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A B S T R A C T   

Purpose: Quantitative metrics in lung computed tomography (CT) images have been widely used, often without a 
clear connection with physiology. This work proposes a patient-independent model for the estimation of well- 
aerated volume of lungs in CT images (WAVE). 
Methods: A Gaussian fit, with mean (Mu.f) and width (Sigma.f) values, was applied to the lower CT histogram 
data points of the lung to provide the estimation of the well-aerated lung volume (WAVE.f). Independence from 
CT reconstruction parameters and respiratory cycle was analysed using healthy lung CT images and 4DCT ac
quisitions. The Gaussian metrics and first order radiomic features calculated for a third cohort of COVID-19 
patients were compared with those relative to healthy lungs. Each lung was further segmented in 24 sub
regions and a new biomarker derived from Gaussian fit parameter Mu.f was proposed to represent the local 
density changes. 
Results: WAVE.f resulted independent from the respiratory motion in 80% of the cases. Differences of 1%, 2% and 
up to 14% resulted comparing a moderate iterative strength and FBP algorithm, 1 and 3 mm of slice thickness 
and different reconstruction kernel. Healthy subjects were significantly different from COVID-19 patients for all 
the metrics calculated. Graphical representation of the local biomarker provides spatial and quantitative infor
mation in a single 2D picture. 
Conclusions: Unlike other metrics based on fixed histogram thresholds, this model is able to consider the inter- 
and intra-subject variability. In addition, it defines a local biomarker to quantify the severity of the disease, 
independently of the observer.   

1. Introduction 

COVID-19 is a complex infectious disease characterized by common 
and non-specific symptoms, such as fever, cough, shortness of breath 
and fatigue, and a broad spectrum of clinical manifestation, ranging 
from asymptomatic infection to respiratory failure requiring oxygen 
support or invasive ventilation [1]. 

Computed tomography (CT) is the current standard of reference to 
assess lung alteration, even at early stage of the disease, when the 

patient has few or no symptoms, and to monitor the course of the disease 
at different time points [2,3]. Despite the increase in chest CT exami
nations due to COVID-19 pandemic, the use of low dose protocols gua
rantees a very low risk of cancer induction [4]. 

The majority of COVID-19 studies use a qualitative approach, 
describing the lesions by visual and pictorial assessment. A lexicon for 
the description of chest CT imaging findings in coronavirus disease, i.e. 
the COVID-19 Reporting And Data System (COVID-RADS) [5], was 
proposed in addition to the terminology endorsed by the Fleischner 
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Society Nomenclature Committee [6,7]. The purpose is to standardize 
terminology and communication and assessing a possible COVID-19 
presence. 

In addition, visual quantitative analysis, i.e. the scoring of lung ab
normalities assessed by visual interpretation of CT images, and the 
densitometric evaluations based on the histogram of the Hounsfield Unit 
(HU) distribution, were demonstrated useful to predict clinical severity 
[8–10]. 

Lung segmentation, the first step required for a quantitative analysis 
of medical images [11], can be performed nowadays through several 
fully automatic tools that help to reduce the intra and the inter-reader 
variability [12,13]. 

Many indexes can be derived from the lung density histogram, 
starting from simple measurements, as the mean density value [14], to 
the measurement of the relative area of emphysema in patients with 
chronic obstructive pulmonary diseases [15] or the extraction of 
descriptive parameters of the histogram such as kurtosis and skewness 
[16]. 

Analysis of CT images has already been used in the past to better 
understand the pathophysiology of the acute respiratory distress syn
drome (ARDS) [17], using the density histogram to define lung com
partments with different aeration. 

In literature, different values of Hounsfield Units (HU) have been 
proposed to define these compartments [18]. To quantify the well- 
ventilated regions in COVID-19 patients, a potential surrogate to esti
mate the residual respiratory function and the alveolar recruitment 
during ventilation [19,20], the interval between − 950 HU and − 700 HU 
was proposed [21,22]. This threshold was already used in the past for 
studies involving other lung diseases [23,24], even if without a fully 
consensus, especially for ARDS. For example, a recent work used the 
density of − 500 HU, already suggested by Gattinoni et al. [18], to 
discriminate between normally (− 900, − 501 HU) and compromised 
lung (-500, +100 HU), then further divided in poorly (− 101, − 500 HU) 
and non-aerated (− 100, +100 HU) [25]. 

Despite being extremely informative, chest quantitative analysis has 
several drawbacks limiting its routine application. 

First, the natural inter-patient and intra-patient variability, mainly 
due to the respiratory cycle. Several studies performed inspiratory and/ 
or expiratory breath holds in combination with mechanical ventilation 
to standardize lung inflation during image acquisition [20,26]. In clin
ical practice, however, chest scans are obtained at the breathing-in 
point, inviting the patient to hold the breath. Holding the breath may 
however be a struggle for patients with a compromised status [27] and it 
is difficult to monitor respiratory phase without dedicated equipment. 

Another limitation of current quantitative approaches is that the 
results are often not readily interpretable as physiological parameters 
but only as mathematical descriptors of the distribution of voxel values 
of a digital image. 

Finally, acquisition and reconstruction CT parameters inevitably 
affect any kind of quantitative imaging analysis, with an impact on its 
usefulness which has to be evaluated for each individual source of 
variability [28].The use of a different reconstruction kernel than Visual 
CT (VCT) studies and the standardization of the protocols for the studies 
dedicated to Quantitative CT analysis (QCT) of the lungs was recom
mended by Neweel et al.[29]. 

