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A B S T R A C T   

Objectives: Due to the infectiousness of COVID-19, the mobility of individuals has sharply 
decreased, both in response to government policy and self-protection. This analysis seeks to 
understand how mobility reductions reduce the spread of the coronavirus (SAR-CoV-2), using 
readily available data sources. 
Methods: Mobility data from Google is correlated with estimates of the effective reproduction rate, 
Rt, which is a measure of viral infectiousness (Google, 2020). The Google mobility data provides 
estimates of reductions in mobility, for six types of trips and activities. Rt for US states are 
downloaded from an on-line platform that derives daily estimates based on data from the Covid 
Tracking Project (Wissel et al., 2020; Systrom et al., 2020). Fixed effects models are estimated 
relating mean Rt and 80% upper level credible interval estimates to changes in mobility and a 
time-trend value and with both 7-day and 14-day lags. 
Results: All mobility variables are correlated with median Rt and the upper level credible interval 
of Rt. Staying at home is effective at reducing Rt,. Time spent at parks has a small positive effect, 
while other activities all have larger positive effects. The time trend is negative suggesting in-
creases in self-protective behavior. Predictions suggest that returning to baseline levels of activity 
for retail, transit, and workplaces, will increase Rt above 1.0, but not for other activities. Mobility 
reductions of about 20–40% are needed to achieve an Rt below 1.0 (for the upper level 80% 
credible interval) and even larger reductions to achieve an Rt below 0.7. 
Conclusions: Policy makers need to be cautious with encouraging return to normal mobility 
behavior, especially returns to workplaces, transit, and retail locations. Activity at parks appears 
to not increase Rt as much. This research also demonstrates the value of using on-line data sources 
to conduct rapid policy-relevant analysis of emerging issues.   

Policy measures to reduce the spread of COVID-19 have included "shelter-in-place" orders, shutdowns of sectors of the economy, 
and requirements for social distancing. These policies, as well as individual protective strategies, have effectively reduced the mobility 
of people in every country where they have been enacted. In this paper, I examine how mobility reductions are associated with the 
effective reproduction rate, Rt, of COVID-19, and forecast the potential increase in Rt should mobility return to its level in January 
2020, as well as what level of further mobility reductions are needed to reduce Rt to levels that curb spread of the SARS-CoV-2 virus 
responsible for COVID-19. A key innovation of this work is the use of readily available on-line data sources to address a rapidly 
emerging crisis. 

The effective reproduction rate is an indicator of how many people are infected by one individual. For example, if Rt = 2, this 
implies that each infected person transmits the virus to two others, resulting in an uncontrolled epidemic. The effective reproduction 
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rate is distinct from the basic reproduction number (R0) which represents the biological transmissibility of the virus, which is a fixed 
constant. Rt, on the other hand, can be affected by policy as well as the level of viral immunity in the population (Delamater et al., 
2019). Achieving a value of Rt < 1 is a necessary condition to stop the spread of any virus. Thus, I examine changes in Rt associated with 
changes in mobility and do this for all US states plus the District of Columbia. 

Policy measures to prevent the spread of COVID-19 were first implemented in Wuhan, China on Jan 23, 2020 (Pan et al., 2020). 
These included a shutdown of public transit, traffic restrictions, home quarantine, and closure of all public places except essential 
shops (grocery stores and pharmacies). Face masks were required in all public spaces. These measures, in combination, were shown to 
reduce the effective reproduction rate from 3.8 to almost 1.0, with further measures reducing it well below 1.0 (Pan et al., 2020). 

Various studies (most published as pre-prints) have examined the effectiveness of specific policies for curbing the spread of COVID- 
19. An analysis of policies implemented in US states determined that social distancing measures were effective at reducing case-loads, 
with a lag of up to 15 days (Courtemanche et al., 2020). The same study found no statistically significant reductions associated with 
school closures and bans on large events; however, "shelter-in-place orders" and bans on restaurant and entertainment centers were 
effective. Another study evaluated how various policies affected mobility, using Google mobility data for US states (Abouk and 
Heydari, 2020). Their results suggest that stay-at-home orders were the most effective at reducing mobility while closure of 
non-essential businesses and restaurants was moderately effective. They found school closures and bans on large events as not affecting 
mobility; another study found that these two policies also did not affect case-loads (Courtemanche et al., 2020). It is likely that banning 
large events is not noticeable in the aggregated Google Mobility data, and school mobility is not one of the mobility factors in the data. 
Another study found that state shelter-in-place orders were effective at reducing total case-loads after about a three-week lag (Dave 
et al., 2020). An analysis of Google data for US states linked to case reports determined there was a growing incidence over time and 
that time spent at parks increased the incidence of COVID-19 (Paez, 2020). 

