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A B S T R A C T   

Background: Although the United States is among the countries with the highest mortalities of COVID-19, 
inadequate geospatial studies have analyzed the disease mortalities across the nation. 
Methods: In this county-level study, we investigated age-adjusted co-mortalities of 20 diseases, including car
diovascular, cancer, drug and alcohol disorder, respiratory and infectious diseases with COVID-19 over the first 
ten months of epidemic. One-way analysis of variance was applied to the Local Moran’s I classes (High-High and 
Low-Low clusters, and non-significant counties of COVID-19) to examine whether the mean mortality measures 
of covariates that fall into the classes are significantly different. Moreover, a mixed-effects multinomial logistic 
regression model was employed to estimate the effects of mortalities on COVID-19 classes. 
Results: Results showed that the distribution of COVID-19 case fatality ratio (CFR) and mortality rate co- 
occurrence of High-High clusters were mainly concentrated in Louisiana, Connecticut, and New Jersey. Also, 
positive associations were observed between High-High cluster of COVID-19 CFR and Asthma (OR = 4.584, 95 % 
Confidence Interval (CI): 2.583–8.137), Hepatitis (OR = 5.602, CI: 1.265–24.814) and Leukemia (OR = 2.172, 
CI: 1.518–3.106) mortality rates compared to the non-significant counties, respectively. 
Conclusions: Our results indicated that counties with higher mortality of some cancers and respiratory diseases 
are more vulnerable to fall into clusters of HH COVID-19 CFR. Future vaccine allocation and more medical 
professionals and treatment equipment should be a priority to those High-High clusters.   

1. Introduction 

SARS-CoV-2, the pathogen that causes coronavirus disease (COVID- 
19), has affected almost 191 countries and territories, leading to over 62 
million infected confirmed cases and nearly 1.45 million deaths world
wide as of November 28, 2020 (Johns Hopkins University & Medicine, 
2020). It is anticipated that the potential COVID-19 mortality of the 
pandemic would be approximately 6% of the worldwide population, 
accounting for nearly half a billion global deaths (Grech, 2020). Pre
liminary predictions indicate that individuals who contract COVID-19 
may experience years of lost life of approximately 13.1 and 10.5 years 
for males and females, respectively (Hanlon et al., 2020). 

The United States continues to lead in the number of cases and deaths 
globally, with almost 13.2 million positive cases and nearly 266,000 
deaths as of November 28, 2020 (Kaiser Family Foundation, 2020). As of 
November 28, 2020, this country has reported a mortality rate of 80.95 
cases per 100,000 population and the observed cases-fatality ratio (CFR) 

(i.e., the proportion of recorded death over the confirmed cases) of 
almost 2.0 %, ranking 8th country with highest mortality rates world
wide (Johns Hopkins University & Medicine, 2020). 

Studying CFR is essential to assess the severity of COVID-19, for it 
might present variability associated with particular comorbidities 
(Rodriguez-Morales et al., 2020), geospatial distribution (Dahal, Miz
umoto, Rothenberga, & Chowella, 2020), and disease transmission 
(Peeri et al., 2020). Rodriguez-Morales et al. (2020) performed a sys
tematic review and meta-analysis of clinical, laboratory, and imaging 
pertaining to COVID-19 in China and Australia. They found that almost 
20 % of individuals that were admitted to ICU presented with comor
bidities (i.e., hypertension, cardiovascular disease, diabetes, chronic 
obstructive pulmonary disease, malignancies, and chronic liver disease). 
Also, a CFR of 13 % was calculated for 632 hospitalized patients. In 
Spain, Dahal et al. (2020) analyzed the spatial variability of COVID-19 in 
19 areas (2 autonomous cities and 17 independent communities) and 
estimated respective time-delay adjusted CFR. They found the highest 
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CFR in Madrid (38.4 %) and lowest CFR for Murcia (4.0 %), and an 
average adjusted CFR of 23.9 % for Spain. Wilder-Smith, Chiew, and Lee 
(2020) compared COVID-19 to Severe Acute Respiratory Syndrome 
(SARS). In contrasts with the preliminary data from China that 
demonstrated low COVID-19 CFR (<2%) when compared to SARS CFR 
(10 %), their results suggest that the continual emergence of COVID-19 
cases is expected as COVID-19 can result in more fatalities than SARS. 

