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The reconstruction of large bone defects remains a crucial challenge in orthopedic surgery. The current treatments including
autologous and allogenic bone grafting and bioactive materials have their respective drawbacks. While mesenchymal stem cell
(MSC) therapy may address these limitations, growing researches have demonstrated that the effectiveness of MSC therapy
depends on paracrine factors, particularly exosomes. This aroused great focus on the exosome-based cell-free therapy in the
treatment of bone defects. Exosomes can transfer various cargoes, and noncoding RNAs are the most widely studied cargo
through which exosomes exert their ability of osteoinduction. Here, we review the research status of the exosome-derived
noncoding RNAs in bone regeneration, the potential application of exosomes, and the existing challenges.

1. Current Status of Bone Regeneration

The reconstruction of large bone defects is a key challenge in
reconstructive surgery. Currently, the treatment strategies
include autologous and allogenic bone grafting, bioactive
materials. However, they all have their limitations in various
aspects. Autologous bone grafts have the disadvantages of
limited sources of bone and extra surgical injuries. Allogenic
bone grafts may cause immunological rejection and disease
transmission. As for the bioactive materials, the issues of
biocompatibility, structural stability, mechanical strength,
and degradability remain to be solved.

Stem cell-based engineered bone may address the limita-
tions of the abovementioned methods. Nevertheless, the sat-
isfactory results are hindered by MSCs’ limited ability to
form enough new bone. Therefore, approaches of enhancing
MSC’s osteogenic differentiation have been investigated such
as gene editing [1, 2], the use of growth factors [3], and the
addition of cell-derived conditioned medium (CM) [4, 5].
However, several considerations need to be clarified in terms
of cell transplantation. For example, genetic modification

gives rise to safety issues; the concentration of biotherapeu-
tics in CM is low, and CM may contain medium contami-
nants. Moreover, stem cell therapy is further hindered by
insufficient cell number, complex and costly expansion
procedures, immunological rejection, the accumulation of
genomic alterations [6], the risk of tumor [7], the formation
of emboli [8], and so forth.

2. Exosomes

In recent years, accumulating researches demonstrated that
the paracrine role may account for the efficacy of MSC ther-
apy given that limited cells have engrafted into the sites of
injury [9, 10] and that bone regeneration can be regulated
by paracrine factors [11, 12]. In this scenario, exosome trans-
plantation is considered as a novel cell-free therapy for bone
regeneration. Exosomes are 40–100nm extracellular vesicles
(EVs). They are released by multivesicular bodies (MVBs)
after fusion with cytomembranes. MVBs are late endosomes
with many intraluminal vesicles inside formed by inward
budding of endosomal membranes [13]. Exosomes can be
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transported to distant sites via body fluids, or they can be
invaginated by residing cells. They exist in a variate of body
fluids such as breast milk, saliva, lymph, and bile.

Unlike stem cell therapy, the application of exosomes
involves fewer safety considerations. In fact, several clinical
studies have proved the safety of exosomes in the treatment
of cancers [14]. Several other registered NIH clinical trials
for the treatment of ulcers, diabetes, and oral mucositis are
undergoing. To date, MSCs are the most prolific producer
of exosomes. Immortalization of MSCs has no effects on
the yield or the properties of exosomes, while it compromises
the differentiation potential of MSCs [15]. Moreover, exo-
somes can be engineered to act as the carriers of RNA-
related products such as siRNA and shRNA, with enhanced
efficacy compared to nanoparticles and liposomes [16, 17].
Because exosomes contain several transmembrane proteins
which can promote endocytosis while prevent phagocytosis
by monocytes [18]. Furthermore, exosomes have a high
degree of stability, in that their potency can be maintained
at −20°C for 6 months [19].