These studies suggest that policies aimed at reducing mobility have curbed the number of cases, but they do not estimate mobility 
effects directly. Reductions in mobility have typically occurred before lockdown orders were issued. For example, many universities 
moved to remote learning and limitations on working in the office before lockdowns were issued. Likewise, many firms began limiting 
employee travel, for example to business meetings prior to lockdowns. One recent study examined mobility changes in 25 US counties 
and found evidence that reductions in mobility reduced growth in cases (Badr et al., 2020). Other research has demonstrated the 
effectiveness of lockdowns in reducing Rt, but here I focus on the underlying mobility behavior for all 50 states and the District of 
Columbia, rather than the explicit policies (Arroyo-Marioli et al., 2020). 

Results show a strong correlation between mobility and Rt. Specifically, retail/recreational activity, such as eating in restaurants, 
office work activities, and public transit usage all are associated with increases in transmission of the virus. Shopping at grocery stores 
and pharmacies has a smaller association, while affects associated with parks are minor; staying at home reduces transmission. Im-
plications for reducing the spread of the coronavirus are that the reductions in mobility have been effective, but also need to be 
maintained for longer periods. 

1. Data and methods 

Mobility data was made publicly available by Google (2020) and is based upon cell phone tracking data that measures clustering of 
individuals at six place categories. The places are grocery/pharmacy stores, retail stores/recreation (including restaurants), parks, 
transit stations, workplaces, and residential locations. The data are anonymized and aggregated by Google and are used to estimate 
visits and lengths of stays at specific places in Google Maps. The data for each place location and for each US state is relative to a 
median value between Jan 3 – Feb 6, 2020 and changes are relative to the same day of the week and reported as percent changes; data 
was downloaded on June 26th, 2020 and was current up to June 23rd, 2020.1 An example of the change in mobility is shown in Fig. 1 
and Fig. 2 for the states of Arizona and New Jersey. New Jersey was one of the most hard hit states early in the pandemic (with nearly 
15,000 deaths as of late June 2020); Arizona experienced large case loads in late June 2020. New Jersey implemented an early 
lockdown on March 18, 2020, while Arizona had a later lockdown on March 30, 2020, that was removed on May 15, 2020 (Lee et al., 
2020; Popovich, 2020). As can be seen, time spent at retail, work, and transit locations declined noticeably and even before the 
lockdowns implemented in each state. Time spent at grocery/pharmacy locations also was lower, suggesting both fewer trips to these 
locations and less time spent there. There is variability in time spent at parks, primarily due to variation in weather. Time spent at 
residential locations increased. While these lockdowns clearly affected mobility, it largely coincided with self-protective measures that 
businesses and individuals were already taking. Badr et al. (2020) also documented reductions in mobility before lockdowns were 
implemented. Mobility began to gradually increase even before the lockdowns expired. 

Data for Rt for each state in the United States (including the District of Columbia) was downloaded from https://rt.live/ and is 
explained in associated blog posts (Systrom et al., 2020). Estimates are based on methods outlined in Bettencourt and Ribeiro (2008). 
Case data for https://rt.live/ are from the Covid tracking project at https://covidtracking.com/ (Wissel et al., 2020). Estimates of Rt are 
Bayesian and dependent on prior information and thus change as more data becomes available. An 80% credible interval is provided 
with the estimates. Given that replicability by doing an updated download is not possible, the full dataset used is available at https:// 
github.com/rbnoland/COVID-data. 

To evaluate the impact of mobility on Rt, fixed effects models that control for state-level effects are estimated. That is, these models 

1 Additional data was downloaded on Nov 29th, 2020, in order to update the Fig. I did not update the analysis as COVID-19 testing started to 
suffer major delays starting in the Summer of 2020 and thus data on cases was not as reliable. 
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control for unmeasured attributes that might affect the dependent variable. A time-trend variable, which starts on the first day that Rt is 
estimated for each state is also included; these start dates vary based on the cases in each state, thus our time trend normalizes for the 
start of infectious spread in each state. The time trend controls for changes over time and could represent practices such as increased 
mask-wearing, increased home shopping deliveries, and additional protective measures taken by firms and individuals. Increasing 
herd immunity may also be represented by the time trend. Estimates suggest this could be much larger than actual reported cases 
(Hortaçsu et al., 2020) 

Standard errors were estimated using a bootstrap with 100 repetitions. This was done as qq-plots suggested some minor deviations 
from normality in the residuals. However, this made little difference in the standard errors given the high levels of statistical sig-
nificance in the models and correspondingly low standard errors on the coefficients of interest. 