Several studies have reported mortality of COVID-19 concerning 
other diseases. Shi et al. (2020) examined the mortality among 
COVID-19 hospitalized patients and the association with cardiac injury. 
Their findings indicated that hospital mortality among the patients is 
positively associated with the cardiac injury (P < 0.001). Moreover, 82 
out of 416 hospitalized patients (19.7 %) presented with both cardiac 
injury and COVID-19. Caramelo, Ferreira, and Oliveiros (2020) con
ducted a preliminary analysis of COVID-19 mortality in China. Their 
analysis demonstrated a relatively high CFR in patients with various 
comorbidities. Some of the explanatory variables were: cardiovascular 
disease (CFR: 8.97 %), cancer (CFR: 5.37 %), chronic respiratory disease 
(CFR: 5.97 %), hypertension (CFR: 5.74 %), and diabetes (CFR: 6.78 %). 
Ssentongo, Ssentongo, Heilbrunn, Ba, and Chinchilli (2020) conducted a 
systematic review and meta-analysis to examine the possible association 
of pre-existing conditions and COVID-19 mortality. Of 25 studies, they 
selected 11 comorbidities and concluded that cardiovascular disease, 
hypertension, diabetes, congestive heart failure, chronic kidney disease, 
and cancer are significantly associated with elevated COVID-19 mor
talities. In a nested case-control study in Mainland China, Gu et al. 
(2020) collected information about 321 cases of COVID-19 (146 deaths 
and 175 survivors). Their findings suggested that having a history of 
comorbidity increased the risk of COVID-19 mortality by 29 % (P =
0.01). Also, cases with coronary heart disease (CHD) had a 92 % higher 
risk of mortality compared to cases without CHD. In a cohort study, 
Kuderer et al. (2020) collected and analyzed the data of 928 COVID-19 
patients and found that 43 % had active cancer. 

Spatial statistics have been exploited to analyze and illustrate the 
geographic distribution of diseases, including recently emerged COVID- 
19 (Mollalo, Alimohammadi, Shirzadi, & Malek, 2015; Mollalo, Rivera, 
& Vahedi, 2020; Mollalo, Vahedi et al., 2020). A study in the early stages 
of COVID-19 in China assessed the spread of the pandemic using Mor
an’s I spatial statistic and found a spatial clustering of the disease (Kang, 
Choi, Kim, & Choi, 2020). In New York City, Cordes and Castro (2020) 
utilized spatial scan statistics to identify clusters of testing rates and the 
proportion of positive rates of COVID-19 at the zip code level. Their 
results indicated higher test rates and higher proportion of positive tests 
mostly in areas of black population and without health insurance 
compared to areas of white population and higher income. Guliyev 
(2020) used a spatial panel data model to assess the influences of deaths 
rate and recovered cases due to treatment and their spatial effects on the 
rate of confirmed cases of COVID-19 in Mainland China. In Iran, Pour
ghasemi et al. (2020) conducted spatial modeling and risk mapping of 
COVID-19 using random forest machine learning techniques and iden
tified high-risk provinces. In the United States, Mollalo, Vahedi, & 
Rivera (2020) utilized multiscale geographically weighted regression 
(MGWR) to locally model variations of COVID-19 incidence rates. The 
MGWR could explain 68.1 % of disease variations, and income 
inequality was found as an influential variable, particularly in the 
tri-state area. 

Several individual-level studies from different parts of the world 
have examined the comorbidity/co-mortality of COVID-19 and other 
diseases (Asmundson et al., 2020; Freeman et al., 2020; Shekerdemian 
et al., 2020; Singh & Khan, 2020). However, to our knowledge, there are 
inadequate population-based studies that analyzed the geographic 
variability of mortalities of COVID-19 (Mizumoto, Dahal, & Chowell, 
2020; Zhang et al., 2020) across the United States, in particular, in 
relation to other infectious and chronic illnesses. Understanding the 
comorbidity spectrum of pre-existing conditions influencing COVID-19 
mortality may be helpful for the control and management of the 

disease outbreak. Future nationwide vaccine allocation, especially if 
produced in limited supply, should be targeted to the unsustainable 
areas with an abnormal rate of pre-existing conditions. Thus, this study’s 
primary purpose is to apply spatial and statistical analysis to better 
understand the geospatial distributions of the COVID-19 mortality rate 
(MR) and CFR in the United States. Also, the co-occurrence of COVID-19 
mortality with other diseases is examined. 

2. Materials and methods 

2.1. Data collection and preparation 

COVID-19 spread is tracked daily through dashboards generated by 
Kaiser Family Foundation, Johns Hopkins University & Medicine 
Coronavirus Resource Center, and public health agencies such as the 
Centers for Disease Control and Prevention. We collected cumulative 
COVID-19 cases and deaths from USAFacts (https://usafacts.org/) at the 
county-level across the continental United States. Using the total num
ber of cases from January 22, 2020, to November 22, we computed CFR 
and MR. To avoid unbiased estimations of CFR and mortality, counties 
with less than 16 reported deaths were excluded from subsequent ana
lyses. In total, only 1544 counties had at least 16 cases of deaths. 

