactivation during learning. Human participants of both sexes
learned associations (AB pairs, either face-shape or scene-shape), and then underwent fMRI scanning while they encoded overlapping
associations (BC shape-object pairs). Both before and after learning, participants were also scanned while viewing indirectly related
elements of the overlapping memories (A and C images) in isolation. We used multivariate pattern analyses to measure reactivation
of initial pair memories (A items) during overlapping pair (BC) learning, as well as learning-related representational change for indi-
rectly related memory elements in hippocampal subfields. When prior memories were strongly reactivated during overlapping pair
encoding, DG/CA2,3 and subiculum representations for indirectly related images (A and C) became less similar, consistent with pattern
differentiation. Simultaneously, memory reactivation during new learning promoted integration in CA1, where representations for
indirectly related memory elements became more similar after learning. Furthermore, memory reactivation and subiculum representa-
tion predicted faster and more accurate inference (AC) decisions. These data show that reactivation of related memories during new
learning leads to dissociable coding strategies in hippocampal subfields, in line with computational theories.
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Significance Statement

The flexibility of episodic memory allows us to remember both the details that differentiate similar events and the commonal-
ities among them. Here, we tested how reactivation of past experience during new learning promotes formation of neural rep-
resentations that might serve these two memory functions. We found that memory reactivation during learning promoted
formation of differentiated representations for overlapping memories in the dentate gyrus/CA2,3 and subiculum subfields of
the hippocampus, while simultaneously leading to the formation of integrated representations of related events in subfield
CA1. Furthermore, memory reactivation and subiculum representation predicted success when inferring indirect relationships
among events. These findings indicate that memory reactivation is an important learning signal that influences how overlap-
ping events are represented within the hippocampal circuit.

Introduction
The hippocampus is composed of multiple subfields that con-
tribute to memory processing and representation. Computa-
tional models propose that the anatomic properties of dentate
gyrus and CA2,3 (DG/CA2,3) make these subfields ideal for pat-
tern separation, or the automatic orthogonalization of highly
similar cortical inputs though sparse firing (Marr, 1971; Schapiro
et al., 2017). In contrast, the characteristics of CA1 have been
proposed to mediate memory integration, or the formation of
overlapping representations that code the common features
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across related episodes (Eichenbaum et al., 1999; Schlichting and
Preston, 2015; Schapiro et al., 2017). Electrophysiological
research evinces such representational dissociations among sub-
fields: DG/CA2,3 ensembles elicit distinct firing patterns with only
small changes in the perceptual features of an environment,
whereas CA1 activity patterns change gradually as environments
become perceptually distinct (Leutgeb et al., 2004, 2007). Parallel
work in humans has shown that changes in DG/CA2,3 activation
distinguish between highly similar object images or objects that
share a similar context, whereas CA1 responses do not (Bakker et
al., 2008; Lacy et al., 2011; Dimsdale-Zucker et al., 2018).
Subiculum, the output structure of the hippocampal circuit
(O’Mara et al., 2001), may contribute to both pattern differentia-
tion (Potvin et al., 2009) and integration (Schapiro et al., 2012).

However, such prior work has not considered how memory
reactivation drives dissociable representational strategies within hip-
pocampus, allowing representation learning to go beyond a
simple transformation between external sensory input and
memory output. Classic computational learning models pro-
pose that memory representations should adjust to predict likely
outcomes in response to environmental cues, with integration
occurring when stimuli predict the same outcome and differentia-
tion when stimuli predict distinct outcomes (Rumelhart et al.,
1986). However, recent fMRI findings indicate that differentiation
can also occur when stimuli share a common association or out-
come (Schlichting et al., 2015; Favila et al., 2016; Zeithamova et al.,
2018). In those studies, hippocampal representations were more dis-
tinct for stimuli that shared a common outcome than stimuli with
different outcomes. Such differentiation cannot be explained in
terms of automatic separation of external input through sparse cod-
ing in DG/CA2,3; rather, a recent theoretical perspective proposes

that memory reactivation may account for
how hippocampal representations change
in the face of event overlap (Ritvo et al.,
2019).

According to this theory, optimal
learning reduces competition among
memories through either differentiation
or integration (Ritvo et al., 2019).
Although sensory overlap in the environ-
ment is certainly one factor that might
drive formation of optimal representa-
tions that reduce ambiguity (Leutgeb et
al., 2004, 2007; Lacy et al., 2011; Yassa
and Stark, 2011), what may be more
essential is how overlapping sensory input
drives reactivation of competing memo-
ries. Reactivated memories may be the
“target” of learning more so than the sen-
sory features that elicited reactivation.
Thus, in the present study, we went
beyond considering perceptual similarity
as the sole driver of hippocampal repre-
sentations and tested whether the reacti-
vation of related memories in cortex
during learning results in dissociable sub-
field coding. We hypothesized that mem-
ory reactivation would be modulated by
event similarity across learning (Vieweg
et al., 2015) and may thus be the key fac-
tor mediating the degree of representa-
tional overlap observed for similar events
in hippocampal subfields (Ritvo et al.,
2019). We also hypothesized that integra-

tion and differentiation would not be mutually exclusive out-
comes in response to memory reactivation, but that reactivation
would instead lead to the simultaneous formation of comple-
mentary differentiated and integrated representations in DG/
CA2,3 and CA1.

To test these predictions, we parametrically manipulated
perceptual similarity between overlapping events in an associa-
tive inference task (Fig. 1). Participants studied initial pairs and
were scanned using high-resolution fMRI while learning over-
lapping pairs. We tested memory for the learned pairs and
inferred knowledge of the indirect relationships across pairs,
with inference performance serving as a behavioral index of
integration (Shohamy and Wagner, 2008; Zeithamova et al.,
2012). Critically, we quantified how memory reactivation dur-
ing overlapping event learning impacted hippocampal subfield
representation.

Materials and Methods
Participants
Thirty-two right-handed individuals (15 females, aged 18-31 years,
mean= 21.5 years) participated after giving informed consent in accord-
ance with a protocol approved by the Institutional Review Board at the
University of Texas at Austin. Participants received $25/h in compensa-
tion. Data from 6 participants were excluded from the analyses: 2 partici-
pants because of excessive head motion, 1 participant who withdrew
from the experiment, 2 participants who had incomplete scanning ses-
sions (the postexposure and/or localizer phases were not scanned), and 1
participant for image artifacts in the functional scans that precluded
analysis of the preexposure and localizer phases. The remaining partici-
pants (n= 26, 14 females) were included in the analyses. We determined
our final sample size based on related studies that used similar
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Figure 1. Experimental design. A, Schematic of the behavioral task. Participants were first exposed to individually pre-
sented pictures (faces, scenes, and novel objects) that would later become indirectly related through associative learning (A
and C items). Then, participants learned to associate initial pairs (face-shape or scene-shape AB associations) and were
scanned while learning overlapping pairs (shape-object BC associations). Participants were scanned again in a postexposure
phase while they viewed the same items from preexposure (A and C items). Participants then completed an across-episode
inference task. Finally, participants completed a localizer task in which they viewed individually presented faces, scenes,
objects, and shapes in a blocked design. B, Visual similarity manipulation. The similarity of the shared B item across pairs
was parametrically manipulated. In this example, the top shape would have been seen in the initial AB pairs, whereas the
bottom row represents the different shape morphs that could be seen when learning the overlapping BC pairs. The linking B
item presented during overlapping pair learning could either be an exact match to the B item presented during initial (AB)
pair learning, a high similarity or low similarity morph, or new (i.e., nonoverlapping) item. C, Subjective similarity of shape
stimuli used for B linking items. An independent sample of participants rated visual similarity between parent shapes and
shape morphs presented side by side using a 5 point Likert scale (1 = not at all similar, 5 = very similar). pp, 0.05 (paired
t tests). Error bars indicate6 SEM.

