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Abstract
Key message  A new R-software procedure for fixed/random Diallel models was developed. We eased the diallel 
schemes approach by considering them as specific cases with different parameterisations of a general linear model.
Abstract  Diallel experiments are based on a set of possible crosses between some homozygous (inbred) lines. For these 
experiments, six main diallel models are available in literature, to quantify genetic effects, such as general combining ability 
(GCA), specific combining ability (SCA), reciprocal (maternal) effects and heterosis. Those models tend to be presented 
as separate entities, to be fitted by using specialised software. In this manuscript, we reinforce the idea that diallel models 
should be better regarded as specific cases (different parameterisations) of a general linear model and might be fitted with 
general purpose software facilities, as used for all other types of linear models. We start from the estimation of fixed genetical 
effects within the R environment and try to bridge the gap between diallel models, linear models and ordinary least squares 
estimation (OLS). First, we review the main diallel models in literature. Second, we build a set of tools to enable geneti-
cists, plant/animal breeders and students to fit diallel models by using the most widely known R functions for OLS fitting, 
i.e. the ‘lm()’ function and related methods. Here, we give three examples to show how diallel models can be built by using 
the typical process of GLMs and fitted, inspected and processed as all other types of linear models in R. Finally, we give a 
fourth example to show how our tools can be also used to fit random/mixed effect diallel models in the Bayesian framework.

Introduction

A diallel experiment is based on a set of possible crosses 
between some homozygous (inbred) lines and it is usually 
aimed at quantifying genetic effects, such as:

1.	 General combining ability (GCA), that is the discrep-
ancy from the average performance of two parental lines 
in a hybrid combination. Based on Sprague and Tatum 
(1942), GCA mainly depends on the additive effects 

of genes, as well as on additive by additive interaction 
effects;

2.	 Specific combining ability (SCA), that is the effect by 
which certain hybrid combinations give relatively better/
worse performances, compared to the average perfor-
mances of their parental lines. SCA is regarded as an 
indication of loci with non-additive effects and includes 
dominance and epistatic interaction (additive by domi-
nance and dominance by dominance interaction);

3.	 Reciprocal (maternal) effect, that relates to the discrep-
ancy between the performances of a hybrid, e.g. ‘A × B’ 
and its reciprocal ‘B × A’. In some instances, (see Cock-
erham and Weir 1977), reciprocal effects are partitioned 
into two components: the reciprocal general combining 
ability (RGCA), that refers, in general, to a parent line 
in all its combinations and the reciprocal specific com-
bining ability (RSCA), that refers to a specific combina-
tion of two parental lines. Reciprocal effects are of great 
importance for appropriate selection of parents as male 
or female in hybrid development (Mahgoub 2011);

4.	 Heterosis, that is the change in performance for crosses, 
with respect to parental lines.
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The assessment of genetic effects is very useful in plant 
breeding; for example, a high GCA value can predict a flow 
of several desirable additive genes from parents to offspring 
(Franco et al. 2001). Moreover, the same authors showed 
that a high GCA estimate may indicate high heritability and 
low environmental effects, which may also result in low gene 
interactions, high selection response and large adaptability. 
It was also shown that GCA performances of future genera-
tions could be predicted by assessing the GCA of a line in 
an early generation (Lv et al. 2012), saving time and costs. 
On the contrary, for traits with non-additive gene action, 
selection should be undertaken in later generations, when 
genes will be fixed in the homozygous lines (Fasahat et al. 
2015). Genetic effects were also determined to describe non-
additive gene effects (Singh et al. 1986; Chigeza et al. 2014) 
and to identify heterotic groups or patterns (Napolitano et al. 
2020).

Genetic effects may be of interest either by themselves 
or combined in the form of ratios. For example, the GCA/
SCA ratio determines which type of gene action is involved: 
a relatively large ratio indicates the prevalence of addi-
tive genetic effects, while a relatively low ratio (e.g. < 1) 
the prevalence of dominance and/or epistatic gene effects 
(Christie and Shattuck 2010).