Moreover, we collected age-adjusted mortality rates of 20 infectious 
and non-infectious illnesses as covariates. The covariates were retrieved 
from the University of Washington Global Health Data Exchange (http: 
//ghdx.healthdata.org/us-data). The covariates were under the 
following categories: cardiovascular (i.e., Cardiovascular disease, Ce
rebrovascular disease, Cardiomyopathy and myocarditis, Peripheral 
vascular disease, Hypertensive heart, and Atrial fibrillation), behavioral 
disorders (i.e., Alcohol and drug use), chronic respiratory diseases (i.e., 
Asthma, Pulmonary sarcoidosis & interstitial lung disease, and Chronic 
obstructive pulmonary disorder (COPD)), cancer (i.e., “Tracheal, bron
chus, and lung cancer”, Pancreatic, Leukemia, Hodgkin lymphoma, and 
Mesothelioma), and infectious diseases (i.e., Hepatitis, Lower respira
tory infection (LRI), HIV/AIDS, and Tuberculosis (TB)). All data used in 
this study were publicly available. The descriptive statistics of covariates 
used in this study are provided in Supplementary Table S1. 

2.2. Spatial analysis 

We evaluated the geographic patterns of COVID-19 mortalities (CFR 
and MR, separately) using Global Moran’s I statistic (Moran, 1950). The 
statistic is defined as follows: 

I =
n
∑n

i=1

∑n

j=1
wij (xi − x)(xj − x)

∑n

i=1

∑n

j=1
wij

∑n

i=1

∑n

j=1
wij (xi − x)2

(1)  

Where xi and xj are mortality values for county i and county j; x is the 
mean mortality measure; wij is the inverse distance weight matrix; and n 
is the total number of counties. The coefficient of I ranges between -1 
and +1. The value approaching +1 indicates a clustered pattern (posi
tive autocorrelation), the value approaching -1 suggests dispersed dis
tribution (negative autocorrelation), and the value close to 0 denote the 
random distribution of mortality measure (Anselin, 2003; Mollalo, Mao, 
Rashidi, & Glass, 2019). 

Moreover, Anselin Local Moran’s Iwas utilized to identify the con
centrations of low and high mortality measures at a 95 % confidence 
level. Using the same notation as Eq (1), the statistic is computed as: 

Ii =
(xi − x)

S2
i

∑n

j=1
wij (xj − x) (2)  
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S2
i =

∑n

j=1, i∕=j
wij

n − 1
− x2 (3) 

A positive value for Ii either shows a county with high mortality is 
surrounded by counties with high mortalities (i.e., High-High (HH) 
cluster) or a county with low mortality is surrounded by counties with 
low mortalities (i.e., Low-Low (LL) cluster). A negative value for Ii 

suggests that a county with high mortality is surrounded by counties 
with low mortalities and vice versa (i.e., Outlier) (Anselin, 2003; Mol
lalo, Blackburn, Morris, & Glass, 2017). We conducted both Global and 
Local Moran’s I statistics of mortality measures using ArcGIS 10.7 (ESRI, 
Redlands, CA). Moreover, Z-score and P < 0.05 were used to evaluate 
the statistical significance of the indices. 

2.3. Univariate statistical analysis 

Using the results obtained from the Local Moran’s I, the counties 
were divided into three main categories: Non-significant (NN) counties, 
HH cluster, and LL cluster of COVID-19 mortalities. Analyzing the 
spatial distribution of outliers (i.e., High-Low and Low-High clusters) 
was not the purpose of our study and thus excluded from the compu
tations. We calculated the mean mortality measures of each covariate 
that fall into the categories. Shapiro-Wilk test and Levene’s test were 
used to examine normality and homogeneity of variance for each co
variate, respectively. A one-way analysis of variance (ANOVA) test was 
performed to investigate the significant difference of mean age-adjusted 
mortalities of covariates classified by Local Moran’s I categories of 
COVID-19 mortalities. While, for non-normally distributed covariates, 
Kruskal-Wallis non-parametric test was used. Tukey’s honestly signifi
cant difference (HSD) post-hoc test was applied to the significant dif
ferences to compare all pairs of means/medians at a 95 % confidence 
level. 