Molitor et al. · Reactivation Promotes Differentiation, Integration J. Neurosci., January 27, 2021 • 41(4):726–738 • 727



paradigms and analytical approaches (Zeithamova et al., 2012;
Schlichting et al., 2015; Dimsdale-Zucker et al., 2018). Furthermore, this
sample size gave us an estimated statistical power of .0.99 to detect an
effect of visual similarity on across-episode inference accuracy based on
pilot data from a separate group of participants (n=30, 22 females, aged
18-22 years, mean= 18.9 years; repeated-measures ANOVA resulting in
partial h squared (h2) = 0.280).

Stimuli
Stimuli were 58 unfamiliar faces (half male, half female, all white), 58
unfamiliar scenes (half natural, half manmade), 671 black shapes gener-
ated in MATLAB (for more information, see Visual similarity manipula-
tion during new encoding), and 74 novel objects (Hsu et al., 2014;
Schlichting et al., 2015). A subset of the stimuli was organized into 32 tri-
ads consisting of three items (A, B, C) that were used in the associative
inference task (Fig. 1A). The A items consisted of faces (16) evenly split
by gender, and scenes (16) evenly split by natural and manmade; all B
items were shapes (56); all C items were novel objects (32). Another sub-
set of stimuli (42 faces, 42 scenes, 42 objects, and 42 shapes) were used in
the localizer task and were not seen during the associative inference task.
Assignment of stimuli to the triads and localizer task was randomized
across participants. Stimuli were presented using Psychtoolbox in
MATLAB (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007).

Task procedure
Initial pair (AB) learning. Participants learned the initial pairs (AB)

across four study-test blocks. During the study phase, each of the 32 ini-
tial pairs was presented for 3.5 s with a 0.5 s intertrial interval (ITI). The
A item (face or scene) was always presented on the left, and the B item
(shape) was always presented on the right. After studying all of the pairs,
participants were tested using a 3-alternative forced choice test.
Participants were cued with the A item on the top of the screen and had
to choose between the appropriate B item and two foils. The foils were
shapes from other triads, such that participants could not base their deci-
sion on the familiarity of the shapes. Participants had 10 s to respond on
each trial. After the participant’s response, corrective feedback was pro-
vided at the end of each trial for 1 s. Test trials were separated by 0.5 s
ITI. Anatomical images were collected during this phase.

Visual similarity manipulation during new encoding. To examine
how the similarity of event elements affects memory reactivation and
behavior, the visual similarity of the linking element (the shape, or B
item) in the associative inference task was parametrically manipulated
(Fig. 1B). We manipulated visual similarity based on prior work showing
that hippocampal subfield responses are modulated by visual feature
overlap among events (Leutgeb et al., 2004, 2007; Bakker et al., 2008;
Lacy et al., 2011). There was a total of four conditions: exact match, high
similarity, low similarity, and new. In the exact match condition, partici-
pants saw the exact same linking B shape when learning the initial pairs
(AB) and overlapping pairs (BC). In the high and low similarity condi-
tions, each shape seen in the overlapping pairs was a parametric morph
of a shape from one of the initial pairs. “Parent” shapes were generated
by taking 16 points distributed along the perimeter of a circle, randomly
translating each point, and then connecting adjacent points to create
edges using spline interpolation. The shapes in the high and low similar-
ity conditions were generated by taking two parent shapes and averaging
the coordinates of corresponding vertices using different weights. The
high similarity shapes were weighted 80% to one parent shape and 20%
to the other parent, while the low similarity shapes were weighted 70%
to one parent and 30% to the other. In the new condition, participants
saw a new shape paired with a novel object, making these pairs nonover-
lapping with the initial pairs. The new pairs thus served as a baseline for
associative learning. Each participant studied eight triads per visual simi-
larity condition.

Differences in subjective similarity between the high and low similar-
ity items were confirmed in an independent sample of 9 participants (8
females, aged 18-22 years, mean= 19.4 years). Participants in this sample
rated visual similarity between parent shapes and shape morphs pre-
sented side by side using a 5 point Likert scale (1= not at all similar,
5 = very similar) across 180 trials. Exact matches were rated as more

similar than high similarity morphs (t(8) = 6.255, p, 0.001, Cohen’s
d= 2.085), high similarity morphs were rated as more similar than low
similarity morphs (t(8) = 9.312, p, 0.001, d= 3.104), and low similarity
morphs were rated as more similar than new items (t(8) = 10.021,
p, 0.001, d= 3.340). One caveat to quantifying subjective similarity
using this approach is that the comparison does not involve a memory
component. It is possible that, if we inserted a delay between the presen-
tation of two shapes, the observed subjective similarity function (Fig.
1C) may have differed; for instance, the subjective similarity differences
between the high and low similarity conditions might have been less pro-
nounced. While this measurement caveat might influence interpretation
of the subjective similarity judgments themselves, it has less impact on
interpretation of our central behavioral and neural analyses. We observe
differences in memory performance and reactivation between the simi-
larity conditions (including the high and low conditions) that indicate
the four similarity conditions differentially impacted processing (see
Results). Furthermore, our neural analyses assessing learning-related
representational change focus on the high similarity condition only and
do not rely on comparisons to the other similarity conditions (see
Exposure of individual items before and after learning).

Overlapping pair (BC) learning. After participants learned the initial
pairs, they were scanned while learning the overlapping pairs. This phase
again consisted of four study-test blocks. During the study phase, the 32
pairs were presented using an event-related design, with pairs presented
for 3.5 s followed by 8.5 s ITI of fixation. The C item (object) was always
presented on the left, and the B item (shape) was always presented on
the right. After each study phase, participants were tested on the BC
pairs using a 3-alternative forced choice test, which was not scanned.
Participants were cued with the C item on the top of the screen and had
to choose between the appropriate B item and two foils. Feedback was
not given during this phase. Participants had 10 s to respond on each
test trial, and trials were separated by 0.5 s ITI.

Exposure of individual items before and after learning. Before learn-
ing the initial pairs and after learning the overlapping pairs, participants
were exposed to individually presented A and C items (faces, scenes, and
objects) from the high similarity condition. These exposure phases were
limited to a single visual similarity condition to maximize the number of
presentations for each stimulus and improve estimation of task-related
activation patterns (see Estimation of individual stimulus patterns before
and after learning). Using a single similarity condition also allowed us to
control for the effects of visual similarity when calculating representa-
tional change. The high visual similarity condition was used because
prior work in humans has shown that highly visually similar stimuli
elicit differential responses in DG/CA2,3 and CA1 (Lacy et al., 2011).

In each exposure run, participants were scanned while items were
presented for 1 s with a 3 s ITI. While each item was on the screen, par-
ticipants completed a change-detection task by indicating via button
press whether a superimposed black cross changed color to green or
blue 100-200ms after stimulus onset (Kriegeskorte et al., 2008;
Schlichting et al., 2015). There were four repetitions of each item per
run, and a total of four runs each in the preexposure and postexposure
phases. Trials were pseudorandomized such that items within a triad
were presented with at least two interleaved items from other triads.
Additionally, 20% of trials were null (i.e., there was no object or change
detection task) to improve item-level activation estimation in the analy-
sis; these null trials were placed randomly between item presentation tri-
als. Trial order and timing were identical in the preexposure and
postexposure phases. Accuracy on the change detection task was moni-
tored to ensure that participants were paying attention to the task but
was not considered further.