The aim of this study was therefore to develop an automatic patient- 
customized lung analyzer to overcome the definition of aerated and 
pathologic regions based on thresholding of the density histogram, 
taking into account the patient variability and different CT acquisition 
protocols. Different reconstructions of the same scan series of healthy 
lung CT images, changing algorithm, kernel and the slice thickness, were 
used to test the reproducibility and the uncertainty of the proposed 
method. A dataset of 4DCT images, used routinely for guiding radio
therapy treatment planning [30], allowed to better understand the 
impact of the respiratory cycle on the density histogram and the related 
metrics. Finally, the analysis was applied on a COVID-19 cohort to 

distinguish the well-aerated and the pathological regions. A comparison 
with a method of CT lung histogram analysis based on pre-determined 
thresholds was added. 

2. Material and methods 

This retrospective study was approved by the Local Ethics Commit
tee. The need for informed consent from individual patients was waived 
owing to the retrospective nature of the study. 

2.1. Study population 

We analyzed three cohorts of patients. 
The first one included 20 patients (10 males, 10 females, median age 

47.9 years, range 14–93 years), with a CT scan including the entire lung 
volume but not for pulmonary diseases (healthy lungs without alter
ations). The exams were retrospectively collected in ASST Niguarda 
Hospital in July-August 2020 from Emergency Department CT scanner. 

The second cohort was composed of 20 4DCT of locally-advanced 
non-small cell lung cancer patients (tumor volume: median 51 cc, 
range 7–392 cc), publicly available in the Cancer Imaging Archive [31], 
acquired at the VCU Massey Cancer Center in the Department of Radi
ation Oncology, from 2008 through 2012, as a reference image for 
radiotherapy planning. 

The third cohort was composed of 20 patients (17 males, 3 females, 
median age 58.5 years, range 33–73 years) randomly selected amongst 
those admitted in intensive care unit within the 48 h after CT scan 
acquisition in March 2020 in Niguarda Hospital, with positive CT chest 
and positive Real-Time Polymerase Chain Reaction for SARS-CoV-2. 

2.2. CT protocol 

2.2.1. Dataset 1 
CT studies of the first cohort were all acquired on a single CT scanner, 

a Somatom Edge unit, (Siemens AG, Forchheim, Germany) and with the 
same acquisition protocol. CT scans involving the entire lung were 
performed using a whole-body protocol with contrast agent and auto
matic exposure control (AEC) and automatic selection of the tube 
voltage (14 studies at 120 kVp, 5 at 100 kVp, 1 at 140 kVp). We selected 
the basal CT phase, contrast not-enhanced, reconstructed for diagnostic 
intent (VCT series), using iterative algorithms (IR, Safire, S1), 3 mm as 
slice thickness and sharp kernel (Bl57). 

2.2.2. Dataset 1a 
Using the raw data of the first patient cohort, several sets of recon

structed images were obtained changing the slice thickness (1, 3, and 5 
mm), the kernel (Bl57, Br38) and the strength of the iterative algorithm 
from pure Filtered Back Projection (FBP) to different level of SAFIRE 
blending (IR-S1, IR-S3, IR-S5). 

2.2.3. Dataset 2 
The second cohort 4DCT images were acquired on the CT 16-slice 

Brilliance Big Bore (Philips Medical Systems, Andover, MA), in helical 
mode at 120 kVp, acquiring the respiratory signal trough the Real-time 
Position Management of the Varian Medical Systems. The raw data was 
sorting in 10 breathing phases, identified as a percentage, where the 0% 
phase corresponds to end of inhalation. Each 3D image was recon
structed with 3 mm slice thickness range using a soft kernel. All infor
mation regarding 4DCT protocol and patients of this database can be 
found in reference [32]. 

2.2.4. Dataset 3 
For the third cohort, a CT protocol on the same scanner of dataset 1, 

with the same acquisition and reconstruction parameters, was used. 
Non-contrast chest CT scans were performed in supine position, during 
inspiratory breath-hold, within the limits of the collaboration status of 
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the patient. 
The scan parameters for each dataset are detailed in Table 1. Table 2 

summarizes the CT reconstruction series added to the included exams. 

2.3. Images analysis 

2.3.1. Lung segmentation 
Anonymized datasets were exported to a dedicated workstation 

where, through the extension module Chest Imaging Platform (CIP, 
Applied Chest Imaging Laboratory; Boston, Massachusetts, USA) of the 
open-source 3D Slicer software (version 4.10.2, https://www.slicer.org) 
[33], a fully automatic segmentation of the lung was performed. For 
each patient we segmented the first reconstruction series and then we 
applied the same mask at different slice thickness and kernel. For the 
dataset 2, each 3D series representing a phase of the 4D acquisition was 
segmented. 

Lung segmentations of COVID-19 dataset images were carefully 
reviewed by an experienced radiologist and manually corrected where 
automatic algorithm failed. 

CIP module automatically distinguishes the right and the left lung, 
and provides a subdivision of lung in upper, middle and inferior regions, 
using anatomical landmarks. As a first step, lung analysis was performed 
considering the whole pulmonary volume. 

Subsequently, the imaging features of the COVID-19 dataset were 
analyzed and interpreted in detail through the further segmentation of 
lung regions in subregions. We added the ventral-dorsal and medial- 
distal subdivision, for a total of 24 subregions. 