In order to estimate the above listed genetic effects, a dial-
lel experiment may be planned by using four types of mating 
designs (Harriman and Nwammadu 2016), including:

1.	 Crosses, reciprocals and selfed parents (complete diallel)
2.	 Crosses and selfed parents (half-diallel: no reciprocals)
3.	 Crosses and reciprocals (no selfed parents)
4.	 Only crosses (no selfed parents, no reciprocals)

Furthermore, Griffing (1956) distinguished two different 
situations:

1.	 If the interest of the investigator lies only in the lines 
(parents) involved in the experiment and not beyond 
these crosses, the genetic effects are considered fixed;

2.	 If the lines (parents) are a sample from a wider popula-
tion, the genetic effects are considered random and there 
is no interest in the effect of each single cross/parental 
line.

Considering the number of genetic effects, the four mat-
ing designs and the two possible models (fixed and random), 
we can easily understand the reasons why a plethora of esti-
mation methods is available in literature, which may, at first, 
look overwhelming. For example, Hayman (1954) presented 
one method for mating design 1, while Griffing (1956) pre-
sented 8 different methods (4 mating designs, each with 
random and fixed effects). In Gardner and Eberhart (1966) 

two additional methods were introduced, later extended to 
include multiple environments (Eberhart and Gardner 1966).

What can be dreadful for a beginner is that all these esti-
mation methods are not presented on a common ground. 
Furthermore, the choice of the appropriate method could 
be rather difficult, as not all of them can be interchangeably 
used in all situations. In fact, it has been shown that the 
estimates of SCA effects in Griffing’s methods 1 and 2 may 
be biased, due to the inclusion of parental lines (Yao et al. 
2013). At the same time, Griffing’s method 3 was deemed 
to be the best for estimating SCAs and maternal/reciprocal 
effects. Nonetheless, Griffing’s method 4 is also considered 
reliable, it requires half of the crossings to be made, and 
hence, much less effort, especially when the number of par-
ents is high (Acquaah 2012).

In this manuscript, following Möhring et al. (2011), we 
would like to reinforce the idea that all methods of analysis 
for diallel data should be seen as specific cases (different 
parameterisations) of a general linear model; consequently, 
all diallel models should be built and fitted by using a com-
mon platform.

Relating to random genetic effects, Möhring et al. (2011) 
put all models within the frame of linear mixed models 
(LMM) and restricted maximum likelihood (REML) esti-
mation. They also proposed a software implementation with 
SAS and ASREML (Gilmoure et al. 2015). Other mixed 
model solutions have been proposed by Xiang and Li (2001), 
Wu and Matheson (2001), Xu and Zhu (1999). Focusing 
on the R statistical environment (R Core Team 2019), dial-
lel mixed models can be efficiently fitted with the package 
‘asreml-R’ (Butler et al. 2018) and with the free package 
‘sommer’ (Covarrubias-Pazaran 2016). Several other pos-
sibilities exist, as listed in the introduction of the manuscript 
by Covarrubias-Pazaran (2016), while the most widespread 
packages for mixed models in R, i.e. ‘nlme’ (Pinheiro et al., 
2020) and ‘lme4’ (Bates et al. 2015) do not appear to have 
been extensively used for fitting diallel models.

With concern to the fixed genetic effects, the traditional 
estimation methods proposed by Hayman (1954) and Griff-
ing (1956) provide unbiased and minimum variance estima-
tors only with balanced data. Furthermore, these estimation 
methods require specific patterns of calculations, whereas 
it would be desirable to have a general approach that also 
works for unbalanced data. The estimation of fixed genetic 
effects should be undertaken within the frame of general 
linear models, preferably by ordinary least squares (OLS), 
as already suggested by Gardner and Eberhart (1966). Imple-
mentations can be found for the SAS language (see Zhang 
and Kang 1997; Zhang et al. 2005; Makumbi et al. 2018) 
and in stand-alone software (Tong et al. 2012). To the best 
of our knowledge, the availability of tools for diallel analy-
sis in the R statistical environment is rather limited. The 
already mentioned ‘asreml-R’ and ‘sommer’ packages are 
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tailored to the needs of random effect estimation and only 
the latter is free to use. Other resources include the package 
‘DiallelAnalysisR’ (Yaseen and Eskridge 2020) and the set 
of R functions presented in Singh et al. (2015). Both tools 
are self-contained and are not rooted in the typical frame of 
ordinary least squares (OLS) estimation in R.