There was also a nonscanned preexposure phase for items from the
exact match, low similarity, and new conditions that occurred before the
first scanned preexposure run. The purpose of this phase was to equate
familiarity of the A and C items in the exact match, low similarity, and
new conditions to items in the high similarity condition before pair
learning. The nonscanned exposure was similar to the scanned exposure
phases, except the ITI was 0.5 s and there were no null trials.

Associative inference (AC) test. Following the postexposure phase,
participants were given a surprise test on the indirect relationships
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between the A and C items that shared a common associate (B). The in-
ference test was performed inside the scanner but was not scanned. In
this phase, participants were cued with the C item (object) and could
choose between A items of the same category (i.e., three faces or three
scenes). On face trials, participants were instructed to choose the person
who would most likely own the cued object. On scene trials, they were
instructed to choose the location in which they would most likely find
the cued object. Critically, at no point were participants explicitly
instructed about the visual similarity manipulation or the overlap across
learning. Participants were given 10 s to respond. No feedback was
given.

Localizer. After the inference test, participants were scanned in a lo-
calizer task. In this task, participants viewed a series of stimuli from the
four stimulus categories used in the experiment: faces, scenes, shapes,
and objects. Stimuli were presented in a blocked design, with each block
consisting of eight images presented for 2.5 s each with 0.5 s ITI. During
each stimulus block, participants completed a one-back memory task in
which they had to detect a repeated stimulus. There was one repeated
stimulus in each block. Accuracy on the one-back task was monitored to
ensure that participants were paying attention to the task but was not
considered further. Blocks were separated by 8 s of fixation. Participants
completed three runs of the localizer task, with two blocks per stimulus
type per run.

fMRI data collection and preprocessing
Data were collected with a 3T Siemens Skyra. There was a total of 15
functional scans (TR= 2000 ms, TE=30 ms, flip angle = 73°, 1.7 mm iso-
tropic voxels, EPI, multiband acceleration factor= 3) across the preexpo-
sure, overlapping pair study, postexposure, and localizer phases. Three
field maps (TR=589 ms, TE= 5 ms/7.46ms, 1.5� 1.5� 2 mm voxels,
flip angle = 5°) were collected to correct for distortions in the magnetic
field: one immediately before the preexposure phase to correct the preex-
posure scans, one before the overlapping pair study phase to correct the
study and postexposure scans, and one before the localizer phase to
correct the localizer scans. A T1-weighted 3D MPRAGE volume was
collected (TR= 1900 ms, TE = 2.43ms, flip angle = 9°, 1 mm isotropic
voxels) to facilitate alignment and normalization of the functional data
to an anatomic template. Two coronal T2-weighted structural scans,
aligned perpendicular to the hippocampal long axis, were collected
(TR= 13,150 ms, TE = 82 ms, 0.4 mm� 0.4 mm in-plane, 1.5 mm
through-plane) and then averaged for subfield segmentation.

Functional and anatomic images were preprocessed using FMRIB
Software Library version 5.0.9 (FSL: http://fsl.fmrib.ox.ac.uk/fsl/) and
Advanced Normalization Tools (ANTS) version 2.1 (Avants et al., 2011).
Functional scans were motion-corrected using MCFLIRT in FSL and
then registered to the final overlapping pair study run using affine
transformations in ANTS. Nonbrain structures were removed from the
functional scans and MPRAGE using BET in FSL. Additional data
processing was conducted using FEAT (FMRI Expert Analysis Tool)
version 6.00, part of FSL. The following prestatistics processing was
applied to all functional images; coregistration with the MPRAGE and
field map-based EPI unwarping using FUGUE (Jenkinson, 2003);
grand-mean intensity normalization of the entire 4D dataset by a single
multiplicative factor; high-pass temporal filtering (Gaussian-weighted
least-squares straight line fitting, with s = 64 s). Spatial smoothing
using a Gaussian kernel of FWHM 4 mm was applied to the overlap-
ping pair learning and localizer scans.

ROIs
Anatomical ROIs included whole-brain gray matter for the reactivation
analysis and hippocampal subfields for the neural coding analysis. A
whole-brain gray matter mask was created for each participant in native
space using FAST (Zhang et al., 2001), part of FSL, with the MPRAGE.
Gray matter masks were then moved into functional resolution using
linear transformations in ANTS. Within hippocampus, activation pat-
terns in subfields CA1, a combined DG/CA2,3 region, and subiculum
were analyzed. Hippocampal subfields were identified in the head and
body of the hippocampus in native space by reverse normalizing masks
from an open source template with segmented subfields (Schlichting et

al., 2019) to the average T2 coronal image of each participant using non-
linear SyN transformations in ANTS. This procedure has been shown to
provide results comparable to manual tracing (Schlichting et al., 2019).
Masks were then inspected and edited manually for each participant to
remove voxels outside the hippocampus and ensure accurate segmen-
tation based on established protocols (West and Gundersen, 1990;
Duvernoy, 1998; Mai et al., 2007). Finally, the subfield masks were
transformed to the space of the functional scans by first registering the
average coronal image to the MPRAGE using linear transformations
and then applying the previously calculated transform to functional
space.

Quantification and statistical analysis
Decoding memory reactivation during overlapping event learning. To

measure reactivation of encoding patterns related to the initial pairs dur-
ing overlapping pair learning, we used a pattern classification analysis in
PyMVPA (Hanke et al., 2009). If participants reactivated related infor-
mation (i.e., A face and scene items from AB pairs) when learning over-
lapping pairs (BC shape-object pairs), then a pattern classifier trained on
the localizer data should be sensitive to the category of information (ei-
ther face or scene) that is being reactivated (Polyn et al., 2005; Kuhl et
al., 2011; Zeithamova et al., 2012). Thus, we trained the pattern classifier
with data from the localizer phase and then applied the classifier to the
overlapping pair learning phase. We operationalized memory reactiva-
tion as classifier evidence for the category of the A items (i.e., face or
scene) from the initial AB pairs related to the overlapping BC pairs.

We measured memory reactivation using a multistep procedure.
First, we ran a whole-brain searchlight (Kriegeskorte et al., 2006) to iden-
tify regions where information about A items was reinstated during
overlapping pair learning. In each searchlight sphere (radius = 3 voxels,
volume=123 voxels), a linear support vector machine was trained to dif-
ferentiate neural patterns from the localizer phase associated with faces,
scenes, objects, and shapes. To account for hemodynamic lag, each func-
tional image was labeled by taking the trial labels and time-shifting them
forward by 4 s (two TRs). The trained classifier was then applied to neu-
ral patterns from the overlapping pair learning phase, which was also
time-shifted by 4 s. Trial-level reactivation estimates were extracted by
taking classifier evidence for the category associated with the A item of
each triad (e.g., classifier evidence for faces for face-shape-object triads)
for the two TRs corresponding to the presentation of each pair.
Classifier evidence values were sorted into two sets: a reactivation set
and baseline set. The reactivation set contained classifier evidence val-
ues from the exact match, high similarity, and low similarity trials. The
baseline set contained face and scene evidence values from trials in the
new condition. Because shape-object pairs in the new condition did
not overlap with any of the previously learned pairs, they should not
elicit reactivation of face or scene memories. The final reactivation
index was calculated in each sphere by taking the difference between
the average evidence for the reactivation set and the average of the
baseline set.