2.4. Multivariate statistical analysis 

The correlation coefficients between covariates were computed, and 
the most uncorrelated covariates were selected as inputs of the model to 
reduce potential multi-collinearity. A mixed-effects multinomial logistic 
regression (MMLR) model was further employed to estimate the effects 
of covariates on COVID-19 mortality categories as follows: 

yi =

⎧
⎨

⎩

1 with probability π1
2 with probability π2
3 with probability π3

, where
∑3

c=1
πc = 1 (4)  

πic = p(yi = c|xi, ui) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp(βcXi + ui)

1 +
∑2

c=1
exp(βcXi + ui)

c = 1, 2

1

1 +
∑2

c=1
exp(βcXi + ui)

c = 3
, i = 1,…, n

(5)  

Where n is the number of counties, yi is the Local Moran’s I cluster for 
the ith county with c = 3 categories (i.e., code 1 for HH cluster, code 2 for 
LL cluster, and code 3 for NN counties); Xi indicates a vector of cova
riates for the ith county; βc is a vector of coefficients related to the 
covariates. Moreover, ui indicates a normal random-variable to incor
porate the county’s initial mortality before the outbreak effect in the 
prediction model (Agresti, 2018; Hedeker, 2003). This random term 
explains a portion of the COVID-19 MR variance due to the different 
initial stages of COVID-19 mortality in different counties. Moreover, ui 
explains the variability due to the other risk factors which are not being 
considered in the model. Covariates were estimated compared to the 
reference using the maximum marginal likelihood method. All 

univariate and multivariate statistical analyses were implemented in 
R3.6.2 statistical software (R Foundation for Statistical Computing, 
Vienna, Austria). 

3. Results 

During the study period, the mean CFR of COVID-19 was 2.36 %, 
with a minimum of 0.17 %, a maximum of 11.94 %, and a standard 
deviation of 1.50 %. Also, the mean COVID-19 MR per 100,000 in
dividuals was 97.87 individuals with a minimum of 8.27, a maximum of 
720.789, and a standard deviation of 71.34. 

3.1. Spatial analysis 

The global Moran’s I for both CFR and MR were positive and sig
nificant, suggesting a clustered pattern of COVID-19 mortalities across 
the continental United States (CFR: Morans’I = 0.43, P < 0.001, Z-score 
= 57.60; MR: Morans’I = 0.31, P < 0.001, Z-score = 40.82). 

Local Moran’s I classified the counties as HH clusters (n = 296, 19.17 
%), LL clusters (n = 441, 28.56 %), NN counties (n = 654, 42.36 %), HL 
outlier (n = 69, 4.47 %) and LH outlier (n = 84, 5.44 %) of COVID-19 
CFR. The counties that were identified as LL clusters of CFR were 
mostly concentrated in the Central, Western, and Midwestern parts of 
the United States. Table 1 presents the top states with the highest 
number of HH and LL clusters of CFR. Fig. 1 (a) illustrates the distri
bution of HH and LL clusters, HL and LH outliers, and NN counties of 
CFR. 

Likewise, 297 counties (19.24 %) were identified as HH clusters, 479 
counties (31.02 %) as LL clusters, 605 counties (39.18 %) as NN 
counties, and 73 counties (4.73 %) as HL outlier, and 90 counties (5.83 
%) as LH outlier of COVID-19 MR. An almost similar pattern to HH 
clusters of CFR is observed for HH clusters of MR. Counties that were 
identified as HH clusters of MR were mostly concentrated in the 
northeastern and southern United States. Moreover, an approximately 
similar pattern was observed for the LL cluster of MR compared to the LL 
cluster of CFR. Both were mostly concentrated in the central and western 
United States. Table 1 presents the top states with the highest number of 
HH and LL clusters of MR. Fig. 1 (b) illustrates the distribution of HH and 
LL clusters, HL and LH outliers, and NN counties of COVID-19 MR. The 
intersection (co-occurrence) of HH clusters of CFR and MR identified 
193 counties (Table 1). Also, the intersection of LL clusters of CFR and 
MR identified 274 counties. Fig. 1 (c) illustrates the distribution of HH 
and LL co-occurrence clusters of MR and CFR of COVID-19. 

3.2. Univariate statistical analysis 

Results of the Shapiro-Wilk test indicated that none of the covariates 
followed normal distribution (P < 0.01). Thus, we used the non- 

Table 1 
States with the highest number of HH and LL clusters of CFR, MR, and Co- 
occurrence of CFR and MR.  