Apart from REML (for mixed effects models) and OLS 
(for fixed effects models), a third option has recently made 
its way among geneticists, that is the Bayesian framework. 
Bayesian methods assume that, before making an experi-
ments, model parameters are characterised by a prior prob-
ability distribution, that summarises our previous knowl-
edge about the phoenomenon. After the experiment, the 
previous knowledge is updated by considering the observed 
data and it is expressed by way of a posterior distribution, 
representing our final knowledge about the phenomenon 
(Kery 2010). The Bayesian framework is very flexible and 
it can accommodate both random and fixed effects models, 
with several advantages in terms of interval estimation (Li 
and Loken 2002). Relating to diallel models, the use of a 
Bayesian frame for diallel models was advocated by Lenar-
cic et al. (2012), who created the R package ‘BayesDiallel’. 
An example of application in plant breeding was given by 
Turner et al. (2018).

It is somewhat surprising to see that, at present, fitting 
diallel models seems to require specific software and/or 
packages. In our view, all analyses should be performed by 
using standard, general purpose linear model fitting soft-
ware. With focus on the R environment, it would not appear 
that, at present, fitting diallel models by using the most wide-
spread functions, such as ‘lm()’, ‘lme()’ or ‘lmer()’ seems to 
be relatively rare. With reference to Bayesian methods, to 
the best of our knowledge there are no examples of using the 
very powerful and flexible BUGS environment (Spigelhalter 
et al. 2003).

This manuscript will initially focus on fixed genetical 
effects, relating the crosses between specific parents. The 
reason for this choice is three-fold: first, random/mixed 
effects diallel models can already be fitted in the general 
mixed model framework, by using the already mentioned 
‘asreml-R’ package, or by using other general packages, 
such as ‘MCMCglmm’ (Hadfield 2010). Second, fixed effect 
models are useful to test for the significance of genetical 
effects, which is a common requirement among plant breed-
ers. Last, but not least, while we recognise the flexibility 
of random effect models, we argue that the estimation of 
variance components may be unreliable when the number 
of parents is small. A brief survey of literature shows that 
mating designs with three (Amin 2015), four (Quimio and 
Zapata 1990) and five (Singh and Jain 1971; Dhaliwal and 
Gill 1973) parents are used. Furthermore, standard errors 
for variance components are seldomly reported; but, to our 
experience, they may be very high, also with mating designs 

with eight parents. Focusing on fixed genetic effects, the 
objective of the present work is to bridge the gap between 
linear models and diallel models in R. To do so, instead of 
building a brand new piece of software, we decided to fol-
low another route, that is to build a set of tools which would 
enable geneticists, plant/animal breeders and students to fit 
diallel models by the most widely known R functions for 
OLS fitting. Finally, we will show that this set of tools can 
be also used to fit fixed/random effect diallel models in the 
Bayesian framework, by using a very widely known Markov 
Chain Monte Carlo (MCMC) sampler.

Methods

Model definitions

The results of diallel experiments might be described by 
using the usual two-way ANOVA model, where we con-
sider the factorial combination of n parentals taken either 
as ‘father’ or as ‘mother’:

where yijk is the yield (or any other trait of interest) for the 
combination between the parents i and j in the block k, μ is 
the intercept, γk is the effect of the kth block, αi is the ‘pater-
nal’ effect of the ith ‘father’, βj is the ‘maternal’ effect of the 
jth mother and αβi j is the interaction effect, describing the 
non-additive effect of a specific combination between the ith 
father and jth mother. The residual error term εijk is assumed 
to be gaussian and i.i.d, with standard deviation equal to σ.

Except for the case of a full-diallel design, all the other 
diallel designs and so the one above is unbalanced; in all 
cases, the ‘father’ and ‘mother’ effects are regarded as two 
completely different series of treatments, neglecting the idea 
that they are, indeed, the same genotypes in different combi-
nations. Therefore, there was the need to build more appro-
priate diallel models. For historical reasons, we will start 
from the model proposed by Hayman (1954), by slightly 
changing the notation, to make it more consistent, through-
out the manuscript:

where μ is expected value (the overall mean, in the bal-
anced case), gi and gj are the GCAs of the ith and jth parents, 
tsij is the total SCA (tSCA) for the combination between the 
ith and jth parent, rga

i
 and rgb

j
 are the RGCAs for the ith and 

jth parents, under the constraint that rga
i
 = −rgb

j
 for one spe-

cific parent i and rsij is the RSCA for a specific ij combina-
tion, i.e. the discrepancy between the effect of the i and j 
parents, when they are used as ‘father’ or ‘mother’, 

(1)yijk = � + �k + �i + �j + ��ij + �ijk

(2)yijk = � + �k + gi + gj + tsij + rga
i
+ rgb

j
+ rsij + �ijk
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respectively. Obviously, reciprocal effects can only be esti-
mated when the experimental design includes the reciprocal 
crosses.