To test the significance of this reactivation index, we compared the
actual reactivation index to a null distribution in each searchlight sphere.
The null distribution was created over 1000 iterations by shuffling classi-
fier evidence values across the reactivation and baseline sets and then
recalculating the reactivation index every iteration. The center voxel
of each searchlight sphere reported the proportion of the null distri-
bution with reactivation indices greater than or equal to the observed
reactivation index (i.e., p value). To identify reactivation regions
across participants, individual participant searchlight maps were nor-
malized to a group template for significance testing. The p value
images were converted to z-statistic images and then warped to the
MNI 152 anatomic template (resampled to the resolution of the func-
tional scans, 1.7 mm isotropic voxels) using nonlinear SyN transfor-
mations in ANTS. Voxelwise, nonparametric permutation testing was
done using Randomise in FSL over 5000 iterations (Winkler et al.,
2014). Significant clusters were identified by applying a voxel thresh-
old of p, 0.01 (uncorrected) and a cluster threshold of p, 0.05.
Thresholds were calculated using the AFNI (Cox, 1996) function
3dClustSim with smoothness estimates derived from the study phase
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using 3dFWHMx based on the spatial AutoCorrelation Function.
Cluster extent was determined using two-sided thresholding with sec-
ond-nearest neighbor clustering.

To confirm that the reactivation measure was not driven by a single
stimulus category, we further interrogated searchlight clusters to test
whether reactivation varied with stimulus category (face or scene) of the
A item in a post hoc analysis. The significant clusters identified in the
reactivation searchlight analysis were converted to binary masks and
reverse-normalized into native space using ANTS. Then, the reactivation
analysis was repeated in each functional ROI for every participant. We
used repeated-measures ANOVA with region and stimulus category as
factors to assess whether reactivation in each region differed as a func-
tion of stimulus category.

While our initial searchlight analysis localized regions in which reac-
tivation occurred above baseline, we also ran an independent searchlight
to identify regions where reactivation strength varied with visual similar-
ity. This searchlight used a similar approach to the analysis measuring
overall reactivation, but with an additional level that compared classifier
evidence for reactivation between the exact match condition and the
other similarity conditions (i.e., the high similarity condition and low
similarity condition combined). The effect of similarity was calculated in
each sphere by taking the difference between the average evidence for
the exact match condition and the average evidence for the high and low
similarity conditions combined. This difference was then compared with
a null distribution in each searchlight sphere, which was created over
1000 iterations by shuffling classifier evidence values across the exact
match and similarity morph conditions. Normalization to the group
template, statistical testing, and cluster correction were identical to the
searchlight identifying reactivation above baseline.

Estimation of individual stimulus patterns before and after learning.
We derived estimates of neural activation patterns elicited by each of the
A (faces, scenes) and C (novel 3D objects) stimuli from the preexposure
and postexposure phases using a GLM with a least squares–separate
approach (Mumford et al., 2012) in the native space of each participant.
Each of the 16 objects from the scanned exposure phases (i.e., the eight
A items and eight C items from the high similarity condition) were mod-
eled iteratively in each run of the preexposure and postexposure phases
separately (Schlichting et al., 2015).

Object presentations were modeled as a 1 s event, and the regressor
for each object included all four repetitions within a scanning run. Each
of the 16 object regressors was convolved with the canonical double C
HRF. Temporal filtering was then applied. The GLMs included addi-
tional confound regressors: motion parameters, their temporal deriva-
tives, framewise displacement, and DVARS (Power et al., 2012;
Schlichting and Preston, 2014; Schlichting et al., 2015). Additional
motion regressors were added for time points during which head
motion exceeded both 0.5 mm for framewise displacement and 0.5%
change in BOLD signal for DVARS (Power et al., 2012). Beta images
were generated for each A and C item for every preexposure and
postexposure run, totaling 128 statistics images per participant.

Quantifying learning-related changes in hippocampal subfield neural
similarity. Pattern differentiation and memory integration in hippocampus
were indexed using a representational similarity analysis (Kriegeskorte et al.,
2008) implemented in PyMVPA (Hanke et al., 2009). Searchlights were run
separately within anatomically defined DG/CA2,3, CA1, and subiculum in
the native space of each participant. Within each searchlight sphere
(radius=2 voxels, volume=33 voxels) (Schapiro et al., 2012), similarity
matrices were generated by calculating the pairwise Pearson’s correlation
values for the 128 statistics images corresponding to the A and C items in
the preexposure and postexposure runs, transformed to Fisher’s z. Then,
change in pattern similarity due to learning was measured by subtracting
the preexposure similarity values from the postexposure similarity values in
corresponding cells.

After the change in pattern similarity (hereafter referred to as D) was
calculated, D values were sorted depending on whether the value was for
a within-triad comparison or an across-triad comparison. These two sets
of values allowed us to determine how representational change was
influenced by event overlap due to learning (within-triad comparison
set) relative to a baseline that simply reflected repeated exposure

without event overlap (across-triad comparison set). Importantly, only
D values that reflected across-run correlations were used to reduce bias
that could be introduced from autocorrelation in the BOLD signal
(Mumford et al., 2012).

To assess the effect of reactivation during learning on representational
change, the within-triad D values were further subdivided based on the
strength of memory reactivation during learning of the overlapping pairs.
For each participant, reactivation strength was calculated for every triad by
taking the mean reactivation index across the network of regions identified
in the reactivation searchlight analysis (see Fig. 3A), averaged across study
blocks. Triads were then divided into stronger reactivation triads and
weaker reactivation triads using a median split on the average reactivation
values. Thus, within-triad D comparisons were further sorted into a stron-
ger reactivation within-triad D set and a weaker reactivation within-triad D
set in each searchlight sphere. Finally, all D sets were averaged to create
three summary values: average within-triad similarity change for stronger
reactivation triads (DWithin stronger), average within-triad similarity change
for weaker reactivation triads (DWithin weaker), and average across-triad simi-
larity change (DAcross). We compared these summary values to determine
whether neural coding varied as a function of reactivation strength.

Neural coding was assessed using four searchlight contrasts
(Schlichting et al., 2015) (see Fig. 4B). Two analyses identified hippo-
campal voxels for which there was memory integration or differentiation
across all triads, regardless of reactivation strength. IntegrationOverall was
calculated as (DWithin stronger – DAcross) 1 (DWithin weaker – DAcross),
reflecting greater within-triad than across-triad similarity after learning
across all degrees of reactivation. DifferentiationOverall was calculated as
(DAcross – DWithin stronger) 1 (DAcross – DWithin weaker), reflecting lesser
within-triad than across-triad similarity across all degrees of reactivation.
Two additional analyses identified voxels for which neural coding varied
as a function of reactivation strength (IntegrationReactivation and
DifferentiationReactivation). The IntegrationReactivation searchlight identified
voxels for which integration occurred to a greater extent for stronger reacti-
vation triads. IntegrationReactivation was calculated as (DWithin stronger –
DWithin weaker). In contrast, the DifferentationReactivation searchlight identified
voxels for which differentiation occurred to a greater extent for stronger
reactivation triads. DifferentiationReactivation was calculated as (DWithin weaker –
DWithin stronger).

The significance of each of these calculations was determined by
comparing the computed similarity change values to a null distribution
in each searchlight sphere. The null distribution was created over 1000
iterations by shuffling cells across the DWithin stronger, DWithin weaker, and
DAcross sets and then recalculating the statistic of interest for each itera-
tion. The center voxel of each searchlight sphere reported the proportion
of the null distribution with values greater than or equal to the observed
similarity change (i.e., p value). Significant clusters were identified using
the same method as the reactivation searchlights, except the z-statistic
images were warped to a functional-resolution hippocampal template
rather than the resampled MNI template for the group-level analysis.
Normalized searchlight maps were then masked by each anatomic hip-
pocampal subfield template before cluster correction to ensure clusters
were exclusive to each hippocampal subfield.