The mobility measures provided are all highly correlated, making individual inferences on each impossible if all are included 
within the same model. Others who have used this data have aggregated it into an index (Arroyo-Marioli et al., 2020). Paez (2020) 
estimated models with park and workplace mobility only, as these are the least correlated with each other. The models that I estimate 
include each separately. This allows a comparison of the relative impact of each independently. Models with a 7-day and 14-day lag of 
each mobility variable are estimated, given that that the onset of symptoms can take almost up to seven days and actual case reports 
(usually when symptoms are more severe) can take longer. An average incubation period of 11.5 days has been estimated (Lauer et al., 
2020). Estimated models are log-linear, using the log of Rt to avoid predictions less than zero. 

The goal of policy makers is to keep Rt below one. A value below one implies that infections are decreasing and aiming for this will 
result in reductions in total cases and can be effective at stopping an epidemic.2 The estimates of Rt include an 80% credible interval, 
that is, the actual value has an 80% likelihood of being somewhere within the reported range. Focusing policy on the median value may 
not be effective, thus additional models using the upper limit of the credible interval are estimated. If one wants greater certainty in the 

Fig. 1. Mobility data for Arizona, from Feb 15, 2020 to Nov 27, 2020. Represents percent change from baseline between Jan 3, 2020 to Feb 6, 2020, 
measured relative to each day of the week. Seven-day moving average is shown. A statewide lockdown was initiated on March 30, 2020 and ended 
on May 15, 2020. Both are shown by the vertical lines(Lee et al., 2020; Popovich, 2020). 

2 In the UK, government officials have stated a goal of getting and keeping Rt below one (BBC News, 2020), although this policy has been 
criticized as other metrics also need to be considered (Adam, 2020). 
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impact of mobility reductions, keeping the upper limit of the credible interval below one is a more risk-averse policy. Predictions are 
also presented based on the models with a 7-day lag and how this affects the upper level of the credible interval. Finally, I use the 
models to predict how much mobility needs to be reduced to achieve an upper level credible value of Rt = 1 and Rt = 0.7, as the latter 
would be most effective at stopping further spread of the coronavirus. 

2. Results 

Fixed effects modeling results are presented in Tables 1–4 for US state-level models. In all cases the coefficients are positive, except 
for residential locations. That is, increased mobility at locations other than one’s residence is associated with increases in Rt. This 
demonstrates the effectiveness of reductions in mobility to reduce the spread of COVID-19. Coefficient values for models with the 
upper level of the credible interval of Rt are slightly larger (Table 2 and Table 4). The models have slightly lower coefficient values 
when the mobility variables are lagged 14 days, but the patterns are similar. 

Comparing the values of mobility coefficients within each set of models shows that activity spent at parks has the smallest coef-
ficient value, suggesting less viral spread associated with time spent at parks. Other mobility coefficients are generally similar, though 
grocery/pharmacy coefficients are larger in the models with 7-day lags. Mobility coefficients for residences, while negative, have a 
larger absolute value, suggesting time spent at home is protective of viral spread. 

The time trend variable for days since the start of the epidemic in each area is uniformly negative. This variable represents un-
measured effects that change over time. It may be accounting for individual protective actions being taken by people and firms, such as 
requirements to wear masks or the installation of protective barriers in stores, among other actions. 

Predictions of potential increases in Rt without mobility reductions are also estimated. Setting the mobility values to zero assumes 
mobility returns to the average of activity from Jan 3 – Feb 6, 2020. The time trend is set to its value on June 23rd, 2020, thus 
incorporating individual protective actions taken to date. The RMSE for each model is shown, which is a measure of predictive ac-
curacy; there is little variation between models. Using the models in Table 2, based on the upper level of the credible interval and a 7- 
day lag, predicted results for each US state are shown in Table 5. Every state has a predicted Rt above one, for retail, transit, workplaces, 

Fig. 2. Mobility data for New Jersey, from Feb 15, 2020 to Nov 27, 2020. Represents percent change from baseline between Jan 3, 2020 to Feb 6, 
2020, measured relative to each day of the week. Seven-day moving average is shown. A statewide lockdown was initiated on March 18, 2020 and 
expired on June 9, 2020, with a slow reopening of various businesses. Both are shown by the vertical lines(Lee et al., 2020). 
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and residences if mobility activity for these destinations returned to normal. Grocery/pharmacy locations are below 1.0 in most states, 
while parks are uniformly below 1.0. Prediction spreadsheets are available for all models at https://github.com/rbnoland/COVID-data 
and different levels of mobility increases or decreases can be tested with these. 

While a return to normal mobility activity will not reduce Rt, this leads to the question of how much mobility reduction is needed to 
achieve an Rt = 1. In addition, mobility reductions to achieve Rt = 0.7 are also estimated. Using the same model for the upper level 
credible interval estimates and assuming the time trend up to June 23rd, 2020, the average across all states and the largest possible 
mobility reductions needed are shown in Table 6. Table 7 and Table 8 present the mobility reductions needed by each state to achieve 
Rt = 1 and Rt = 0.7, respectively. Large mobility reductions are needed for retail, transit, and work activities for achieving both levels of 
Rt. Mobility reductions for grocery shopping are also needed to achieve Rt = 0.7 and even for parks. The positive values for parks, for Rt 

Table 1 
US State level models with fixed effect estimation of median value of ln(Rt) versus mobility variables lagged by 7 days. Fixed effects for each state are 
not shown. All estimates have P=0.000. 50 states plus the District of Columbia are included in the regressions.  