The four models devised by Griffing (1956) need not be 
listed, as they can be seen as particular cases of the more 
general Eq. 2, where the reciprocal effect (REC) is not parted 
into RGCA and RSCA 

(

rij = rga
i
+ rgb

j
+ rsij

)

 . Of course, 
when the reciprocals have not been included in the mating 
design, the term rij should be removed from the equation.

According to Hayman (1954), the tSCA effect can be 
partitioned in three additive components, leading to the fol-
lowing system of equations:

where n is the number of parentals, m relates to the dif-
ference between the average yield of selfed parents and the 
average yield of crosses (mean dominance deviation; MDD), 
the d parameters relate to the differences between the yield 
of each selfed parent (Yij, with i = j) and the average yield 
of all selfed parents (dominance deviation for the ith parent; 
DD) and sij is the residual SCA effect for the combination ij.

It should be noted that both Eqs. 2 and 3 consider the 
genetical effects as differences with respect to the intercept 
μ, that is the mean of all observations. Due to unbalance (the 
number of crosses is never equal to the number of selfed 
parents), such an approach requires the introduction of some 
coefficients (i.e. n − 1 and n − 2 in Eq. 3), which do not have 
an obvious meaning. Additional models were proposed, 
which do not consider the overall mean as the intercept, 
but allow for different means for crosses and selfed parents 
(Gardner and Eberhart 1966). One such model is usually 
known as GE2, and it may be formulated as:

where μv is the intercept, corresponding to the overall 
mean for all selfed parents (not the overall mean, as in previ-
ous models). The parameters v (vi and vj) represent the dif-
ferences between the expected value for the selfed parents i 
and j and the mean for all selfed parents (μv). According to 
the authors, this would be the variety effect (VE); as a conse-
quence, the expected value for the ith selfed parent is μv + vi, 
while the expected value for the cross ij, in the absence of 
any dominance/heterosis effects, would be μv + 0.5(vi + vj), 
that is the mean value of its parents. There is a close relation-
ship between gi and gj in Eqs. 2 and 3 and vi and vj in Eq. 4, 
that is: vi = 2gi + (n − 2)di; therefore, the sum of squares for 
the GCA and VE effects are the same, although the estimates 
are different.

(3)yijk =

{

� + �k + gi + gj + m + di + dj + sij + rga
i
+ rgb

j
+ rsij + �ijk for i ≠ j

� + �k + 2gi − (n − 1)m − (n − 2)di + �ijk for i = j

(4)yijk = �� + �k + 0.5
(

vi + vj
)

+ h + hi + hj + sij + �ijk

Since a cross not necessarily responds according to the 
mean value of its parents, the parameter h represents the 
average heterosis (H.BAR) contributed by the whole set of 
genotypes used in crosses. In the balanced case, h represents 
the difference between the overall mean for selfed parents 
and the overall mean for crosses, under the constraint that 
h = 0 for all selfed parents. Besides, the parameters hi rep-
resent the average heterosis contributed by the ith parent in 
its crosses (Hi), while sij is the SCA for the cross between 
the ith and jth parents, that is totally equivalent to the cor-
responding parameter in Eq. 3.

It is clear that both Eqs. 3 and 4 account for the heterosis 

effect, although they do it in a different way: in Eq. 3 the 
specific effect of heterosis is assessed with reference to the 
overall mean, while in Eq. 4 it is assessed by comparing the 
mean of a cross with the means of its parents. Indeed, the 
sum of squares for the ‘MDD’ and ‘Hi’ effects are perfectly 
the same, although the parameters are different.