Post hoc analyses further interrogated the direction of representa-
tional change observed in each subfield identified from this searchlight
analysis. An important caveat to these post hoc analyses is that they are
not completely unbiased because they compare sets of voxels preselected
to exhibit specific effects based on the searchlight contrasts. Thus, our
follow-up analyses did not directly compare the DWithin values for the
stronger and weaker reactivation items. Our post hoc analyses instead
focused on the magnitude of DAcross values to test whether there were
global shifts in neural similarity across the preexposure and postexpo-
sure phases, in addition to comparing DWithin values to DAcross values to
quantify the degree of learning-related integration and differentiation.

For these post hoc analyses, similarity change in DG/CA2,3, CA1, and
subiculum was calculated for each participant in native space. The
searchlight clusters identified by the group searchlight analyses were
converted into masks and reverse-normalized into each participant’s
native space using nonlinear transformations in ANTS. For each partici-
pant, the native space clusters were then dilated with FSL using a 3 � 3
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� 3 mm box as a kernel. To ensure that clusters were still restricted to
their respective subfield when converted to participant native space,
each cluster was masked using anatomic subfield masks defined for each
individual participant. One participant had a CA1 cluster in native space
without a sufficient number of voxels for representational similarity
analysis (,10 voxels) and was excluded from subsequent analysis of this
subfield. For the remaining participants, we computed the average simi-
larity change within each cluster separately for triads associated with
stronger reactivation during learning, those associated with weaker reac-
tivation during learning, and the across-triad baseline.

Quantifying the relationship between neural measures and behavior.
The relationship between behavior and our neural measures of reactiva-
tion and representational change was assessed using a Linear Ballistic
Accumulator (LBA) model to fit performance on the inference test
(Morton et al., 2020). For each participant and subfield (CA1, DG/CA2,3,
and subiculum), we calculated the z score of similarity change between A
and C items from prelearning to postlearning (D) for each triad. We also
calculated the z score of A item reactivation across triads for each partici-
pant. We then used the LBA model to fit behavioral responses and
response times during the AC inference test, using similarity change and
reactivation as predictors of variability between triads. We used a multile-
vel Bayesian approach to estimate mean slope parameters reflecting the
relationship between the neural measures and AC inference performance.
Positive slopes for the Dmeasures indicate larger similarity values between
A and C items after learning are associated with faster and more accurate
inference. Positive slopes for the reactivation measure indicate that greater
reactivation is associated with faster and more accurate inference.

Model definition
The LBA model (Brown and Heathcote, 2008) assumes that, on each
trial, the starting point k of each accumulator is drawn randomly from a
uniform distribution on the interval [0, A]. Each accumulator then fol-
lows a line with a slope of d until it reaches the response threshold b. On
each trial, the slope d of accumulator i is drawn from a normal distribu-
tion with mean vi and SD s (here, fixed at 1). The time for an accumula-
tor to reach the threshold is (b� k)/d. We modeled the three-alternative
forced-choice inference tests using three accumulators with mean drift
rates v1 (for the correct response) and v2 (for the other two responses).

As derived in the initial description of the LBA model (Brown and
Heathcote, 2008), the probability density function (PDF) for accumula-
tor i at time t is as follows:

fiðtÞ ¼ 1
A

�viU
b� A� tvi

ts

� �
þ sf

b� A� tvi
ts

� ��

þ viU
b� tvi

ts

� �
� sf

b� tvi
ts

� ��
Where f and U are the probability density function and cumulative

distribution functions, respectively, of the standard normal distribution.
The cumulative distribution function (CDF) for accumulator i at time t
is as follows:

FiðtÞ ¼ 1þ b� A� tvi
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The PDF for accumulator i hitting the threshold first, at time t, is the
probability of accumulator i finishing at time t, conditional on the other
accumulators not having finished yet as follows:

PDFiðtÞ¼ fiðtÞ
Y
j6¼i

ð1� FjðtÞÞ

Because drift rate d is drawn from a normal distribution, there is
some probability of no accumulators finishing. Following prior work

(Brown and Heathcote, 2008; Annis et al., 2017), we conditionalized on
the probability of at least one accumulator having a positive drift rate as
follows:

PðrespÞ ¼ 1�
YN
i¼1

f � vi
s

� �

Nondecision time (e.g., time to perceive the test stimuli) was mod-
eled as a fixed time interval t . The probability of a correct response at
time t was as follows:

Pðcorrect; tÞ ¼ PDF1ðt � tÞ
PðrespÞ

The probability of an incorrect response at time t was as follows:

Pðincorrect; tÞ ¼ 2PDF2ðt � tÞ
PðrespÞ

The model was implemented in Python 3.7 using PsiReact 0.2
(Morton et al., 2020). We used Bayesian sampling to estimate parame-
ters, using the No U-Turn Sampler (NUTS) implemented in pyMC
3.9.2. We fixed s=1 and b= 8 to improve stability of parameter esti-
mates. An intercept drift rate parameter b 0,i for correct responses was
estimated for each participant i. We also estimated the drift rate of incor-
rect responses v2,i for each participant. We used the within-participant z
score of similarity change for each subfield (e.g., zCA1,ij) and reactivation
estimates (zReact,ij) to predict the drift rate on each trial j. Trial-level vari-
ability in drift rate was modeled as a linear combination of the similarity
change and reactivation z scores. The correct item drift rate v1,ij for par-
ticipant i, trial j was as follows:

v1;ij¼ b 0;i þ b CA1;izCA1;ij þ b DG=CA2;3;izDG=CA2;3;ij þ b Subiculum;izSubiculum;ij

þ b React;izReact;ij

The slope parameters (e.g., b CA1,i) were estimated for each par-
ticipant i. To improve robustness of estimates for the individual par-
ticipant parameters, we defined them as being drawn from a group-
level normal distribution. The prior distributions for parameters
were as follows:

b 0;i ;Normalð0; 4Þ

b CA1;i ;NormalðmCA1;sCA1Þ

b DG=CA2;3;i ;NormalðmDG=CA2;3;sDG=CA2;3Þ

b Subiculum;i ;NormalðmSubiculum;s SubiculumÞ

b React;i ;NormalðmReact;sReactÞ

v2;i;Normalðm2;s 2Þ

t ;Unifð0; 2Þ

A;Unifð0; 8Þ
Prior distributions for group-level parameters were as follows:

mCA1;mDG=CA2;3;mSubiculum;mReact;m2;Normalð0; 4Þ

sCA1;sDG=CA2;3;s Subiculum;sReact;s 2;Gammað1:5; 0:75Þ

For each of four chains, there was a tuning phase of 1000 iterations
with a target acceptance rate of 0.99, followed by 5000 samples.
Convergence was assessed using bulk effective sample size and rank-nor-
malized split potential scale reduction statistic R^ (Vehtari et al., 2017).
We assessed the fit of the model by calculating mean posterior parame-
ters for each trial as well as simulating responses and response times. We
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simulated 50 replications of each trial to obtain
a robust estimate of model performance.
Finally, we calculated the 95% high-density
interval (HDI) for each of the group-level
mean parameters (e.g., mCA1 for CA1) to deter-
mine whether they were different from zero,
indicating a relationship between similarity
change or reactivation and AC inference
performance.