In each axial slice of the upper and middle lung region, the line 
connecting the centroids of the right and of the left lung was used to 
separate ventral and dorsal regions. The distal and medial regions were 
identified by the perpendicular lines passing through the centroids of 
each lung [Fig. 1]. For the inferior region, the subdivision was calculated 
extending the results of the lowest slice in the middle lung region. 

2.3.2. Well-Aerated volume estimation 
A dedicated software was written in JavaScript language to auto

matically calculate and analyze the histograms of the CT images within 
ImageJ environment [34]. This software needs as input a 3DCT chest 
acquisition and applies the mask of the lung and its sub volumes. All the 
following analysis concerns only the voxels identified by the lung mask. 
A relative frequency histogram of HU values is then calculated in the 
range − 1020 ÷ +300 HU with bin width chosen by the user. 

The proposed method estimates the well-aerated volume (WAVE) 
under the assumption that the distribution of the HU values of the voxels 
regarding exclusively healthy parenchymal tissue would be described by 
a Gaussian function [35]. In fact, the healthy parenchymal tissue can be 
seen as a mix of air and water arranged in cellular architecture with an 
average uniform density. Furthermore, due to the random nature of 
cellular architecture, when measured at a voxel scale, the density is no 
longer constant. Indeed, healthy lung densitometry has a distribution of 
different values and the resulting density histogram would be similar to 
a Gaussian distribution function. If the main source of noise in CT images 

is due to quantum noise, the expected distribution of HU values in 
cellular material is still described by a Gaussian curve. 

The lung segmentation encompasses mainly the healthy paren
chyma, but other structures are included as well. For instance, vessels 
and/or lesions are frequently included in the region of interest. These 
structures, due to their higher physical density, extend the tail of the 
histogram towards higher values of HU. However, if the altered tissue 
covers a limited volume, the left side of the histogram could still be 
representative of healthy lung tissue only and have a Gaussian shape 
centered on the histogram modal value. 

Based on these assumptions, WAVE.f is defined by integrating be
tween − 1020 to + 300 HU the Gaussian function with formula: 

y(x) = Height.f *e
− (x− Mu.f )2

2*Sigma.f 2 (1) 

used to fit the points around the modal value in a CT lung histogram. 
Mu.f and Sigma.f are the central and the standard deviation values of 

the Gaussian curve, respectively, and Height.f is a normalization factor, 
not relevant in this work. 

Two approaches were used to obtain the fit parameters using the 
Curve Fittter Tool implemented in ImageJv.1.53a setting 6000 as 
maximum iterations number, 2 as number of restarts and 10-10 as error 
tolerance. A polynomial fit of the second order was used to fit the log
arithm of the HU histogram frequencies with the formula: 

ln(y) = a+ bx+ cx2 (2) 

Alternatively, the fit parameters were calculated with the using the 
“Gaussian (no offset) function”, readily available between the fitting 
functions. 

The relationships between parameters of Eqs. (1) and (2) are the 
following: 

Heigt.f = e(a− b2
4c)

Mu.f = −
b
2c  

Sigma.f =

⃒̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⃒
⃒
⃒ −

1
2c

⃒
⃒
⃒
⃒

√

The fitting range was defined as the HU points in the histogram 
included within a starting point, on the left of the modal value, and an 
end point, on the right of the modal value, identified by their relative 
frequency values (Fig. 2). 

We set: 3, 5, and 10 as bin width in the histogram; 20%, 30% and 
40% as percentage of the modal value for the starting points and 80%, 
85% and 90% of the modal value for the end point. A total of 27 com
binations of bin width and range values were explored for the Gaussian 
fitting of the CT lung histogram points on the dataset 1 in order to 
evaluate the WAVE.f dependence on these parameters. 

The dataset 1a was used to evaluate the dependency of the Mu.f, 
Sigma.f and WAVE.f values as a function of slice thickness, kernel and 
reconstruction algorithm. 

Table 1 
Demographic description of the datasets used and acquisition parameters of the CT series. For each dataset, the investigated variables were reported.  

Dataset Study Number of 
patients (M/F) 

Age (y) 
[Range] 

Scanner Model Vendor Tube Voltage (kV) Parameters Studied 

1 Emergency access without 
pulmonary disease 

20 (10/10) 48.5[14–93] Somatom Edge Siemens 120 (n=14), 100 (n=5), 
140 (n=1) 

Fit parameters 

1a Emergency access without 
pulmonary disease 

20(10/10) 48.5[14–93] Somatom Edge Siemens 120 Kernel, slice thickness and 
algorithm 

2 4DCT 20(ND) ND Brilliance Big 
More 

Philips 120 Respiratory phase 

3 Emergency access with RT-PCR 
positive 

20 (17/3) 58.5[33–73] Somatom Edge Siemens 120 Biomarkers for patients with 
compromised lung 

M: Male; F: Female; RT-PCR: Real-Time Polymerase Chain Reaction  
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For comparison, this variability was assessed on another lung metric, 
previously described by several authors [11,15,18,21,25], calculated 
integrating histogram within fixed threshold in the HU range − 950 ÷
-700, hereafter called WAVE.th. Dataset 2 allowed to investigate the 
correlation between the Gaussian curve metrics and the respiratory 
phase. Different level of inspiration can affect the central value (Mu.f) of 
the Gaussian function but the area under this curve should represent an 
estimation of the well-aerated lung volume, independently of the res
piratory phase. 

The tidal volume (TD) was calculated as the maximum difference in 
lung volume during the respiratory cycle and patients with TD lower 
than 390 mL were excluded from dataset 2 [36,37]. With respect to 
tumor location, contralateral lungs of the remaining patients, were 
analyzed and the metrics obtained at the various respiratory phases 
were correlated with the percentage variation of the lung volume. 