3. Exosomes Regulate Osteogenic
Ability of MSCs

Exosomes can promote the osteogenic ability of MSCs, and
the effects of exosomes often increase with increasing con-
centrations. Indeed, some studies reported that exosomes
even outperformed the currently used osteoinductive cock-
tail, the conditioned medium, and the extracellular matrix
(ECM) [20]. In vivo experiments also revealed that exosomes
dramatically stimulated osteogenesis in calvarial defects [21],
bone fracture [22], and radiation-induced bone loss [23].
Exosomes affect the osteogenic differentiation of recipient
cells by regulating various signaling pathways including
TGF-β1 pathway, Wnt/β-catenin pathway [24], and MAPK
pathway [25] and by upregulating mRNA and protein
expression of osteogenesis-related genes such as Runt-
related transcription factor 2 (RUNX2), Osteocalcin (OC),
and Osterix (OSX). While exosomes derived from osteogenic
conditions performed better in terms of bone regeneration
[26], it is worth noting that exosomes from pathological
MSCs such as MSCs from type 1 diabetes and those from
the aged even inhibit the osteogenesis [27, 28].

Exosomes exert their influence either through interact-
ing with the extracellular matrix or through internalization
into cells. Once released, exosomes can anchor to the ECM
and act as the initial sites for mineralized nodule along with
matrix vesicles [29]. Recently, increasing researches have
focused on the role of exosomes in delivering cargoes by
internalization into cells. The various cargoes include
proteins, nucleic acid, and lipid. Among them, noncoding
RNAs (ncRNAs) are the most widely studied cargoes
through which exosomes exert their ability of osteoinduc-
tion (Table 1).

4. Noncoding RNAs

High-throughput technologies have discovered about 90% of
the genome is actively transcribed [30], but the majority

(98%) of transcripts exist as ncRNAs. NcRNAs were initially
regarded as transcriptional noise, but recent studies found
they could exert regulative effects on various biological pro-
cesses [31]. NcRNAs are divided into two classes based on
the size, long ncRNAs (>200 nucleotides, long intergenic
ncRNAs, antisense RNAs, etc.) and small ncRNAs (<200
nucleotides, including small interfering RNAs (siRNA),
microRNAs (miRNAs), etc.).

4.1. MicroRNAs.miRNAs affect the expression of mRNAs by
two modes including translational repression and mRNA
decay, both of which were realized by the RNA-induced
silencing complex (RISC) formed by miRNAs and Argonaute
protein (Ago) [32]. When the miRNAs complement perfectly
with the 3′ (or 5′ in some cases [33])—untranslated region
(3′UTR) of the mRNAs, mRNA decay occurs through endo-
nucleolytic cleavage by RISC. In the cases of partial comple-
mentation, RISC can recruit cofactor proteins to induce
mRNA decay or translational repression in a manner inde-
pendent of endonucleolytic cleavage [34, 35]. The MSC exo-
somal miRNAs are enriched in various KEGG pathways:
Wnt, MAPK, and PI3K-Akt may be the signaling pathways
through which exosomal miRNAs exert their effects [36].
Pathways including endocytosis and actin cytoskeleton are
possibly related to the internalization of exosomes. Other
pathways such as spliceosome, mRNA surveillance, and
RNA transport are possible mechanisms of how miRNAs
regulate the target cells [37].

The osteogenic induction of MSCs alters the expression
of exosomal miRNAs. Several well-known suppressors of
osteogenesis, such as miR-144, miR-31, and miR-221, were
downregulated in exosomes from osteogenic differentiated
MSCs, while positive regulators of osteogenesis like miR-21
were upregulated [38]. miR-31 and miR-221 can suppress
osteogenic differentiation through targeting the 3′ untrans-
lated regions of Runx2 and inhibiting Runx2 gene expression
[39, 40]. miR-144-3p can target DNA demethylase ten-
eleven translocation-2 (TET2), leading to the increase of 5-
hydroxymethyl-cytosine (5hmC) levels and decrease of
osteogenic genes expression [41]. Connexin-43 and Smad4
can also be targeted by miR-144-3p [42, 43]. miR-21
enhances osteogenic differentiation by downregulating Sox2
and Smad7 [44, 45].