Results
Behavioral performance
By the end of the initial pair (AB) learning
phase, participants had formed strong
memories of the face-shape and scene-
shape pairs. All participants were above
chance on the final test (mean proportion
correct = 0.91, SD= 0.01) and were there-
fore included in subsequent analyses.
Memory for the overlapping (BC) shape-
object pairs was influenced by the visual
similarity of the linking item across learn-
ing (Fig. 2A,B). A repeated-measures
ANOVA with the within-subjects factors
of overlapping pair block (1, 2, 3, 4) and
visual similarity (exact match, high similarity, low similarity,
new) revealed that visual similarity modulated memory accuracy
(main effect of block, F(3,75) = 79.93, p, 0.001, h 2 = 0.762; block
� visual similarity interaction, F(9,225) = 2.88, p=0.003, h 2 =
0.103) and response time (main effect of similarity on correct tri-
als, F(3,72) = 5.14, p= 0.003, h 2 = 0.176). For the first learning
block of overlapping pairs, performance was superior (Fig. 2A)
when the linking item (B) was an exact match to the initially
learned pairs (AB) relative to all other conditions. There was an
effect of visual similarity in the first test block (effect of visual
similarity in the first run, F(3,75) = 6.901, p, 0.001, h 2 = 0.216)
but not in subsequent runs (F values � 0.479, all p � 0.698, all
h 2 � 0.019). In the first run, post hoc paired t tests revealed that
accuracy was highest for pairs with an exact match relative to all
other pairs (compared with high similarity: t(25) = 3.33, p=0.003,
d= 0.654; low similarity: t(25) = 4.52, p, 0.001, d= 0.894; new:
t(25) = 2.74, p= 0.011, d= 0.539). Performance was greater for
high similarity pairs than low similarity pairs (t(25) = 2.306,
p=0.03, d=0.459). There was no difference in performance
between the high similarity and new pairs (t(25) = 0.87, p=0.394,
d= 0.172) or the low similarity and new pairs (t(25) = 0.76,
p=0.452, d=0.151). When collapsed across block, pairs with
exact matches had the fastest response time (Fig. 2B) on correct
trials (compared with all other conditions, t values � 2.206, all
p, 0.05, all d � 0.445). Response time did not differ between
the high similarity, low similarity, or new pairs (all t values �
1.748, all p. 0.05, all d� 0.348).

Visual similarity of the linking item also influenced a cross-
episode inference accuracy (F(3,75) = 26.61, p, 0.001, h 2 =
0.516). Participants were more likely to infer a relationship
among indirectly related memory elements (AC) when the
linking item (B) was an exact match or highly similar across
overlapping pairs (Fig. 2C). Inference performance did not dif-
fer between exact match and high similarity triads (t(25) = 1.20,
p=0.24, d=0.230), but performance for exact match triads was
superior to both low similarity triads (t(25) = 6.82, p, 0.001,
d=1.327) and new triads (t(25) = 6.61, p, 0.001, d=1.286).
Likewise, performance for high similarity triads exceeded low

similarity triads (t(25) = 5.05, p, 0.001, d=0.987) and new triads
(t(25) = 5.38, p, 0.001, d=1.055). Follow with performance
(Inference performance did not differ between the low similarity
and new triads (t(25) = 1.17, p=0.254, d=0.224). However, per-
formance for low similarity triads was reliably better than chance
(t(25) = 2.22, p=0.04, d = 0.435), whereas performance for new tri-
ads was not (t(25) = 0.47, p=0.64, d=0.093).

Inference decisions were also faster for the exact match and
high similarity conditions relative to the new condition (F(3,72) =
11.79, p, 0.001, h 2 = 0.329), with inferences for the exact match
condition being fastest overall (Fig. 2D). Response time was
faster for exact match triads relative to high similarity conditions
(t(25) = 3.41, p=0.002, d= 0.669) and new triads (t(24) = 5.00,
p, 0.001, d= 0.999), but no different from low similarity triads
(t(25) = 1.64, p=0.114, d=0.321). Response time was faster for
high similarity triads compared with new triads (t(24) = 2.93,
p= 0.007, d=0.585), but did not differ from low similarity triads
(t(25) = 1.11, p=0.28, d=0.217). Low similarity triads were faster
than new triads (t(24) = 3.86, p=0.001, d=0.773). Together, these
findings show that associative memory and a cross-episode infer-
ence, two processes that are thought to be supported by hippo-
campal subfields (Schapiro et al., 2017), are influenced by the
perceptual similarity of shared event elements, with facilitated
performance with higher levels of a cross-episode similarity.

Reactivation of overlapping memories during learning
To test how cortical memory reactivation during overlapping
pair learning impacts hippocampal subfield representations, we
first used a searchlight analysis to identify where information
about the initial pairs was reactivated in cortex during learning.
Within each searchlight sphere, a pattern classifier was trained
on data from a localizer phase and then applied to the overlap-
ping pair study phase (Zeithamova et al., 2012). The searchlight
identified regions in which classifier evidence for the target cate-
gory of the related item (face or scene A items from the initial
pairs) exceeded a baseline index of classifier evidence for the
same category derived from the new (or nonoverlapping) trials.
We found evidence that related memories were reactivated when
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Figure 2. Behavioral performance. A, Overlapping pair (BC) test accuracy and (B) response time (correct trials only) by
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learning the overlapping pairs in posterior cingulate cortex, occi-
pital cortex, and parietal cortex (Fig. 3A).

Importantly, there were no differences in reactivation strength
as a function of A item category (face, scene) across regions identi-
fied in the searchlight analysis (Fig. 3B). A repeated-measures
ANOVA with the within-subjects factors of region (left parietal,
right parietal, cingulate, superior occipital, inferior occipital) and
stimulus category (face, scene) demonstrated that reactivation var-
ied across regions (main effect of region, F(4,100) = 2.84, p=0.028,
h 2 = 0.102) but did not differ by stimulus category (main effect of
category, F(1,25) = 0.002, p=0.967, h 2 = 0; category� region inter-
action, F(4,100) = 0.375, p=0.826, h 2 = 0.015). Thus, our results
were not driven by a single stimulus category and reflect memory
reactivation rather than the engagement of category-specific proc-
essing regions.

We further tested whether visual similarity of the shared B
item across learning influenced the strength of memory reactiva-
tion for the A items. We predicted that memory reactivation dur-
ing learning would be stronger for pairs linked by a more
visually similar item. Using a similar approach to the previous
analysis, a separate searchlight analyses identified regions where
classifier evidence for the related A item was greater for the exact
match condition than the high and low similarity conditions.
Consistent with our hypothesis, we found that the similarity of
event components modulated the strength of memory reactiva-
tion in left parietal cortex and occipital cortex (Fig. 3C).

Memory reactivation impacts neural coding in hippocampal
subfields
To test our hypothesis that reactivation of related memories dur-
ing new encoding would lead to dissociable representation of
overlapping memories in DG/CA2,3 and CA1, we quantified hip-
pocampal subfield coding as a function of memory reactivation
strength during learning. Both before and after learning the
pairs, participants were scanned while viewing individual images
of the A and C items from overlapping pairs in the high

similarity condition (Fig. 1A). We indexed differentiation and
integration by measuring learning-related changes in pattern
similarity for indirectly related A and C items from the same
triad (Schlichting et al., 2015). Similarity changes within the
same triad were compared with a baseline of similarity changes
between items in different triads. We measured differentiation
by testing for a decrease in pattern similarity between A and C
items after learning (Fig. 4A). In contrast, integration would be
marked by increased pattern similarity among indirectly related
A and C items, reflecting formation of overlapping codes for
related memories (Fig. 4A).

To assess the impact of memory reactivation during learning
on neural coding of indirectly related memory elements, we cal-
culated representational change for triads based on the strength
of reactivation across overlapping learning trials. For each partic-
ipant, we sorted overlapping pairs into those associated with
stronger and weaker reactivation of the corresponding initial
pair, based on a median split of averaged reactivation indices
across all clusters identified in the reactivation searchlight (Fig.
3A). We then compared neural coding between indirectly related
A and C items associated with different levels of reactivation.
Critically, all analyses assessing representational change in hip-
pocampal subfields were based on data from high similarity tri-
ads only. This approach holds the visual similarity of the linking
item constant, providing a critical test of whether memory reacti-
vation mediates representational change above and beyond alter-
ations of the physical environment.