Dependent variable: median value of Rt coef.: 
Mobility, 7-day lag 

95% conf interval coef.: Days 95% conf interval N Adj-R2 RMSE 

retail/recreational  0.0113  0.0110  0.0116  − 0.0036  − 0.0037  − 0.0035  5986  0.701  0.179 
grocery/pharmacy  0.0133  0.0126  0.0139  − 0.0046  − 0.0048  − 0.0044  5986  0.500  0.232 
parks  0.0021  0.0020  0.0023  − 0.0066  − 0.0069  − 0.0063  5967  0.381  0.258 
transit station  0.0111  0.0107  0.0114  − 0.0029  − 0.0030  − 0.0027  5986  0.675  0.187 
workplace  0.0117  0.0113  0.0121  − 0.0020  − 0.0021  − 0.0018  5986  0.635  0.198 
residential  − 0.0272  − 0.0281  − 0.0263  − 0.0030  − 0.0032  − 0.0029  5986  0.635  0.198  

Table 2 
US State level models with fixed effect estimation of upper level 80% credible interval of ln(Rt) versus mobility variables lagged by 7 days. Fixed 
effects for each state are not shown. All estimates have P=0.000. 50 states plus the District of Columbia are included in the regressions.  

Dependent variable: median value 
of Rt 

coef.: 
Mobility, 14-day 
lag 

95% conf interval coef. Number of 
days 

95% conf interval N Adj- 
R2 

RMSE 

retail/recreational  0.0121  0.0118  0.0123  − 0.0032  − 0.0033  − 0.0030  5986  0.693  0.185 
grocery/pharmacy  0.0140  0.0134  0.0146  − 0.0042  − 0.0044  − 0.0040  5986  0.467  0.243 
parks  0.0023  0.0021  0.0025  − 0.0064  − 0.0066  − 0.0061  5967  0.345  0.270 
transit station  0.0118  0.0115  0.0122  − 0.0024  − 0.0025  − 0.0022  5986  0.667  0.192 
workplace  0.0125  0.0121  0.0129  − 0.0014  − 0.0016  − 0.0012  5986  0.626  0.204 
residential  − 0.0291  − 0.0298  − 0.0284  − 0.0025  − 0.0027  − 0.0024  5986  0.624  0.204  

Table 3 
US State level models with fixed effect estimation of median value of ln(Rt) versus mobility variables lagged by 14 days. Fixed effects for each state are 
not shown. All estimates have P=0.000. 50 states plus the District of Columbia are included in the regressions.  

Dependent variable: upper bound of 95% 
credible interval of Rt 

coef.: 
Mobility, 7- 
day lag 

95% conf interval coef. Number of 
days 

95% conf interval N Adj- 
R2 

RMSE 

retail/recreational  0.0097  0.0094  0.0100  − 0.0024  − 0.0026  − 0.0022  5879  0.589  0.200 
grocery/pharmacy  0.0092  0.0086  0.0098  − 0.0040  − 0.0042  − 0.0038  5879  0.377  0.246 
parks  0.0018  0.0016  0.0019  − 0.0056  − 0.0059  − 0.0053  5864  0.328  0.255 
transit station  0.0094  0.0090  0.0097  − 0.0018  − 0.0020  − 0.0017  5879  0.556  0.207 
workplace  0.0099  0.0095  0.0102  − 0.0012  − 0.0014  − 0.0010  5879  0.522  0.215 
residential  − 0.0236  − 0.0244  − 0.0229  − 0.0020  − 0.0022  − 0.0018  5879  0.539  0.211  

Table 4 
US State level models with fixed effect estimation of upper level 80% credible interval of ln(Rt) versus mobility variables lagged by 14 days. Fixed 
effects for each state are not shown. All estimates have P=0.000. 50 states plus the District of Columbia are included in the regressions.  