Exosomal miRNA played an indispensable role in the
cross-talk between bone and muscle. Myoblast-derived exo-
somes could deliver miR-27a-3p to the preosteoblasts and
decrease the expression of adenomatous polyposis coli
(APC), a negative regulator of β-catenin, thus, activating
the β-catenin pathway. The effects of exosomes largely relied
on miR-27a-3p, given that myoblast exosomes whose miR-
27a-3p was inactivated lost their osteogenic-inductive capac-
ity [46]. miR-27a-3p may also regulate osteogenic differenti-
ation through targeting activating transcription factor 3
(ATF3). ATF3 can bind to the promoter of ALP and
negatively regulate ALP expression [47].

Preosteoblast-derived exosomes contain miRNAs that
can regulate the osteogenic differentiation. The preosteoblast
exosomes contain abundant let-7 miRNA [48], which is a
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pivotal regulator of osteogenesis by targeting the high-
mobility group AT-hook 2 (HMGA2) [49]. Exosomes from
MC3T3-E1 cells facilitated the osteogenesis of bone marrow
stromal ST2 cells. Through a study of the miRNA profile in
ST2 cells and that in MC3T3-E1 exosomes, they identified
several miRNAs (miR-7668-3p, miR-667-3p, miR-7044-5p,
and miR-874-3p) that were transferred from preosteoblast
exosomes to bone marrow stromal cells [50]. All the above
miRNAs target Axin1, a suppressor of the Wnt signaling
pathway, to exert their osteoinductive effects [51, 52].

In aging mice, the miRNA profile of exosomes was quite
different from those in young mice. Specifically, the miR-183
cluster is enriched in aged exosomes [27]. miR-183-5p could
increase the expression of the senescence marker β-galactosi-
dase and suppress the osteogenic differentiation of BMSCs.
Heme oxygenase-1 (Hmox1) is also a target of miR-183-5p,
which has been shown previously to stimulate BMSCs
osteogenic differentiation [53].

Apart from transporting microRNAs directly, exosomes
can also transport protein to affect miRNA expression
indirectly in recipient cells. In systemic lupus erythematosus
(SLE) model Fas-deficient-MRL/lpr mice, exosome trans-
plantation rescued the osteoporotic phenotype by the
Fas/miR-29b/Dnmt1/Notch cascade. Exosome infusion pro-
vided donor-derived Fas to recipient cells, which facilitated
the release of miR-29b into the extracellular environment
and the decrease of intracellular miR-29b [54]. miR-29b
decrease led to the upregulation of its direct target, DNA
methyltransferase 1 (Dnmt1). Then, Dnmt1 controlled the
hypermethylation and thus inactivation of Notch1, which is
a negative regulator of osteogenesis [55].

4.2. Antisense lncRNAs. Antisense (AS) lncRNAs have
sequences complementary to their sense counterparts. Anti-
sense lncRNAs mainly function through regulating the
expression of their sense transcripts. In some cases, they
can form an RNA–RNA duplex with their sense counter-
parts, stabilizing their sense transcripts and thus increasing
the gene expression [56, 57]. In other cases, AS lncRNAs
mediate transcriptional repression of their sense protein-
coding genes [58].

Exosome-derived antisense lncRNAs play a role in affect-
ing the osteogenic ability of MSCs. Multiple myeloma (MM)
is a plasma cell cancer characterized by multiple osteolytic
damage. In vitro experiments demonstrated myeloma-
derived exosomes could decrease MSCs’ osteogenic differen-
tiation ability. In vivo treatment of GW4869, an inhibitor of
exosome secretion, attenuated bone loss in multiple myeloma
models, with the expression of bone resorption marker beta-
isomerized C-telopeptide (β-CTX) decreased and that of
osteogenesis-related gene procollagen type I N-terminal pro-
peptide (P1NP) increased. Using a lncRNA sequencing, they
identified that antisense lncRNA RUNX-AS1 was enriched in
MM-MSCs and MM-MSC-derived exosomes. Mechanismly,
antisense lncRNA RUNX-AS1 and RUNX2 formed a RNA
duplex at overlapping regions through base pairing, inter-
fered with RUNX2 pre-mRNA splicing, and suppressed
RUNX2 mRNA expression. Thereby, the MM-MSC-derived
exosomes may transmit the antisense lncRNA RUNX-AS1

to MSCs, contributing to the impaired osteogenic differenti-
ation ability in MM-MSCs [59].