We ran four searchlight analyses within individual hippo-
campal subfields to test for the effects of reactivation on learn-
ing-related representational change for indirectly related
memory elements (Fig. 4B). First, we used two searchlight
analyses to identify hippocampal regions that showed differ-
entiation or integration of A and C items regardless of the
degree of memory reactivation during overlapping pair learn-
ing (DifferentiationOverall and IntegrationOverall, respectively)
and observed no significant effects within hippocampus.
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Figure 3. Memory reactivation during overlapping pair learning. A, Results of the searchlight analysis identifying regions where classifier evidence for A item reactivation exceeded baseline
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Instead, we predicted that the representational similarity of
indirectly related items in hippocampal subfields would
depend on the strength of memory reactivation during learn-
ing of the overlapping pairs. To test this hypothesis, we ran
two additional searchlight analyses that looked for an interac-
tion between learning-related representational change and
memory reactivation; these searchlights isolated hippocampal
regions showing either differentiation or integration on trials
with stronger reactivation during overlapping pair learning
(DifferentiationReactivation and IntegrationReactivation).

We found that stronger reactivation of initial pair memories
during learning of the overlapping pairs had different conse-
quences on the direction of representational change observed in
hippocampal subfields. When initial (A) memories were strongly
reactivated during overlapping (BC) pair learning, DG/CA2,3

pattern similarity decreased between A and C items from
prelearning to postlearning (Fig. 4C,D; DifferentiationReactivation).
Subiculum exhibited the same pattern as DG/CA2,3, with stron-
ger reactivation leading to decreased pattern similarity for A and
C items. In contrast, CA1 showed an opposing pattern of repre-
sentational change when memory reactivation was stronger, with
increased similarity among A and C items after learning (Fig. 4C,
D; IntegrationReactivation). These findings suggest that representa-
tion of overlapping memories within hippocampal subfields is
contingent on memory reactivation during learning, with the
same conditions leading to dissociable representational codes
within DG/CA2,3, CA1, and subiculum.

Finally, we performed a series of post hoc analyses on each
hippocampal subfield identified in the searchlight analysis to fur-
ther understand how reactivation modulated coding in each
region. We first quantified whether there were any global shifts
in neural similarity simply as a function of learning by calculat-
ing the across-triad D for unrelated A and C items (i.e., the
across-triad baseline). Across-triad D was not significantly

different from zero in CA1 (t(24) = 0.383, p= 0.705, d=0.077) or
subiculum (t(25) = 1.233, p=0.229, d= 0.242), but was greater
than zero for DG/CA2,3 (t(25) = 3.431, p= 0.002, d= 0.673). These
results demonstrate the importance of comparing similarity
change for related events to a baseline, as even unrelated items
may change in similarity after learning.

Next, we compared the within-triad D for triads associated
with strong reactivation to the across-triad D baseline as a valida-
tion of our searchlight results (Fig. 4D). As mentioned previ-
ously, a caveat to this analysis is that the results are potentially
biased by selecting voxels identified in the neural coding search-
light analysis. Consistent with the predicted patterns of the
searchlight contrasts (Fig. 4B), we found evidence for differentia-
tion, whereby neural similarity change for triads associated with
strong reactivation was less than the across-triad baseline in DG/
CA2,3 (t(25) = 2.298, p=0.030, d= 0.451) and subiculum (t(25) =
3.158, p=0.004, d=0.619). Within CA1, we showed a trend for
integration with greater similarity within triads associated with
stronger reactivation after learning relative to the across-triad
baseline (t(24) = 1.766, p= 0.090, d= 0.353). Together, these post
hoc analyses support the outcome of the searchlight analysis and
show that representation of overlapping events in subfields is
influenced by the reactivation of related memories during
learning.

As an exploratory analysis, we also quantified within-triad D
for triads associated with weaker reactivation during learning.
We found evidence for integration in DG/CA2,3 (t(25) = 3.709,
p= 0.001, d= 0.727) and a trend in subiculum (t(25) = 1.849,
p= 0.076, d= 0.363), wherein D for triads associated with weaker
reactivation was greater than that observed for the across-triad
baseline. This result suggests that representational shifts in DG/
CA2,3 may vary as a function of the level of competition, which
may be different when memories are strongly or weakly reacti-
vated. No differences from baseline were observed for triads
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associated with weaker reactivation in CA1 (t(24) = 1.062,
p=0.299, d=0.212).

Memory integration supports inference decisions
We used a Bayesian multilevel model to examine the relationship
between similarity change after learning (i.e., integration or differ-
entiation) and performance on the AC inference test. We also
examined the relationship between reactivation of related memo-
ries during learning and inference performance. One participant
was excluded from this analysis because of an insufficient number
of voxels in CA1 (,10 voxels). We used an LBAmodel to simulta-
neously model inference accuracy and response times. We used
Bayesian sampling with the model to estimate the slope of rela-
tionships between inference performance and triad-level variabili-
ty in similarity change and memory reactivation. We first assessed
whether the Bayesian sampling was converged. There were no
divergences during sampling; for each parameter in the model,
[Rhat] was,1.00102 and the effective sample size was at least 5225.
These results indicate that the sampling successfully converged, and
there were sufficient samples to estimate each parameter.

We used mean posterior parameters to simulate model
responses and found that there was a good fit to the observed ac-
curacy (Fig. 5A) and response times (Fig. 5B) on the inference
test, with the exception of a small number of trials with very long
response times. The mean slope parameters for learning-related
change (Fig. 5C) were positive for subiculum (95% HDI = [0.043,
0.477], d=1.37) and memory reactivation (HDI = [0.005, 0.437],
d= 1.51). The slope parameters for CA1 (HDI = [�0.189, 0.244],
d= 0.15) and DG/CA2,3 (HDI = [�0.393, 0.102], d=0.50) were
not different from zero. The 95% HDIs for the other model pa-
rameters were as follows: A = [2.059, 5.601], t = [0.00,009, 0.515],
m2 = [0.130, 0.812], s 2 = [0.191, 0.831], sCA1 = [0.004, 0.458],
sDG/CA2,3 = [0.010, 0.577], s Subiculum = [0.002, 0.408], and sReact =
[0.0002, 0.327]. These results indicate that greater memory reacti-
vation during learning and greater AC similarity after learning in
subiculum predict faster and more accurate inference at the level
of individual trials.

Discussion
Our results indicate that reactivated memories guide how repre-
sentations of related events are organized within the hippocampal
circuit. Reactivation of prior memories during encoding of

new, overlapping events predicted across-episode inference
performance and had different consequences for representa-
tion in hippocampal subfields; strong reactivation led to dif-
ferentiation of overlapping memories within DG/CA2,3 and
subiculum, while simultaneously promoting integration of
those same memories in CA1. Prior work has focused on
explaining hippocampal subfield coding in terms of a trans-
fer function through which changes in environmental cues
lead to differential neural output (Leutgeb et al., 2004, 2007;
Lacy et al., 2011; Yassa and Stark, 2011). Here, we show that
changes in perceptual input are not the only factor determin-
ing representation learning within hippocampal subfields.
Rather, our data indicate that hippocampal subfield coding is
further driven by the degree to which a new experience trig-
gers reactivation of related episodes. Our results thus extend
prior findings to show, at a representational level, that corti-
cal memory reactivation drives dissociations in hippocampal
subfield coding in the face of competition between highly
similar memories.