2.3.3. Biomarkers in COVID-19 patients imaging 
For dataset 3, in addition to all the metrics described above (Mu.f, 

Sigma.f, WAVE.f, WAVE.th), we calculated also standard first-order 

radiomic features (i.e. average HU, Skewness, Kurtosis and 0.25, 0.5, 
0.75 and 0.90 percentiles) from the CT histogram of the whole lung 
volume. For comparison of healthy and affected lungs, the same bio
markers were calculated also in patients of dataset 1. 

A new biomarker was introduced to assess local change in lung 
density with respect to the healthy parenchyma and defined as: 

ΔHUMu− Avgi = HUi − Mu.f (3) 

In Eq. (3), Mu.f is the fit parameter relative of the histogram for the 
entire lung whereas HUi is the average value of voxels in a specific re
gion i of the lung. This biomarker was then calculated in each of the 24 
lung subregions of COVID-19 patients. 

For each patient, the range and the median values over all sub re
gions were considered as a metric related to the severity of the disease. 
We calculated the average and the standard deviation values over the 20 
patients. 

2.4. Data analysis 

Statistical analysis was performed by using the Real Statistics 
Resource Pack software (release 6.8, www.realstatistics.com). Saphiro- 
Wilk and Levene tests were used to assess the normality of the distri
butions and the homogeneity of the variance. 

2.4.1. Dataset 1 
The parameters of the Gaussian function were calculated with both 

the polynomial and the exponential equations, fitting data points of 
histogram calculated with 5 HU using a 30% and 90% of the modal value 
as starting and ending points. The two models were compared using the 
relationship of Eq. (2). Differences between Height.f, Mu.f, Sigma.f and 
WAVE.f values resulting from the polynomial and exponential models 
were assessed for each healthy subject of dataset 1 and their correlation 
was assessed using the Pearson coefficient. 

To estimate the statistical significance of the differences in WAVE.f 
calculation due to the bin width and to the range extremes for the 
Gaussian fitting, analysis of variance (ANOVA) was performed (signifi
cance level of 0.05), changing one parameter at a time and keeping the 
other two fixed. 

2.4.2. Dataset 1a 
ANOVA was applied (significance level of 0.05) to the Mu.f, Sigma.f, 

WAVE.f and WAVE.th values calculated in CT images reconstructed 
from the same sinogram changing the reconstruction parameters (slice 
thickness, reconstruction algorithm, reconstruction kernel). 

Paired t-tests were then calculated between metrics calculated from 
the VCT (3 mm as slice thickness, IR-S1 and Bl57 as reconstruction al
gorithm and kernel) and the other post-processed series. 

A p value<0.05 was considered indicating a significant difference. 

2.4.3. Dataset 2 
Pearson correlation coefficient was calculated to estimate the linear 

correlation between the metrics described (Mu.f, Sigma.f, WAVE.f, 
WAVE.th) and the lung volume, expressed as a percentage of the 
maximum volume, at the 10 different phases of the respiratory cycle. 

Table 2 
Details of the reconstructed series calculated from the raw data of the dataset 1.  

Dataset Study Vendor Slice Thickness 
(mm) 

Reconstruction 
Algorithm 

Convolution 
Kernel 

1a Emergency access without 
pulmonary disease 

Siemens 

1 Safire S1 Bl57 
3 Safire S1 Bl57 
5 Safire S1 Bl57 
3 FBP Bl57 
3 Safire S3 Bl57 
3 Safire S5 Bl57 
3 Safire S1 Br38  

Fig. 1. Graphical representation of the lung volume subdivided into: left, right, 
superior, middle, inferior, ventral, dorsal, medial, distal, for a total of 24 
sub-volumes. 
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According to the distribution of the Pearson correlation coefficient with 
n = 10, values above 0.632 and 0.765 were considered indicating sig
nificant and strongly significant correlation, respectively (significance 
level: 0.05 and 0.01). McNemar test was used to assess the significance 
of the differences in the number of patients with WAVE.f and WAVE.th 
correlated with the respiratory phase. 

2.4.4. Dataset 3 
A t-test was used to compare results of this dataset with those ob

tained in dataset 1 (significance level of 0.05). A description of lung 
disease is given by a graphical representation of the CT lung histogram 
metrics in the 24 lung subregions, hereafter called lungogram. 

3. Results 

The properties and results of the metrics and biomarkers (WAVE.f, 
WAVE.th and ΔHUMu-Avg) were studied in relation to the specific data
sets described above. 

3.1. Dataset 1 

Average differences for Height.f, Mu.f, Sigma.f and WAVE.f calcu
lated with polynomial and exponential model were 0.1%, 0.2 HU, 0.3 
HU and 0.3%, respectively. Pearson coefficients for these metrics were 
1.00, 1.00, 0.979 and 0.988. Since CT histogram are generally reported 
in linear scale, hereafter, only results of the exponential fitting will be 

reported. 
Fitting parameters, such as bin width, starting point and end point of 

the fitting range, did not affected significantly the WAVE.f calculation. 
According to the ANOVA tests, the p-value was>0.812 for all them. 

