Skip to main content
. 2021 Jan 15;7:619798. doi: 10.3389/fcvm.2020.619798

Table 3.

Prediction performance of LASSO, FRS, and ASCVD models, n = 612.

AIC BIC AUC (95% CI) Cut-point Sensitivity 95% CI Specificity 95% CI +LR 95% CI –LR 95% CI +PV 95% CI –PV 95% CI
LASSO model 386.5443 430.6682 0.780 (0.731–0.829) >0.2205 78.49 68.8–86.3 67.62 62.1–72.8 2.42 2.1–2.8 0.32 0.2–0.5 41.7 34.3–49.4 91.4 87.1–94.7
FRS model 624.3103 633.0672 0.654 (0.605–0.702) >11.1 71.22 62.9–78.6 57.78 53.1–62.4 1.69 1.5–1.9 0.5 0.4–0.7 34.3 28.8–40.0 86.7 82.3–90.3
ASCVD model 633.0280 641.7848 0.661 (0.612–0.709) >5.5 69.78 61.4–77.3 57.78 53.1–62.4 1.65 1.4–1.9 0.52 0.4–0.7 33.8 28.3–39.6 86.1 81.7–89.8

LASSO, least absolute shrinkage and selection operator; FRS, Framingham risk score; ASCVD, atherosclerotic cardiovascular disease; AIC, Akaike information criterion; BIC, Bayesian information criterion; AUC, area under the ROC curve; CI, confidence interval; LR, likelihood ratio; PV, predictive value.