Prior work on hippocampal representation has primarily con-
ceptualized subfield coding as an automatic process in response
to environmental changes, wherein sensory inputs are assumed
to be the main driver of hippocampal responses. For instance,
early electrophysiological studies in rodents measured how place
field responses in hippocampal subfields remapped as animals
navigated environments with gradually changing perceptual fea-
tures (Guzowski et al., 2004; Lee et al., 2004; Leutgeb et al., 2004,
2007; Vazdarjanova and Guzowski, 2004). Such work revealed
that small changes in environmental features led to dramatic
changes in DG and CA3 responses, reflecting orthogonalization
of input patterns. In contrast, CA1 responses changed gradually,
scaling linearly with the amount of perceptual change between
environments; for environments that were more perceptualy
similar, CA1 activity showed a greater overlap in responding.
Prior work in humans took a similar approach, presenting par-
ticipants with pairs of highly similar visual images (e.g., pictures
of two different apples) and measuring the magnitude of hippo-
campal subfield responses to both images (Bakker et al., 2008;
Lacy et al., 2011). In those studies, DG/CA2,3 showed a novelty
response for both highly similar images, suggesting separate cod-
ing of the two images. CA1 and subiculum responses to the sec-
ond, highly similar image from a pair, however, were suppressed
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relative to the presentation of the first pair member, suggesting
similar representation of the paired images.

While past animal and human work has revealed important
dissociations between hippocampal subfield processing, our find-
ings build on that work to show that hippocampal representation
learning is not simply a passive process, but instead is actively
influenced by memory reactivation (Hulbert and Norman, 2015;
Kim et al., 2017; Ritvo et al., 2019). We show that hippocampal
subfield dissociations are most apparent when past memories are
strongly reactivated, producing a competitive learning state that
promotes differentiation in DG/CA2,3 and subiculum, simultane-
ously with integration in CA1. Our data thus indicate the need to
quantify both the perceptual similarity among events and how
overlapping perceptual features trigger memory reactivation to
fully account for how dissociable representations emerge within
the hippocampal circuit. One interesting aspect of the prior
human work described above is that dissociations among sub-
fields depended on the nature of the task being performed
(Kirwan and Stark, 2007; Bakker et al., 2008; Lacy et al., 2011).
When the critical experimental manipulation (i.e., the visual sim-
ilarity among items) was incidental to the task participants per-
formed, dissociations between subfields were observed (Bakker
et al., 2008; Lacy et al., 2011). However, when the same stimuli
and presentation procedures were combined with an intentional
task focus, dissociations were less apparent (Kirwan and Stark,
2007). The mechanistic source of these divergent findings has yet
to be revealed. By quantifying memory reactivation during tasks
with an intentional or incidental focus, further insights might be
gained about how task goals influence the dynamics of how
memory competition impacts neural representation (Richter et
al., 2016).

Our findings may be conceptualized in terms of supervised
and unsupervised models of learning, which each focus on differ-
ent learning targets. Whereas supervised learning is directed by
matching representations to sensory cues observed directly in
the environment, unsupervised learning adjusts representations
to reduce competition between a current experience and reacti-
vated memory representations triggered by the new event (Ritvo
et al., 2019) through integration or differentiation. While learn-
ing likely reflects a balance between supervised and unsupervised
mechanisms, our findings indicate that reactivated memories are
an important facet of how dissociable coding strategies emerge
across hippocampal subfields.

To date, only one other study in humans has used multivari-
ate representational analyses to quantify a dissociation
between hippocampal subfields, specifically when individuals
retrieved information about shared or distinct spatial contexts
(Dimsdale-Zucker et al., 2018). That study showed that items
learned within the same spatial context elicited overlapping
activation patterns in CA1 and differentiated patterns in DG/
CA2,3 during retrieval relative to items that did not share con-
textual information. The present findings differ from that
study in several key ways. First, the prior study measured sub-
field codes during memory retrieval, while our work reveals
the active learning processes that drive formation of dissoci-
able subfield representations. Specifically, that prior study did
not quantify how reactivation of similar memories, either dur-
ing learning or retrieval, related to hippocampal subfield cod-
ing. Here, we show a dissociation in hippocampal subfield
coding as a result of memory reactivation. Furthermore, we
show that neural codes formed by hippocampal subregions
not only support simple recognition (Dimsdale-Zucker et al.,
2018) or spatial memory (Leutgeb et al., 2004, 2007), but also

inference about the relationships among memories (see also
Schlichting et al., 2014). Inference decisions were faster and
more accurate with increasing similarity among indirectly
items after learning in subiculum, indicating how overlap-
ping codes promote knowledge extraction beyond direct
experience.

Our finding that subiculum representations track inference
decisions may reflect that subiculum is the output structure of
the hippocampal circuit (O’Mara et al., 2001), which plays a key
role in recollection (Viskontas et al., 2009; Lindberg et al., 2017).
While subiculum showed evidence of learning-related differentia-
tion for overlapping pairs overall, our modeling data indicate that
representational change in subiculum reflects a continuum of
responses. Increased integration (which can also be thought of as
less differentiation) promoted faster and more accurate inference.
Our results suggest that, when memories are more integrated (or
less differentiated), inference is facilitated by retrieving a stored
connection between indirectly related items (Shohamy and
Wagner, 2008; Schlichting et al., 2014); in contrast, differentiation
might slow inference between two separate traces that would
need to be retrieved and recombined at test (Koster et al., 2018).

Like subiculum, DG/CA2,3 exhibited learning-related differ-
entiation of indirectly related memory elements when memory
reactivation was stronger during encoding. However, it should
be noted that DG/CA2,3 differentiation of overlapping memory
elements was only observed relative to the unrelated, across-triad
baseline; there was no change in similarity from prelearning to
postlearning for the indirectly related items on their own (Fig.
4D, inset). This finding is consistent with prior work showing
hippocampal differentiation for related relative to unrelated
events after learning (Favila et al., 2016; Dimsdale-Zucker et al.,
2018), while also controlling for baseline changes in similarity
that occur over time. Moreover, DG/CA2,3 showed evidence
for memory integration when memory reactivation was weaker
during learning, suggesting the potential for more nuanced rep-
resentational dynamics in this region. For instance, memory
competition elicited by reactivation may have a nonmonotonic
relationship to representational change in DG/CA2,3 (Ritvo et al.,
2019). Stronger reactivation may promote active differentia-
tion; weaker or intermediate levels of reactivation may lead to
integration; and no reactivation may produce nonoverlapping
representations that are separated via passive orthogonaliza-
tion. This complex coding strategy could explain why DG/
CA2,3 shows evidence of differentiated (Kim et al., 2017) and
integrated (Schapiro et al., 2012) representations under differ-
ent circumstances. Alternatively, our results may reflect the
use of a combined DG/CA2,3 region, the components of which
are thought to exhibit different transfer functions between
environmental cues and resulting memory representations
(Yassa and Stark, 2011). The observed pattern of results indi-
cates that quantifying memory reactivation along with repre-
sentational change is necessary to fully understand how
memory competition impacts representation learning in DG/
CA2,3.

In conclusion, our empirical findings support a recently
proposed computational model of the hippocampal circuit
(Schapiro et al., 2017); simulations from this model suggest
that CA1 may represent relationships across events, whereas
DG and CA3 representations may emphasize differences
between similar episodes. Our findings align with these com-
putational predictions, with CA1 forming integrated represen-
tations for similar memories, while DG/CA2,3 and subiculum
differentiate those same experiences. Additionally, we show
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that hippocampal representations support novel inference,
facilitating the discovery of unobserved relationships between
distinct but related experiences. The present work further
shows that hippocampal subfield dissociations are not a sim-
ple function of sensory input, but result from memory-based
competition during learning. Together, the present study
advances our understanding of how prior knowledge shapes
how new events are represented within the hippocampal cir-
cuit, providing an empirical test of key predictions of compu-
tational models of hippocampal memory function.
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