In our analysis, a value of 5 HU as bin width was selected since it 
provided a trade-off between smoothness and resolution in the histo
gram. In healthy subjects, the choice of starting and ending point is not 
relevant, since CT histogram of the healthy parenchyma does not deviate 
importantly from a Gaussian distribution. In this work, considering the 
application on compromised lungs, 30% on the left side of the modal 
histogram value was set as starting point (see the point (a) of Fig. 2). In 
this way, the fitting range should avoid the less dense part of the his
togram possibly due to the presence of emphysema (Fig. 2). As ending 
point, 90% on the right side of the modal histogram value was set (see 
the point (b) of Fig. 2). This choice should reduce the use of the points on 
the right side of the histogram in patients with increased lung density, as 
occurs in particular for the COVID-19 dataset. 

3.1.1. Dataset 1a 
ANOVA found statistically significant differences changing slice 

thickness and iterative strength for the estimation of WAVE.f (p < 0.001, 
p < 0.001), WAVE.th (p < 0.001, p < 0.001) and Sigma.f (p = 0.026, p 
< 0.001). For Mu.f the differences were not statistically significant (p =
0.629, p = 0.896). All results regarding analysis of dataset 1a are sum
marized in Table 3. 

The Gaussian fit parameter Mu.f did not showed significant 

Fig. 2. Examples of histogram analysis. Data are 
normalized to the modal value which is indicated 
with a vertical gray line. The black line represents 
the total lung histogram; the blue lines show the 
extremes of the range of the data points used for 
fitting, reported as yellow crosses. Example A), CT 
lung histogram of a COVID-19 patient. Example B) 
CT lung histogram of a patient with emphysema from 
dataset 2. (For interpretation of the references to 
colour in this figure legend, the reader is referred to 
the web version of this article.)   
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differences in paired t-test between the standard reconstruction (VCT 
series) and the other series comparing 3 and 5 mm as slice thickness or 
IR-S1 and IR-S3 as reconstruction algorithm (Table 4). Sigma.f and 
WAVE.th had always significant differences changing the reconstruction 
parameters, while WAVE.f did not differ using slice thickness of 1 or 3 
mm. 

3.2. Dataset 2 

From the second cohort, 5 patients were excluded for their limited 
difference in lung volume in the respiratory cycle (TD < 390 mL). For 
the remaining 15 patients, the results of the correlation between the 
calculated metrics and lung expansion are reported in Table 5. WAVE.f 
resulted correlated significantly in 3 and strongly significant in 1 out of 
15 cases. As expected, significant correlation was found for Mu.f in all 
cases. Sigma.f resulted significantly correlated in 11 cases. For WAVE.th, 
the correlation was strongly significant for 12 patients. 

McNemar test applied to the number of cases reported in Table 5 for 
WAVE.f and WAVE.th returned p-values of 0.009 and 0.001 for signifi
cant and strongly significant correlation with respiratory cycle indi
cating a significant difference between the two metrics in the correlation 
with the respiratory cycle. 

The effect of respiratory cycle on the lung metrics calculated in CT 
images for two patients (P104, P111) from the dataset 2 representative 
of results of Table 5 is reported in Fig. 3. Linear regression lines are 
displayed when a strongly significant correlation was found between 
lung volume and lung biomarkers (Mu.f, Sigma.f and WAVE.f and 
WAVE.th). 

3.3. Dataset 3 

Metrics calculated for the whole lung in COVID-19 patients of dataset 
3 were compared with results of normal lung patients of dataset 1. 
Boxplot of the lung metrics calculated in dataset 1 (healthy lung) and 
dataset 3 (COVID-19 patients) are reported in Fig. 4. Differences were 
significant for all the metrics. A p-value of 0.007 was found for Mu.f 
comparison while for all the other metrics p-values were < 0.001. In 
healthy subjects average (standard deviation) values for WAVE.f and 
WAVE.th resulted 84% (2%) and 75% (4%). Results of the biomarker 
ΔHUMu-Avg calculated in the 24 subregions for the dataset 3 are sum
marized in Table 6. The average (standard deviation) values for range 
and median of ΔHUMu-Avg were, respectively, 411 (127) HU and 179 
(59) HU. Examples of analysis performed for two patients, including 
histogram, Gaussian fit and lungogram, are reported in Fig. 5. The dif
ference between CT lung histogram and Gaussian fit data, indicated with 
the blue line, represents the distribution of all non-healthy lung paren
chyma like vessels, airways and disease-involved tissue. 

4. Discussion 

In this work a patient-specific and automatic model, based on a 
Gaussian fit of relative CT lung histogram, was described to quantify 
aerated and pathologic lung regions in healthy controls and in patients 
with interstitial pneumonia caused by SARS-COV-2. The parameters Mu. 
f and Sigma.f, which characterize the Gaussian model, are related to 
lung inflation and noise in the images of the healthy parenchyma, 
resepctively. WAVE.f is a new metric suitable for quantification of the 
well-aerated lungs that showed lower variability with physiological and 
technical factors than others already proposed. 

Table 3 
Mean and Standard Deviation of Mu.f, Sigma.f, WAVE.f and WAVE.th values calculated for the dataset 1a, changing the reconstruction parameters (slice thickness, 
reconstruction algorithm, kernel).  