Measure High-High State (count, %) * Low-Low State (count, %) 

CFR 

New Jersey (n = 21, 100 %) Tennessee (55, 57.9 %) 
Connecticut (n = 7, 87.5 %) Wisconsin (38, 52.8 %) 
Massachusetts (n = 12, 85.7 %) Illinois (49, 48.0 %) 
Rhode Island (n = 4, 80 %) Ohio (32, 36.4 %) 

MR 

Louisiana (53, 82.8 %) Ohio (54, 61.4 %) 
New Jersey (n = 17, 80.95 %) Maryland (14, 60.7 %) 
Mississippi (58, 70.7 %) California (33, 56.9 %) 
Connecticut (n = 4, 50 %) Washington (14, 39 %) 

CFR & MR  
(Co-occurrence) 

New Jersey (n = 17, 80.95 %) Wisconsin (28, 38.9 %) 
Connecticut (n = 4, 50 %) Ohio (32, 36.4 %) 
Louisiana (45, 70.3 %) Tennessee (31, 32.6 %) 
Mississippi (32, 39.0 %) California (20, 34.5 %)  

* The first number in the parentheses represents the number of counties, and 
the second number represents % of counties in that state. 
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parametric Kruskal-Wallis ANOVA test to investigate the significant 
difference of mean age-adjusted mortalities of covariates classified by 
Local Moran’s I categories. Results of the ANOVA test indicated signif
icant (P < 0.05) differences of mean mortality of covariates that fall into 
CFR categories, excluding “Cerebrovascular disease”, “Alcohol use dis
order, and “Drug use disorder” mortality rates (P > 0.05). Among the 
covariates, “Pancreatic cancer” had the largest mean differences than 
expected by chance (F-value = 52.99), followed by “Cardiomyopathy 
and myocarditis” (F-value = 51.96) and “Tuberculosis” (F-value =
47.29). 

Tukey’s HSD test on the significant covariates indicated that for ten 
covariates, the mean difference between each covariate that fall into HH 
clusters and NN counties of CFR were significant. The covariates that 
their mean mortalities in HH clusters were significantly different than 
mean mortalities in NN counties of CFR were “Pancreatic”, and 
“Hodgkin lymphoma” cancers; “Cardiovascular disease”, “Hypertensive 
heart disease”, “Cardiomyopathy and myocarditis”, “Atrial fibrillation”, 
and “Peripheral vascular disease”; “TB” and “HIV/AIDS”; and “Asthma”. 
Tables 2 and 3 present the mean of covariates that fall into the HH and 
LL clusters and NN counties of CFR and MR, respectively. 

3.3. Multivariate statistical analysis 

Results of MMLR showed positive associations between the HH 
cluster of CFR and Asthma (OR = 4.584, 95 % Confidence Interval (CI): 
2.583–8.137), Atrial fibrillation (OR = 1.324, CI: 1.130–1.551), Car
diomyopathy & myocarditis (OR = 1.233, CI: 1.113–1.366), Cerebro
vascular (OR = 1.267, CI: 1.169–1.374), Hepatitis (OR = 5.602, CI: 
1.265–24.814), Hypertensive heart disease (OR = 1.214, CI: 

1.126–1.309), Interstitial lung disease (OR = 1.218, CI: 1.012–1.466), 
Tracheal, bronchus & lung (OR = 1.043, CI: 1.016–1.070), and Leuke
mia (OR = 2.172, CI: 1.518–3.106) mortality rates. In other words, for a 

Fig. 1. Spatial distribution of COVID-19 HH and LL clusters, HL and LH outliers, and NN counties of (a) CFR, (b) MR, and (c) co-occurrence of CFR and MR.  

Table 2 
Mean age-adjusted mortality rates of covariates that fall into HH and LL clusters 
and NN counties of COVID-19 CFR.  

Theme Covariate 
Mean CFR 

HH LL NN 

Cardiovascular 

Cardiovascular disease 305.29 274.53 276.53 
Cerebrovascular disease 55.91 53.94 54.31 
Hypertensive heart disease 14.74 10.15 11.22 
Cardiomyopathy and 
myocarditis 10.22 7.84 8.87 

Atrial fibrillation 6.83 7.53 7.24 
Peripheral vascular disease 2.79 2.69 2.67 

Cancer 

Pancreatic 14.06 12.77 12.91 
Mesothelioma 0.95 1.00 0.95 
Hodgkin lymphoma 0.43 0.39 0.40 
Leukemia 9.32 9.73 9.32 
Tracheal, bronchus, and lung 64.84 64.22 62.21 

Disorder 
Drug use disorder 9.93 11.06 10.57 
Alcohol use disorder 2.61 2.79 3.05 

Respiratory 

COPD 51.77 55.92 54.60 
Asthma 1.45 1.17 1.27 
Interstitial lung disease & 
pulmonary sarcoidosis 