Dependent variable: upper bound of 95% 
credible interval of Rt 

coef.: 
Mobility, 14- 
day lag 

95% conf interval coef. Number of 
days 

95% conf interval N Adj- 
R2 

RMSE 

retail/recreational  0.0104  0.0101  0.0107  − 0.0018  − 0.0020  − 0.0017  5879  0.577  0.205 
grocery/pharmacy  0.0098  0.0092  0.0105  − 0.0035  − 0.0038  − 0.0033  5879  0.341  0.256 
parks  0.0019  0.0018  0.0021  − 0.0053  − 0.0055  − 0.0050  5864  0.290  0.266 
transit station  0.0101  0.0098  0.0104  − 0.0012  − 0.0014  − 0.0010  5879  0.542  0.214 
workplace  0.0106  0.0103  0.0110  − 0.0005  − 0.0008  − 0.0003  5879  0.505  0.222 
residential  − 0.0253  − 0.0260  − 0.0247  − 0.0014  − 0.0016  − 0.0012  5879  0.522  0.218  
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= 1, means that additional mobility associated with parks is possible to stay at a value of Rt = 1, though to achieve a lower level of Rt, 
mobility would need to be lower than the baseline values (i.e., from Jan 3 to Feb 6, 2020). The positive values for residential activity 
indicate that increases in staying at home are needed to achieve desirable levels of Rt. 

Table 5 
Predicted value of upper level credible interval of Rt assuming mobility at base level from Jan 3-Feb 6, 2020 and time trend at June 23rd, 2020.   

Retail Grocery Parks Transit Work Residence 

Alabama  1.24  0.94  0.81  1.23  1.56  1.39 
Alaska  1.03  0.82  0.65  1.27  1.36  1.19 
Arizona  1.45  1.14  0.95  1.59  1.80  1.56 
Arkansas  1.18  0.91  0.77  1.23  1.53  1.33 
California  1.55  1.08  0.88  1.69  1.73  1.60 
Colorado  1.26  0.95  0.74  1.50  1.57  1.38 
Connecticut  1.24  0.96  0.69  1.44  1.52  1.39 
Delaware  1.25  1.01  0.75  1.46  1.56  1.41 
District of Columbia  1.64  1.17  0.84  1.90  1.85  1.62 
Florida  1.54  1.22  0.99  1.86  1.81  1.62 
Georgia  1.34  1.04  0.85  1.65  1.71  1.51 
Hawaii  1.43  1.12  0.85  1.77  1.55  1.45 
Idaho  1.20  0.89  0.69  1.18  1.58  1.33 
Illinois  1.33  0.95  0.76  1.52  1.61  1.44 
Indiana  1.19  0.92  0.69  1.16  1.53  1.35 
Iowa  1.28  0.83  0.68  1.19  1.53  1.37 
Kansas  1.26  0.98  0.71  1.18  1.58  1.38 
Kentucky  1.32  0.96  0.79  1.36  1.68  1.46 
Louisiana  1.30  0.97  0.87  1.45  1.61  1.43 
Maine  1.20  0.91  0.68  1.33  1.45  1.28 
Maryland  1.34  1.06  0.75  1.60  1.69  1.56 
Massachusetts  1.28  0.97  0.68  1.67  1.56  1.42 
Michigan  1.24  0.92  0.63  1.30  1.53  1.34 
Minnesota  1.26  0.92  0.67  1.54  1.54  1.39 
Mississippi  1.21  0.96  0.86  1.25  1.62  1.41 
Missouri  1.26  0.95  0.78  1.34  1.60  1.40 
Montana  1.16  0.84  0.72  1.16  1.44  1.23 
Nebraska  1.23  0.92  0.72  1.14  1.51  1.38 
Nevada  1.43  1.06  0.92  1.71  1.84  1.56 
New Hampshire  1.19  0.94  0.69  1.32  1.51  1.37 
New Jersey  1.46  1.00  0.71  1.70  1.65  1.55 
New Mexico  1.27  0.90  0.81  1.25  1.58  1.39 
New York  1.42  0.96  0.73  1.66  1.60  1.46 
North Carolina  1.32  1.01  0.82  1.53  1.64  1.44 
North Dakota  1.18  0.91  0.70  1.19  1.38  1.29 
Ohio  1.26  0.96  0.69  1.24  1.59  1.40 
Oklahoma  1.26  0.97  0.84  1.23  1.67  1.45 
Oregon  1.33  0.99  0.77  1.45  1.64  1.41 
Pennsylvania  1.36  1.04  0.75  1.58  1.65  1.47 
Rhode Island  1.27  1.03  0.69  1.66  1.61  1.46 
South Carolina  1.31  1.02  0.89  1.31  1.67  1.47 
South Dakota  1.23  0.85  0.69  1.15  1.52  1.39 
Tennessee  1.27  0.98  0.83  1.38  1.64  1.42 
Texas  1.44  1.13  0.95  1.63  1.81  1.64 
Utah  1.25  0.91  0.72  1.47  1.64  1.41 
Vermont  1.23  0.99  0.68  1.41  1.51  1.31 
Virginia  1.33  1.01  0.78  1.56  1.66  1.49 
Washington  1.19  0.89  0.67  1.42  1.52  1.31 
West Virginia  1.13  0.89  0.74  1.10  1.45  1.25 
Wisconsin  1.28  0.94  0.66  1.25  1.50  1.38 
Wyoming  1.19  0.88  0.76  1.04  1.49  1.31  

Table 6 
Average and largest mobility reduction needed to achieve Rt = 1 and Rt = 0.7 (on June 23rd, 2020) for all 50 states and the District of Columbia.   