Kernel and reconstruction algorithm 
Slice Thickness Mu.f Sigma.f WAVE.f WAVE.th 
(mm) (HU) (HU) (%) (%) 

Bl57 IR-1 1 mm − 887 (±26) 99 (±10) 82 (±2) 66 (±3) 
Bl57 IR-1 3 mm − 868 (±26) 74 (±11) 84 (±2) 75 (±4) 
Bl57 IR-1 5 mm − 867 (±25) 62 (±7) 80 (±2) 77 (±3)  

Bl57 FBP 3 mm − 870 (±26) 83 (±11) 83 (±2) 72 (±3) 
Bl57 IR-1 3 mm − 868 (±26) 74 (±11) 84 (±2) 75 (±3) 
Bl57 IR-3 3 mm − 866 (±25) 51 (±7) 80 (±3) 82 (±3) 
Bl57 IR-5 3 mm − 864 (±24) 34 (±6) 77 (±4) 87 (±2)  

Bl57 IR-1 3 mm − 868 (±26) 74 (±11) 84 (±2) 75 (±4) 
Br38 IR-1 3 mm − 852 (±25) 30 (±7) 72 (±6) 88 (±3)  

Table 4 
P-values results of paired t-test on dataset 1a changing the reconstruction parameters (slice thickness, reconstruction 
algorithm, kernel), keeping as reference the standard series (3 mm, IR-S1, Bl57).    

Mu.f Sigma.f WAVE.f WAVE.th 

Slice Thickness 1 vs 3 mm <0.001 <0.001 0.09 <0.001 
1 vs 5 mm <0.001 <0.001 <0.001 <0.001 
3 vs 5 mm 0.8 <0.001 <0.001 <0.001 

Reconstruction Algorithm FBP vs IR-S1 0.04 <0.001 0.01 <0.001 
FBP vs IR-S3 <0.001 <0.001 <0.001 <0.001 

IR-S1 vs IR-S3 0.2 <0.001 <0.001 <0.001 
IR-S1 vs IR-S5 0.03 <0.001 <0.001 <0.001 

Kernel Bl57 vs Br38 <0.001 <0.001 <0.001 <0.001  

Table 5 
Number of cases with lung metrics calculated in 4DCT images, correlated with respiratory phase.  

Alpha Pearson coefficient  Mu.f Sigma.f WAVE.f WAVE.th 

0.05 (significant correlation) > 0.632 n 15 11 3 12 
0.01 (strongly significant correlation) > 0.765 n 14 8 1 12  
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CT lung histogram fitting has already been reported in literature and 
metrics derived from histogram analysis have been used in the past. 
Obert et Al.[38] proposed a model in which cumulative CT lung histo
gram data were fitted with a logistic growth function in order to classify 
normal and pathological lungs. Despite the good results, this logistic 
model had a principle mathematical approach. In contrast, the model we 
propose takes into account the physical properties of the pulmonary 
parenchyma and the nature of noise of CT images. In this work, we used 
a non-linear equation to calculate the Mu.f and Sigma.f since Gaussian 
fit is readily available within the program used to develop our model. 
Alternatively, a second order polynomial fitting of the logarithm of the 
histogram frequencies could be used making the procedure more 

independent from the platform used. However, the difference between 
the WAVE.f results was negligible for clinical purposes and the expo
nential fitting offers the advantage of having a clear graphical inter
pretation of CT lung histogram. 

Usually, quantitative lung analysis applies fixed HU thresholds in 
order to divide lung volume in compartments with different aerations. 
However, a fixed HU range does not take in account the inter-patient 
variability or the phase of the respiratory cycle. This fact is high
lighted in the examples reported in Fig. 5, where the Gaussian peak that 
accurately fits data points around the histogram modal value is close to 
the opposite limits of the fixed range (Mu.f = − 765 HU for Case C, Mu.f 
=− 911 HU for Case D). The inter-patient variability of the histogram 

Fig. 3. The effect of respiratory cycle on the lung metrics calculated in CT images for two patients from the dataset 2 representative of results reported in Table 5. (A) 
and (B): CT lung relative histogram of the two patients in minimum and maximum inhale phases. (C) and (D): fit parameters Mu.f and Sigma.f are plotted versus the 
lung volume. (E) : lung volume plotted versus the respiratory phase. (F): WAVE metrics plotted versus lung volume. Linear regression lines are displayed when strong 
correlation was found. 
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modal value, which results in this asymmetry with respect to the fixed 
HU range, can be ascribed to clinical or physiological factors which only 
a patient-specific metric can take into account. 

The model of this study was tested in two cohorts of healthy and 
critically ill patients, representing two opposite conditions of lung sta
tus. Under the hypothesis formulated here, a Gaussian curve describes 
the radiological aspects of healthy lung tissue: the central value repre
sents the average density of the well-aerated tissue and the width in
cludes all sources of image noise due to reconstruction parameters and 
anatomical texture. The two model parameters Mu.f and Sigma.f inev
itably depend on the histogram data points used for fitting but the 
resulting WAVE.f values are independent of the fitting range used, at 
least in healthy lungs. Even in cases with severe lung impairment due to 
interstitial pneumonia, the modal value of the histograms was repre
sentative of healthy lung tissue and the Gaussian fit properly represents 
the estimation of the ventilated lung as it takes into account the intra- 
patient variability. However, in a limited fraction of subjects having 
most of the lung volume compromised by opacities or solidifications, the 
histogram modal value of the whole lung can results with unusual 
values, not included in the range typically characterizing the health lung 

tissue, i.e. between − 950 and − 700 HU. In these cases, the Gaussian 
model may not be directly applicable as the fit on the selected histogram 
data could return for Mu.f values that are not representative of the 
healthy tissue. 

To take this into account, the definition of the fit range should not 
consider the modal value of the whole lung histogram but the presence 
of relative maxima in a limited HU range. This is evident in the example 
shown in Fig. 6, where the modal value of the histogram is greater than 
− 700HU. The value of Mu.f obtained fitting data points around the 
modal value, or even in a limited range as shown in Fig. 6-A, is higher 
than − 700 underlining the non-applicability of the model under these 
conditions. 

