Table 3.
Prediction performance of LASSO, FRS, and ASCVD models, n = 612.
AIC | BIC | AUC (95% CI) | Cut-point | Sensitivity | 95% CI | Specificity | 95% CI | +LR | 95% CI | –LR | 95% CI | +PV | 95% CI | –PV | 95% CI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LASSO model | 386.5443 | 430.6682 | 0.780 (0.731–0.829) | >0.2205 | 78.49 | 68.8–86.3 | 67.62 | 62.1–72.8 | 2.42 | 2.1–2.8 | 0.32 | 0.2–0.5 | 41.7 | 34.3–49.4 | 91.4 | 87.1–94.7 |
FRS model | 624.3103 | 633.0672 | 0.654 (0.605–0.702) | >11.1 | 71.22 | 62.9–78.6 | 57.78 | 53.1–62.4 | 1.69 | 1.5–1.9 | 0.5 | 0.4–0.7 | 34.3 | 28.8–40.0 | 86.7 | 82.3–90.3 |
ASCVD model | 633.0280 | 641.7848 | 0.661 (0.612–0.709) | >5.5 | 69.78 | 61.4–77.3 | 57.78 | 53.1–62.4 | 1.65 | 1.4–1.9 | 0.52 | 0.4–0.7 | 33.8 | 28.3–39.6 | 86.1 | 81.7–89.8 |
LASSO, least absolute shrinkage and selection operator; FRS, Framingham risk score; ASCVD, atherosclerotic cardiovascular disease; AIC, Akaike information criterion; BIC, Bayesian information criterion; AUC, area under the ROC curve; CI, confidence interval; LR, likelihood ratio; PV, predictive value.