Retail Grocery Parks Transit Work Residence 

Average reduction to achieve Rt = 1  − 20.88  2.31  120.56  − 28.43  − 37.14  11.89 
Largest reduction to achieve Rt = 1  − 41.01  − 14.15  6.08  − 54.30  − 48.89  6.02 
Average reduction to achieve Rt = 0.7  − 50.45  − 23.24  − 34.69  − 58.57  − 65.61  24.15 
Largest reduction to achieve Rt = 0.7  − 70.58  − 39.70  − 149.16  − 84.44  − 77.36  18.27  
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3. Discussion and conclusions 

The effectiveness of mobility reductions at reducing the effective reproduction number of COVID-19 is clearly demonstrated by 
these results. This analysis does not include any policy variables enacted by individual US states or counties. Other researchers have or 
are evaluating the effectiveness of these policies on total case-loads, as opposed to infectiousness (Abouk and Heydari, 2020; Cour-
temanche et al., 2020; Dave et al., 2020; Hsiang et al., 2020; Pan et al., 2020). This work largely confirms the effectiveness of those 
policies that reduce mobility, which is the primary factor keeping people apart. Some of this is voluntary mobility reductions that are 
independent of actual government shelter-in-place orders as people took protective action prior to government mandated restrictions. 
However, the results suggest that further reductions in mobility might be needed to successfully reduce Rt values below 1 or even below 
0.7, which would essentially end large scale community transmission. 

While the each of the models presented only includes one mobility variable, due to collinearity, results still provide some differ-
entiation of the effectiveness of specific mobility reductions. Activity at parks has the lowest impact on the effective reproduction rate, 
suggesting that with appropriate social distancing guidelines these should be left open for activities. Mobility associated with time 
spent at grocery stores and pharmacies also seems to not affect Rt as much, but additional reductions might be needed to reduce Rt 

Table 7 
Mobility reduction needed on June 23rd, 2020 for upper level credible interval of Rt = 1.   

Retail Grocery Parks Transit Work Residence 

Alabama  − 17.79  4.44  89.64  − 17.32  − 35.49  11.22 
Alaska  − 2.46  14.49  188.46  − 20.32  − 24.50  6.02 
Arizona  − 30.84  − 9.17  22.15  − 39.07  − 46.87  15.35 
Arkansas  − 13.52  6.78  116.06  − 17.64  − 34.06  9.83 
California  − 36.34  − 5.42  53.65  − 44.41  − 43.90  16.22 
Colorado  − 19.24  3.61  132.76  − 34.30  − 35.75  10.96 
Connecticut  − 17.55  2.89  163.71  − 30.77  − 33.35  11.36 
Delaware  − 18.63  − 0.49  124.80  − 31.71  − 35.41  11.68 
District of Columbia  − 41.01  − 11.04  74.85  − 54.30  − 48.89  16.59 
Florida  − 36.01  − 14.15  6.08  − 52.44  − 47.19  16.66 
Georgia  − 24.07  − 2.80  70.72  − 42.14  − 42.77  14.18 
Hawaii  − 29.57  − 8.06  72.23  − 48.39  − 34.92  12.79 
Idaho  − 14.98  8.02  161.36  − 13.95  − 36.38  9.71 
Illinois  − 23.86  3.72  116.82  − 35.37  − 38.14  12.60 
Indiana  − 14.53  5.86  160.51  − 12.37  − 34.17  10.33 
Iowa  − 20.18  13.30  165.59  − 14.74  − 33.95  10.87 
Kansas  − 19.17  1.19  146.80  − 13.80  − 36.63  11.18 
Kentucky  − 22.95  3.00  103.57  − 26.12  − 41.55  13.01 
Louisiana  − 22.00  2.47  63.11  − 31.36  − 38.16  12.34 
Maine  − 15.46  6.94  168.44  − 24.33  − 29.57  8.52 
Maryland  − 24.38  − 4.24  127.14  − 39.67  − 42.00  15.36 
Massachusetts  − 20.25  2.37  170.06  − 43.27  − 35.60  12.11 
Michigan  − 17.53  5.69  201.02  − 22.41  − 34.05  10.13 
Minnesota  − 19.28  6.23  171.94  − 36.56  − 34.44  11.32 
Mississippi  − 15.68  2.57  64.50  − 19.10  − 38.48  11.84 
Missouri  − 19.20  3.38  108.55  − 24.90  − 37.41  11.67 
Montana  − 12.61  12.24  145.67  − 12.41  − 29.28  7.10 
Nebraska  − 17.30  5.69  142.66  − 10.76  − 33.15  11.08 
Nevada  − 29.85  − 3.92  38.18  − 45.56  − 48.55  15.25 
New Hampshire  − 14.43  4.24  163.52  − 23.25  − 32.91  10.85 
New Jersey  − 31.21  0.17  149.97  − 44.70  − 40.21  15.11 
New Mexico  − 19.55  7.33  93.39  − 18.71  − 36.58  11.43 
New York  − 29.23  3.24  136.75  − 42.69  − 37.37  12.99 
North Carolina  − 22.76  − 0.40  88.42  − 35.79  − 39.61  12.61 
North Dakota  − 13.88  6.78  156.47  − 14.98  − 25.71  8.67 
Ohio  − 19.23  2.76  162.86  − 18.44  − 37.12  11.49 
Oklahoma  − 19.06  1.96  76.61  − 17.72  − 40.74  12.69 
Oregon  − 23.87  0.62  111.63  − 31.54  − 39.52  11.71 
Pennsylvania  − 25.62  − 2.66  123.27  − 38.44  − 39.83  13.23 
Rhode Island  − 20.06  − 2.14  161.83  − 43.04  − 38.21  12.93 
South Carolina  − 22.35  − 1.31  52.11  − 22.65  − 40.85  13.13 
South Dakota  − 17.00  11.51  161.92  − 11.61  − 33.30  11.37 
Tennessee  − 19.94  1.46  82.86  − 26.95  − 39.59  12.14 
Texas  − 30.02  − 8.67  23.93  − 41.33  − 47.39  16.94 
Utah  − 18.79  7.09  144.11  − 32.31  − 39.67  11.74 
Vermont  − 17.49  0.85  169.95  − 28.92  − 33.12  9.35 
Virginia  − 23.79  − 0.83  107.83  − 37.71  − 40.53  13.78 
Washington  − 14.73  8.30  174.72  − 29.80  − 33.36  9.16 
West Virginia  − 10.41  8.55  132.28  − 7.95  − 29.76  7.64 
Wisconsin  − 20.28  4.26  181.34  − 18.95  − 32.45  11.05 
Wyoming  − 14.70  9.06  121.62  − 2.91  − 31.65  9.25  
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below 1. Time spent at home is very effective at reducing Rt. A limitation of this work is that we do not know the interactive effects of 
staying at home versus engaging in other activities; that is, more time spent at home, while protective, means less time spent elsewhere. 