On the other hand, in the case of patients with emphysema [39], 
because of the phenomenon known as “air trapping”, the Mu.f values 
might be underestimated if the fit range values are not adequate. To 
overcome the limitations of these specific cases, it is possible to select 
the histogram points to be fitted in a more tailored way, for example 
using additional conditions on the first or second derivative (Fig. 6-B). 
Alternatively, useful information could come from histograms of sub- 
regions where the disease is less prevalent and the modal value is 

Fig. 4. Boxplot of the lung metrics calculated in dataset 1 (normal lung) and dataset 3 (COVID-19 patients).  
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representative of the healthy tissue, such as in the sub-regions of the 
same patient in Fig. 6-C where the Gaussian model can be applied. 

Regarding the robustness, the metrics for QCT assessment should be 
independent from technical and physiological bias: analysis of dataset 
1a and dataset 2 was aimed at studying the relationship of the metrics 
with respiratory cycle and with image reconstruction parameters. 

The sources of variability in QCT for lung analysis are well known 
and reported in literature [40–42]. A protocol standardization is rec
ommended to reduce results variability, but it is achievable only in 
prospective studies. Neither WAVE.f nor WAVE.th metrics resulted 
completely independent from all the reconstruction parameters. How
ever, no significant differences were found in WAVE.f values calculated 
in images with slice thickness in the range 1–3 mm, the most used values 
for high resolution lung CT protocols. 

An increase of slice thickness, as well as an increase of the strength of 
iterative algorithm, implies a decrease in image noise magnitude that 
impacts systematically on the CT lung histograms and on the derived 
metrics. Comparing WAVE.f and WAVE.th values calculated in images 
reconstructed with different parameters, an overall lower variability 
was observed in the Gaussian model’s metric due to its intrinsic ability to 
fit the actual data in the histogram. 

A significant difference was found in all comparison when different 
algorithms were selected. The nonlinear effects of SAFIRE algorithm 
may explain the increase of differences found with the increase of the IR 
strength [43]. Nevertheless, the most limited difference in the WAVE.f 
results was found comparing a moderate strength of iteration and FBP 
algorithm. For this reason, VCT series, using Bl57 IR-S1 and 3 mm as 
slice thickness, was considered suitable also for quantitative purpose. 

Replacing the Bl57 kernel with the medium smooth Br38 kernel, not 
generally used for diagnostic purposes in chest imaging, implies the 
greatest differences in WAVE.f. However, we added this reconstruction 
series since images in public dataset 2 were available only with a soft 
kernel but medium-smooth kernel are not generally used for VCT of the 
lung parenchyma. 

Another challenging task in medical imaging is organ motion 
[44–46]. In particular, for quantitative imaging assessment, the differ
ences in lung volume due to the respiratory cycle result in different 
values of tissue density. This is clearly visible in Fig. 3 and in Table 5, 
where the correlation for Mu.f was always significant. Sigma.f also 

showed a significant correlation in most of the cases, affecting the values 
of WAVE.th that, as consequence, showed a strongly significant corre
lation with lung inflation in 12 out of 15 of analyzed cases. On the other 
hand, WAVE.f resulted more stable with respiratory phases than other 
metrics. This is due to the customized properties of the proposed model 
that takes into account the inter- and intra- subject variability. It must be 
stressed that these results refer to radiotherapy patients, specifically 
trained to follow a shallow and regular breathing, while during diag
nostic chest examination, the CT scan is performed by asking the patient 
to have deep breath, compatibly with his pathological state. 

The estimation of the fractional volume of well aerated lung is 
calculated for both WAVE metrics from the integration of the CT lung 
histogram but with a substantial methodological difference: while the 
WAVE.th metric uses fixed HU range to identify the histogram area 
corresponding to the healthy lung parenchyma, in the proposed method 
the integration range is chosen according to an image-specific model. 
These different approaches are represented in Fig. 6-B and 6-C. The light 
red shadowed areas under the curves represent the lung volume classi
fied as “well aerated” according to the Gaussian model but not according 
to the WAVE.th definition. Analogously, the light blue shadowed areas 
under the curves represent the lung volume classified as “well aerated” 
according to the fixed threshold model but not according to the Gaussian 
metric. When the differences between these volumes are not compen
sated, a difference between the two WAVE metrics occurs. The rela
tionship between WAVE.f and WAVE.th is shown in Fig. 7. As expected, 
lung opacifications and solidifications in COVID-19 patients reduce 
WAVE values for both metrics, with WAVE.th systematically lower than 
WAVE.f. Moreover, in healthy subjects no correlation exists because the 
variability of WAVE.th, that do not consider the actual respiratory 
phase, is not hidden by the inter-patient disease variability. 

In healthy subjects, an average value of 84% (range: 79%-86%) was 
found for WAVE.f. This result represents the percentage of healthy 
parenchymal tissue of the entire lung volume in non-pathological lung 
images. Although the assessment of the accuracy of WAVE metrics was 
not amongst the aims of this work, a correspondence was found with 
results of morphometric studies. Townsley reported an average value of 
84% (range: 77–87%) as fraction of overall anatomic lung defined as 
parenchyma [47]. By contrast, WAVE.th calculated in the same cohort of 
healthy subjects, showed lower results and a higher variability. 

In the comparison between results of datasets 1 and 3, for all the 
metrics the t-test showed significant differences. The discrepancy be
tween the two cohorts found for Mu.f can be explained as the limited 
capabilities of deep breath holding in patients with severe lung im
pairments that result in higher density values of parenchymal tissue. 