4.3. Transfer RNA (tRNA) Halves. Mature cytoplasmic
tRNAs can be cleavaged into small RNA fragments: the 5′
and 3′ tRNA halves (30–40 nt in size). The 5′ tRNA halves
can silence target mRNAs by complementary base pairing to
the 3′ UTRs of protein-coding genes in a manner like miR-
NA/siRNA [60, 61]. While previous studies found the 5′
tRNA halves were induced under stress to suppress transla-
tion and preserve energy, recent studies found that tRNA
halves existed in certain types of cells persistently. Under
physiological conditions, the bone marrow is the specific tis-
sue expressing significant quantities of 5′ tRNA halves [62],
while their level is quite low in several other tissues. MSC
exosomes are abundant with 5′ tRNA halves with the
targets of osteogenesis-related genes, such as RUNX2 and
SMAD3 [63].

5. Strategies for Clinical
Application of Exosomes

When it comes to clinical application, the pharmacokinetics
of exosomes should be noted. One study showed that the exo-
somes predominately existed in the bone and lung 24 hours
after injection [64]. However, other studies showed that the
majority of exosomes were distributed in organs of rich vas-
cular such as kidney, spleen, and lung [65, 66]. Contrary to
systemic administration, local administration can maintain
high concentrations of exosomes at target sites. Additionally,
exosomes can be anchored to biomaterials/scaffolds, such as
fibronectin, type I collagen, hydrogel, tricalcium phosphate,
poly-lactic-glycolic acid (PLGA), and hydrogel glue, to
support their delivery and to facilitate a controlled release
of exosomes while enhancing the osteogenic ability of the
biomaterials [67, 68]. It is worth noting that various aspects
of the scaffolds could make influences on the behavior of
the combined cells and the exosomes. For example, surface
roughness plays a role in regulating both the mechanical
strength of the material [69] and cell behavior. Whether the
surface of the scaffolds affects the function of exosomes needs
further study. To avoid the possible effects made by the het-
erogeneous morphology of the scaffolds when evaluating bio-
materials carried with exosomes, the computer-aided design
(CAD) technology may help implement a standardization
of the shape and the surface of the scaffolds [70].

The osteogenic capacities of exosomes can be improved
by modifying either the parent cells or the exosomes. The
modifications include biochemical factors and mechanical
factors. In fact, mechanical stimuli such as low-intensity
pulsed ultrasound (LIPUS) could be used to enhance the
osteoinductive capability of MSCs [71]. Whether the exo-
somes from the MSCs under such mechanical stimuli played
a better role in bone regeneration needs further study. As for
the biochemical factors, one study modified parent cells by
miR-375-overexpressing, which resulted in a significant
increase of miR-375 in MSC exosomes. These exosomes
had enhanced abilities of bone regeneration in calvarial
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defects [72]. The exosomes from the TNF-α-primed cells
had an elevated level of Wnt-3a compared with unprimed
cells, contributing to the enhanced osteoinductive effects of
exosomes [73]. HIF-1α can stimulate BMSC osteogenic dif-
ferentiation and enhance angiogenic cell functions. Li con-
structed HIF-1α mutant BMSCs in which HIF-1α expresses
continuously even under normoxic conditions. They found
that exosomes from HIF-1α mutant BMSCs (BMSC-Exos-
MoU) had stronger osteoinductive capacity than those from
the wild-type group [74]. Another study reported the exo-
somes from BMP2-stimulated macrophages integrated to
the titanium implants improved the biofunction of the
plants by increasing the expression of ALP, BMP2, growth/-
differentiation factor (GDF)-15, etc. [75]. The therapeutic
ability of exosomes can also be improved via loading exo-
somes with content such as peptides and siRNA by electro-
poration, which has been studied in disease models of
Parkinson’s and Alzheimer’s [76].