The time trend variable included in the estimates suggests other unmeasured factors are at play in reducing the effective repro-
duction rate. Increased use of face masks might be one of these, as research is showing that face masks are effective for mitigating 
spread of COVID-19 (Mitze et al., 2020). Further work is clearly needed to estimate the effect of these and other protective measures. 
Warmer and more humid seasonal weather may also account for some of the time trend effects (Wang et al., 2020; Paez et al., 2020). 
Protective measures taken by grocery stores and pharmacies, installing physical partitions and marking out distances to keep patrons 
separated may be another factor, as well as resulting in less infectiousness associated with these locations. 

The predictions estimated suggest that there is still a need for caution in encouraging increased mobility, especially retail/recre-
ational activity, such as eating in restaurants, office work activities, and public transit usage. The models estimated are associative and 
this means that predictions from these estimates must be considered with care; however, the underlying biology of viral transmission 
suggests that keeping people distant is effective and mobility reductions are one way to achieve this. Reductions in viral transmission, 
however, may be temporary, as infections can increase even after substantial reductions in Rt, as shown by simulations conducted by 
Kissler et al. (2020). 

Table 8 
Mobility reduction needed on June 23rd, 2020 for upper level credible interval of Rt = 0.7.   

Retail Grocery Parks Transit Work Residence 

Alabama  − 47.36  − 21.11  − 65.61  − 47.46  − 63.96  23.47 
Alaska  − 32.03  − 11.06  33.21  − 50.45  − 52.97  18.27 
Arizona  − 60.42  − 34.72  − 133.09  − 69.21  − 75.34  27.60 
Arkansas  − 43.09  − 18.77  − 39.19  − 47.78  − 62.53  22.09 
California  − 65.92  − 30.97  − 101.59  − 74.55  − 72.37  28.48 
Colorado  − 48.81  − 21.94  − 22.48  − 64.44  − 64.22  23.21 
Connecticut  − 47.13  − 22.66  8.46  − 60.91  − 61.82  23.62 
Delaware  − 48.20  − 26.03  − 30.45  − 61.85  − 63.88  23.94 
District of Columbia  − 70.58  − 36.59  − 80.40  − 84.44  − 77.36  28.84 
Florida  − 65.59  − 39.70  − 149.16  − 82.58  − 75.66  28.91 
Georgia  − 53.64  − 28.35  − 84.53  − 72.28  − 71.24  26.43 
Hawaii  − 59.15  − 33.61  − 83.02  − 78.53  − 63.39  25.05 
Idaho  − 44.56  − 17.53  6.11  − 44.09  − 64.85  21.96 
Illinois  − 53.44  − 21.83  − 38.43  − 65.50  − 66.61  24.86 
Indiana  − 44.10  − 19.69  5.26  − 42.51  − 62.64  22.58 
Iowa  − 49.75  − 12.25  10.34  − 44.88  − 62.42  23.13 
Kansas  − 48.74  − 24.35  − 8.45  − 43.94  − 65.10  23.43 
Kentucky  − 52.52  − 22.55  − 51.68  − 56.26  − 70.02  25.26 
Louisiana  − 51.57  − 23.08  − 92.14  − 61.50  − 66.63  24.60 
Maine  − 45.03  − 18.61  13.20  − 54.47  − 58.04  20.78 
Maryland  − 53.95  − 29.79  − 28.10  − 69.81  − 70.47  27.61 
Massachusetts  − 49.82  − 23.17  14.81  − 73.41  − 64.07  24.36 