The other radiomic features calculated from histograms (HU mean, 
Skewness and Kurtosis) have similar trends as reported in literature to 
distinguish healthy and pathological lungs [16,48]. 

As expected, also WAVE metrics clearly discerned the two cohorts, 
but its values, unlike the first-order radiomic features, can give quanti
tative information about the well-aerated lung that can be useful in the 
management of patients with ARDS [20]. 

Moreover, WAVE.f values are referred to the entire lung but inter
stitial pneumonia from SARS-CoV-2 produces solidifications and opa
cifications distributed heterogeneously in the lung parenchyma with 
different level of severity. Therefore, local changes in lung density can 
be assessed calculating ΔHUMu-Avg in any specific lung region. A 
graphical representation of this biomarker in the lungogram provides 
spatial and quantitative information of the patient’s lung status in a 
single 2D picture of easy interpretation and suitable for clinical decision 
or inter patients’ comparison. 

This work has some limitations. First of all, the model is not suitable 
for all cases. When the disease affects most of the lung volume and the 
modal value of the CT numbers is shifted towards unexpected high 
values, a different approach must be used to extend the applicability of 
the model to the entire lung. Possible solutions include different criteria 
for the definition of the fit range or taking into account the histogram of 

Table 6 
Minimum, maximum, median values and range of the biomarker ΔHUMu-Avg 
calculated over the 24 subregions for all patients of the dataset 3. The last two 
rows report the average and the standard deviation over the all dataset.  

Patient ID 
ΔHUMu-Avg(HU) 

Minimum Maximum Range Median 

P_01 − 3 231 234 76 
P_02 87 301 214 165 
P_03 55 528 472 299 
P_04 31 422 390 202 
P_05 26 293 267 120 
P_06 28 331 304 155 
P_07 41 666 625 260 
P_08 18 352 334 115 
P_09 73 372 299 144 
P_10 − 11 467 479 155 
P_11 60 617 557 215 
P_12 26 339 313 144 
P_13 14 647 633 117 
P_14 14 472 458 177 
P_15 49 386 337 216 
P_16 42 480 438 175 
P_17 30 522 493 197 
P_18 54 644 590 284 
P_19 49 396 347 232 
P_20 14 446 432 144 
Average 35 446 411 179 
Standard Deviation 25 127 127 59  
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Fig. 5. Examples of patients analyzed with the methods described in the materials and methods section. Segmented lungs are displayed in axial and coronal views. 
Local changes in density are reported in lungograms. In the plots, black curve represents the CT relative histogram of the entire lung. Yellow dots are the data points 
selected to calculate Gaussian fit (red curve). The difference between CT lung relative histogram and Gaussian fit is reported in blue while the HU range used for 
WAVE.th calculations is reported by two green vertical lines. The relative metrics are reported with the same colors as the curves in the graphs on which they are 
calculated. Lung histogram features (HU average, skewness, kurtosis, and percentiles) are reported in black, Gaussian fit parameters (Mu.f, Sigma.f) and WAVE.f are 
reported in red while WAVE.th is reported in green. Case A: example of healthy lung from dataset 1. The Gaussian fit is well overlapped to the CT relative histogram, 
with a slight deviation on the right side of the black curve, caused likely by the inclusion in the lung segmentation of major vessels. Case B: example of patient with 
cancer in the left lung, from dataset 2. The presence of the tumor mass and the consequent distortion of the surrounding structures increase the deviation between the 
Gaussian fit and the CT relative histogram. Case C: COVID-19 patient with an extended ground glass opacification of the lung that enlarges the Gaussian fit. In 
addition to the fact that Mu.f value is on the right side of the green window (-950/-700 HU), it causes an important difference between the two WAVE metrics. The 
lungogram shows that the higher values of the biomarker ΔHUMu-Avg are found in the dorsal regions. Case D: Widespread disease with only some portions of healthy 
lung, but sufficient to produce a suitable histogram for Gaussian fit. In this case, WAVE.f, and WAVE.th calculations returned similar results even if Mu.f value is not 
in the central position of the range used to calculate WAVE.th. The lungogram shows that the higher values of ΔHUMu-Avg are found in the dorsal regions. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the lung sub-regions. Furthermore, the evaluation of the impact of the 
reconstruction parameters on lung metrics was performed using only 
one scanner. However, such a study regarding both reconstruction and 
acquisition parameters is feasible only with physical phantom or with a 
very high number of cases involved. 

5. Conclusion 

A method to analyse CT lung images based on the Gaussian fit of the 
histogram data has been developed and characterized. 

In healthy lungs, WAVE.f, a new quantitative metric derived from 

physics assumptions and with physiological significance, demonstrates 
lower dependencies from technical or physiological parameters with 
respect to the already reported equivalent metrics and its values were in 
good agreement with morphometric studies. 

The complex patterns of lung diseases, such as those resulting from 
SARS-CoV-2 pneumonia, can be described by appropriate metrics 
calculated locally. The biomarker ΔHUMu-Avg is an absolute measure in 
Hounsfield Units of lung density and its values calculated in 24 lung 
subregions of COVID-19 patients combines quantitative and spatial 
information. 

Finally, a validation of WAVE metrics is mandatory before its use for 
clinical decision. A future work using a larger sample of clinical images 
and functional data can be addressed to verify the hypothesis on which 
this model is built and to assess accuracy of the WAVE.f. 
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