5.63 5.85 5.85 

Infectious 

TB 0.34 0.20 0.26 
HIV/AIDS 3.29 0.93 1.95 
Hepatitis 0.27 0.22 0.27 
LRI 37.15 28.81 30.63  
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one-percent increase in the mortality rate of Asthma, Atrial fibrillation, 
Cardiomyopathy & myocarditis, Cerebrovascular, Hepatitis, Hyperten
sive heart disease, Interstitial lung disease, Tracheal, bronchus & lung, 
and Leukemia, the odds of the CFR being a hotspot significantly 
increased by 4.584, 1.324, 1.233, 1.267, 5.602, 1.214, 1.218, 1.043 and 
2.172 compared to the non-significant counties, respectively. 

On the contrary, negative associations were observed between HH 
cluster of CFR and Cardiovascular (OR = 0.817, CI: 0.759–0.880), HIV/ 
AIDS (OR = 0.850, CI: 0.753–0.960), LRI (OR = 0.943, CI: 0.921–0.966) 
and TB (OR = 0.094, CI: 0.012–0.761) mortalities. In other words, for a 
one-percent increase in the mortality rate of Cardiovascular, HIV/AIDS, 
LRI, and TB and it is expected to observe 18.3 %, 15.0 %, 5.7 %, and 90.6 
% significant decrease in the odds of CFR being a hotspot compared to 
the non-significant counties, respectively. The associations of other 
covariates such as Alcohol use disorder, COPD, Drug use disorder, 
Hodgkin lymphoma, Mesothelioma, and Peripheral vascular disease 
with HH cluster of CFR were insignificant (P > 0.05). The OR estimates 
for HH and LL clusters of CFR are presented in Table 4. The bold cate
gories of covariates show statistical significance at a 95 % confidence 
level. 

4. Discussion 

In this study, confirmed cases of COVID-19 death at the county level 
during the first ten months of the outbreak in the United States were 
used to assess the geographic pattern of disease mortality. We mostly 
concentrated on CFR to represent the status of disease fatality. However, 
it should be noted that CFR varies widely as mortality data become more 
available every day, and a considerable number of infected people never 
get tested due to lack or mild flu-like symptoms. Therefore, the esti
mation of CFR is susceptible to bias. Since the COVID-19 pandemic 
began, there has not been much understanding of the factors that can 
contribute to the mortality of the disease. Once the pandemic settles 
down, it will be more beneficial for researchers to evaluate the COVID- 
19 mortality in relation to many more diseases to better control re- 
emerging or even a similar pandemic. 

Our findings implied that public health policymakers should pay 

attention to the counties with sustainable elevated pre-existing mortal
ity rates when combating the COVID-19 outbreak. Although policy in
terventions are normally given at the state level, county-level mandates 
are a more targeted approach. Enacting swift change through county- 
level intervention is necessary as some counties have their policies 
such as wearing masks in public and limiting restaurants and bars 
operational hours. Time is of the essence during the pandemic, and 
slower legislation may potentially lead to virus sustainability leading to 
a faster spread and higher mortality. Resources to combat against the 
disease should be targeted to areas with a higher risk of infection for 
frontline healthcare workers, such as personal protective equipment and 
vaccine allocation. 

Global and Local Moran’s I statistics were used to statistically eval
uate the distribution of the disease mortality patterns. Results showed 
that the distribution of disease MR/CFR was clustered (P < 0.05), and 
mainly was concentrated in northeast and southern states. However, 
CFR had a more focused distribution (higher Z-score) compared to MR. 
Several international studies have analyzed the spatial distribution of 
COVID-19 CFR/MR. Islam et al. (2020) examined Spatio-temporal var
iations of COVID-19 mortality rate among different age and gender 
groups in India using Getis-Ord Gi* as of May 15, 2020. They identified a 
hotspot with a 99 % confidence interval, located at the central portions 
of this country. However, they couldn’t locate any cold spots in this 
country. Sorci, Faivre, and Morand (2020) examined the spatial and 
temporal variability of COVID-19 CFR across countries. They found 
several factors positively associated with temporal variations in CFR, 
particularly in countries with the highest values of disability-adjusted 
life years lost of cardiovascular, cancer, and chronic respiratory 
diseases. 