Michigan  − 47.11  − 19.86  45.77  − 52.54  − 62.52  22.39 
Minnesota  − 48.86  − 19.31  16.69  − 66.70  − 62.91  23.57 
Mississippi  − 45.26  − 22.98  − 90.75  − 49.24  − 66.95  24.09 
Missouri  − 48.77  − 22.17  − 46.70  − 55.04  − 65.88  23.92 
Montana  − 42.19  − 13.31  − 9.58  − 42.55  − 57.75  19.35 
Nebraska  − 46.87  − 19.86  − 12.59  − 40.90  − 61.62  23.33 
Nevada  − 59.42  − 29.47  − 117.06  − 75.70  − 77.02  27.50 
New Hampshire  − 44.00  − 21.31  8.27  − 53.39  − 61.38  23.10 
New Jersey  − 60.78  − 25.38  − 5.28  − 74.83  − 68.68  27.36 
New Mexico  − 49.12  − 18.22  − 61.85  − 48.85  − 65.05  23.68 
New York  − 58.80  − 22.31  − 18.50  − 72.82  − 65.84  25.24 
North Carolina  − 52.33  − 25.95  − 66.83  − 65.93  − 68.08  24.87 
North Dakota  − 43.46  − 18.77  1.22  − 45.12  − 54.18  20.92 
Ohio  − 48.80  − 22.79  7.61  − 48.58  − 65.58  23.74 
Oklahoma  − 48.63  − 23.59  − 78.64  − 47.86  − 69.20  24.94 
Oregon  − 53.44  − 24.92  − 43.61  − 61.67  − 67.99  23.96 
Pennsylvania  − 55.20  − 28.21  − 31.97  − 68.58  − 68.30  25.48 
Rhode Island  − 49.64  − 27.69  6.58  − 73.17  − 66.67  25.18 
South Carolina  − 51.92  − 26.86  − 103.14  − 52.78  − 69.32  25.38 
South Dakota  − 46.58  − 14.04  6.68  − 41.75  − 61.77  23.62 
Tennessee  − 49.52  − 24.09  − 72.39  − 57.09  − 68.06  24.40 
Texas  − 59.60  − 34.22  − 131.32  − 71.47  − 75.86  29.19 
Utah  − 48.36  − 18.46  − 11.14  − 62.45  − 68.14  23.99 
Vermont  − 47.06  − 24.70  14.71  − 59.06  − 61.59  21.60 
Virginia  − 53.37  − 26.38  − 47.42  − 67.85  − 69.00  26.03 
Washington  − 44.30  − 17.25  19.47  − 59.94  − 61.83  21.41 
West Virginia  − 39.98  − 16.99  − 22.97  − 38.09  − 58.23  19.89 
Wisconsin  − 49.86  − 21.29  26.09  − 49.09  − 60.92  23.31 
Wyoming  -44.27  − 16.49  − 33.62  − 33.05  − 60.12  21.51  
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Mobility reductions and social distancing are useful policies for reducing peak case-loads, i.e. to "flatten the curve" and avoid 
overloading health care resources. As of this writing in early January 2021, health care systems are near or at capacity in many parts of 
the country and Rt exceeds 1 in a large majority of states. This is despite mobility levels not returning to baseline levels but also being 
higher than the reductions seen during the first wave of the pandemic in the Spring of 2020 (see Figs. 1 and 2). Ultimately, to achieve 
herd immunity, vaccinations must be administered, which began in December 2020. 

While other studies have demonstrated the relationship between mobility and case-loads, one of the key innovations of this work is 
the use of readily available data. This allows analysts to quickly conduct analysis of critical issues, virtually in real time to provide 
guidance to policy makers, demonstrating the value of openly available "big data" to address rapidly emerging issues. 
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