6. Challenges for Clinical
Application of Exosomes

Despite their great potential in bone regeneration, several
challenges existed in the application of MSC-derived exo-
somes. Among them, the low yield remains to be a major
challenge. Several strategies have been explored to maximize
yield, including serum starvation and modulating calcium
concentration. Nevertheless, those operations could poten-
tially alter the contents and function of exosomes. Another
strategy is to increase the supply of MSCs by immortaliza-
tion. Researchers found that transfection of the c-myc gene
provided infinite cell sources for the production of exosomes
[77]. However, MYC transformation may give rise to the
risks of tumorigenesis, considering that immortalized cells
may produce EVs with an altered content or even worse with
prooncogenic factors [78, 79]. Therefore, it is important to
find a cell source that is efficient in exosomes production.
MSCs are the important source of large-scale production of
exosomes. Apart from exosomes derived from BMSCs,
dental-derived mesenchymal stem cells (D-dMSCs) exo-
somes may potentially be an excellent or even superior alter-
native in terms of bone regeneration, particularly the
craniomaxillofacial bone. D-dMSCs are abundant, including
dental pulp stem cells (DPSCs), gingival mesenchymal stem
cells (GMSCs), periodontal ligament stem cells (PDLSCs),
dental follicle progenitors (DFPCs), and periapical cyst-
mesenchymal stem cells (PCy-MSCs). The procedure of har-
vesting D-dMSCs is noninvasive. Biological “waste” such as
orthodontic teeth, the deciduous teeth, and even the periapi-
cal inflammatory cystitis can be the smart source of D-
dMSCs. Among the various kinds of D-dMSCs, PCy-MSCs
presented a better capability towards osteogenic commit-
ment [80, 81]. Whether the exosomes derived from PCy-
MSCs play a better role in bone regeneration remained unex-
plored. Future studies are needed to clarify in depth the
secretomes of the abovementioned MSCs, aiming to figure
out the most effective cell source. Besides, when isolating
MSCs such as gingival MSCs, new technologies like bioimpe-
dance assay may potentially help identify the healthy and the

early potential lesion [82] to ensure harvesting exosomes
from healthy cells.

The target specificity of exosomes needs to be further
studied and utilized. The internalization of exosomes is
realized through cell-exosome interactions involving
transmembrane proteins and ECM proteins [83, 84], of
which the underlying mechanisms remain unclear. Ligand-
receptor recognition may serve a major role in the binding
of exosomes to recipient cells. To optimize targeting spec-
ificity, antigen or ligands should be developed to attach to
the membranes of exosomes. Exosomes loaded with
MAGE (melanoma-associated antigen) were used to target
the lung cancer cells in a clinical trial (clinicaltrials.-
gov/NCT01159288). One study used this kind of engineered
exosomes to deliver siRNA to the brain. They pretransfected
dendritic cells with a plasmid with the neuron-specific RVG
peptide clone into the exosomal membrane protein Lamp2b.
These exosomes delivered siRNAs specifically to the brain
without non-specific delivery and achieved strong silencing
of BACE1, a therapeutic target of Alzheimer’s disease [85].

The procedures of isolation and administration should
be taken into consideration when making conclusions.
Important differences occur in terms of the quality and the
RNA profiling when using different isolation protocols, such
as centrifugation, chromatography, filtration, and polymer-
based precipitation [86]. Up to now, there is no consensus
on isolation protocols. More standardized methods of prep-
aration should be carried out to get comparable and reliable
results.

7. Concluding Remarks

The role of exosomes in bone regeneration has been well
recognized, and the noncoding RNAs play an important role
in exosomes-regulated osteogenic differentiation. If the
abovementioned challenges are met, the MSC-derived exo-
somes for cell-free therapy may offer an elegant alternative
for the treatment of bone defects.
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