Co-occurrence of MR and CFR hot spots indicate some counties, 
predominantly in Louisiana, New Jersey, and Connecticut, suffer from a 
high severity of COVID-19 and at the same time an increased risk of 
mortality. This suggests that these counties require more careful atten
tion, such as personnel and budget allocations, to combat the disease. On 
the other hand, identifying the counties that were identified as coldspots 
of CFR and MR, mainly in the Midwest, such as Ohio and Wisconsin, can 
be followed up to learn effective preventive actions. In some countries 
such as Singapore, due to the massive allocation of resources to tracing 
suspected cases, the CFR was reported as low as 0.3 % (Rajgor, Lee, 
Archuleta, Bagdasarian, & Quek, 2020). Although the highest reported 
cases of death are observed in areas such as southern Florida, Wash
ington, and southern California, no HH cluster of MR/CFR was identi
fied. This is most likely either due to a large population of counties in 
these areas or non-uniform screening programs such as testing and 
tracing. In turn, it may not end up with an accurate estimation of CFR 
and MR and, subsequently, the hotspots of CFR and MR. 

It is essential to understand what other diseases may be associated 
with the presence of the HH cluster of COVID-19 CFR. With the excep
tion of " Hodgkin lymphoma" mortality, our findings demonstrated that 
cancers (Pancreatic, Mesothelioma, Tracheal, bronchus & lung, and 
Leukemia) mortalities were significantly associated with HH clusters of 
COVID-19 CFR. In other words, for a one-percent increase in the mor
tality rate of the cancers, it is expected to observe a significant change in 
the odds of CFR being a hotspot/coldspot compared to the non- 
significant counties. At the individual level in China, Zhang et al. 
(2020) performed a retrospective cohort study to investigate cancer 
mortality among 28 patients diagnosed with COVID-19. They found a 
CFR of 28.6 %, and the most common type of cancer was lung cancer. In 
Italy, Onder, Rezza, and Brusaferro (2020) found that among a sub
sample of 355 dead patients of COVID-19, 72 patients (20.3 %) had 
active cancer. The high rate of mortality among cancer patients can be 
attributed to underlying malignancy, treatment-related immunosup
pression, or increased comorbidities (Mehta et al., 2020). Although 
county-level studies should not be directly compared with 
individual-level researches due to the ecological fallacy, the significant 
association is most likely due to the compromised immune of patients 

Table 3 
Mean age-adjusted mortality rates of covariates that fall into HH and LL clusters 
and NN counties of COVID-19 MR.  

Theme Covariate 
Mean MR 

HH LL NN 

Cardiovascular 

Cardiovascular disease 319.49 265.13 276.65 
Cerebrovascular disease 58.25 52.32 54.30 
Hypertensive heart disease 18.09 10.10 9.79 
Cardiomyopathy and 
myocarditis 

10.17 8.28 8.62 

Atrial fibrillation 6.52 7.77 7.24 
Peripheral vascular disease 2.82 2.63 2.69      

Cancer 

Pancreatic 14.20 12.79 12.85 
Mesothelioma 0.82 1.04 0.99 
Hodgkin lymphoma 0.44 0.40 0.39 
Leukemia 9.48 9.48 9.43 
Tracheal, bronchus, and lung 66.73 61.07 63.59      

Disorder 
Drug use disorder 9.02 11.32 10.67 
Alcohol use disorder 2.90 2.62 3.06      

Respiratory 

COPD 54.75 53.40 54.69 
Asthma 1.62 1.12 1.24 
Interstitial lung disease & 
pulmonary sarcoidosis 

5.74 5.84 5.84      

Infectious 

TB 0.39 0.20 0.25 
HIV/AIDS 3.41 1.15 1.81 
Hepatitis 0.27 0.25 0.26 
LRI 38.95 28.17 30.43  
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due to cancer itself or cancer therapies such as steroids that may make 
them more susceptible to viruses. 

As suggested by the Chinese Center for Disease Control and Pre
vention, patients with chronic respiratory diseases and COVID-19 may 
present a case fatality rate of almost 6.30 % (Wu & McGoogan, 2020), 
which demonstrates to be higher than overall COVID-19 CFR. In both 
univariate and multivariate analysis, the mean mortality of COPD was 
not significantly different in HH clusters and NN counties. In contrast, 
the positive association between HH cluster and asthma was observed. 
The significant association might be a result of inactivation of the pa
tients’ defense system, and underexpression of pulmonary interferon-β, 
a cytokine involved in the immunity against the virus (Pal & Bhadada, 
2020). The results are in consistent with the findings of Yang et al. 
(2020) who conducted a systematic review and meta-analysis to inves
tigate the association of COVID-19 with comorbidities with COPD. They 
found that COPD is a significant risk factor of COVID-19. According to 
Wang, Li, Lu, and Huang (2020), COPD may increase the risk of 
COVID-19 progression as patients with COPD had a 5.9-fold higher risk 
of aggravation than other patients. 

A major limitation in this study is attributed to the presence of po
tential confounders such as race and socio-economic factors. Since the 
only available COVID-19 mortality data were the total number of deaths 
for each county, we could not adjust the mortality rates to control their 
effects, which may mask the actual associations. Concerning the 

limitation, this study’s findings suggest that COVID-19 CFR and MR 
continue to be a challenge, especially in the northeast and the southern 
United States, with the higher HH cluster of both CFR and MR. Our 
findings imply that further budget and resources such as testing and 
tracing patients, more medical doctors, nurses, and other healthcare 
workers should be allocated for those HH clusters. Additionally, essen
tial personal protective equipment such as N95 masks, ventilators, and 
intensive care unit beds is a priority to these areas. Furthermore, our 
results indicated that counties with higher mortality of some cancers and 
respiratory diseases are more vulnerable to fall into clusters of HH 
COVID-19 CFR. 

In conclusion, comprehensive strategies should be designed to safe
guard the susceptible areas amid a pandemic and post-pandemic. A 
multidisciplinary approach is necessary to design a sustainable and 
healthy environment once the pandemic subsides (Megahed & Ghoneim, 
2020). Moreover, as suggested by Hu, Roberts, Azevedo, and Milner 
(2020), geographic variabilities, social determinants of health, and 
environmental factors pertaining to COVID-19 mortalities should be 
carefully investigated in future studies. 
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Table 4 
Associations between multiple classifications of COVID-19 CFR and mortalities of other diseases.  

Covariate CFR Category* Odds Ratio** SE P-value 
95 % CI 

Lower Upper 

Alcohol use disorder HH 1.088 0.061 0.168 0.965 1.227  
LL 1.149 0.049 0.005 1.044 1.266 

Asthma HH 4.584 0.293 <0.001 2.583 8.137  
LL 0.818 0.293 0.492 0.461 1.452 

Atrial fibrillation HH 1.324 0.081 0.001 1.130 1.551  
LL 0.992 0.066 0.902 0.872 1.128 

Cardiomyopathy & myocarditis HH 1.233 0.052 <0.001 1.113 1.366  
LL 1.130 0.050 0.014 1.024 1.246 

Cardiovascular HH 0.817 0.038 <0.001 0.759 0.880  
LL 0.949 0.036 0.142 0.884 1.018 

Cerebrovascular HH 1.267 0.041 <0.001 1.169 1.374  
LL 1.053 0.038 0.180 0.977 1.135 

COPD HH 0.996 0.010 0.705 0.976 1.016  
LL 1.028 0.009 0.002 1.010 1.046 

Drug use disorder HH 1.016 0.022 0.491 0.972 1.061  
LL 0.960 0.017 0.016 0.928 0.992 

Hepatitis HH 5.602 0.759 0.023 1.265 24.814  
LL 0.808 0.746 0.774 0.187 3.483 

HIV/AIDS HH 0.850 0.062 0.009 0.753 0.960  
LL 2.061 0.116 <0.001 1.641 2.588 

Hodgkin lymphoma HH 0.008 2.529 0.059 0.000 1.196  
LL 48.361 2.204 0.078 0.644 3633.023 

Hypertensive heart disease HH 1.214 0.038 <0.001 1.126 1.309  
LL 1.034 0.036 0.361 0.963 1.109 

Interstitial lung disease HH 1.218 0.095 0.037 1.012 1.466  
LL 0.826 0.083 0.021 0.702 0.972 

Leukemia HH 2.172 0.183 <0.001 1.518 3.106  
LL 0.432 0.145 <0.001 0.325 0.573 

LRI HH 0.943 0.012 <0.001 0.921 0.966  
LL 1.047 0.012 <0.001 1.022 1.071 

Mesothelioma HH 0.847 0.247 0.502 0.522 1.375  
LL 1.954 0.280 0.017 1.130 3.380 

Pancreatic HH 0.474 0.117 <0.001 0.377 0.596  
LL 1.343 0.110 0.007 1.082 1.666 

Peripheral vascular disease HH 1.034 0.179 0.851 0.729 1.468  
LL 0.953 0.149 0.745 0.711 1.276 

Tracheal, bronchus & lung HH 1.043 0.013 0.002 1.016 1.070  
LL 0.967 0.010 0.001 0.947 0.986 

Tuberculosis HH 0.094 1.068 0.027 0.012 0.761  
LL 0.142 0.872 0.025 0.026 0.784 

* Non-significant is considered as the reference category. 
**ORs were calculated by taking exponent of coefficient for each covariate. 
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