Gardner and Eberhart proposed another model (GE3), 
which we have slightly modified to maintain a consistent 
notation in the frame of GLMs:

Equation 5 is an array composed of two separate ele-
ments for crosses and selfed parents. For the crosses (equa-
tion above), the parameters gci and gcj represent the GCA 
for the i and j parents in all their crosses (GCAC); it should 
be noted that GCA ≠ GCAC, as this latter effect is estimated 
without considering the selfed parents. The parameters sij are 
the same as in the previous models (SCA effect), while spi 
represents the effects of selfed parents (SP): they are numeri-
cally equivalent to the corresponding effects in Eq. 4, but the 
sum of squares are different and such a discrepancy has been 
put forward and discussed by Murray et al. 2003, to whom 
we refer for further detail. Therefore, we use different names 
for these two effects (SP and Hi).

Model implementation

Our view is that all diallel models (Eqs. 2 to 5 and other similar 
equations) are linear models with different parameterisations. 
Therefore, it would be useful to be able to fit all those models 
in R, by using the standard, general purpose facilities for linear 
model fitting. Focusing on fixed effects, every linear model can 
be written (in matrix notation) as:

(5)yijk =

{

�� + �k + h + gci + gcj + sij for i ≠ j

�� + �k + spi for i = j
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where y is the vector of the observed response, X is the 
design matrix, β is the vector of parameters and ε is the vec-
tor of residuals, assumed as gaussian distributed, with mean 
equal to 0 and variance equal to σ2. The estimation of β is 
accomplished by minimising the sum of squared residuals 
(RSS = εTε), which is possible by the following equation:

The OLS solution is also the maximum likelihood solution, 
provided that errors are independent and identically distrib-
uted. We see that Eq. 7 requires the availability of the design 
matrix X.

In R, the typical linear model fitting function based on OLS 
is ‘lm()’, which uses the ‘model.matrix()’ function to build 
design matrices, according to the user-defined (or default) 
parameterisation. The main implementation problem is that 
certain effects, such as the GCA, require the definition of 
unconventional design matrices, using algorithms that are not 
available in R. The packages ‘asreml-R’ and ‘sommer’ add a 
few functionalities, such as the ability of overlaying design 
matrices (function ‘and()’ in ‘asreml’ and ‘overlay()’ in ‘som-
mer’), which is useful to code GCA effects. However, none of 
the two packages plays well with the ‘lm()’ function in R and 
at present, to the best of our knowledge, there is no simple 
way to fit diallel models with fixed effects by using the ‘lm()’ 
function in R.

Several authors suggested how to build design matrices 
for half-diallel designs (Wu and Matheson 2000, 2001; Tong 
et al. 2012). We extended these suggestions to build a handful 
of new R functions, aimed at producing the correct design 
matrices for all the above mentioned effects. The syntax is 
simple; for example, the GCA effect can be specified by using 
the function ‘GCA(Par1, Par2)’, where ‘Par1’ and ‘Par2’ are 
two variables coding for parentals. For all other effects, only 
the name of the function changes, according to the naming in 
previous paragraphs (GCA, tSCA, RGCA, RSCA, REC, DD, 
MDD, H.BAR, Hi, VEi, SP and GCAC).

By using these R functions, we can fit all diallel models 
inside the ‘lm()’ and ‘lme()’ functions. For example, Eq. 3 can 
be fitted by using the usual code for linear models:

where ‘df’ is a ‘dataframe’ hosting the response and explan-
atory variables. Similarly, we can introduce the effect of recip-
rocals by using the following code:

This latter definition corresponds to Griffing’s model 
1 (Eq. 2, replacing rga

i
+ rgb

j
+ rsij with rij); however, if we 

(6)y = X� + �

(7)� = (XTX)−1XTy

lm(yield ∼ GCA(Par1, Par2) + tSCA(Par1, Par2), data = df)

lm(yield ∼ GCA(Par1, Par2) + tSCA(Par1, Par2)

+ REC(Par1, Par2), data = df)

were willing to partition the tSCA effect, we could code 
the following model:

which does not correspond to any of the Hayman’s, 
Griffing’s or Gardner–Eberhart’s models, nonetheless 
it has relevant potentialities. If we replace ‘REC(Par1, 
Par2)’ with ‘RGCA(Par1, Par2) + RSCA(Par1, Par2)’ we 
get Hayman’s model 2 (Eq. 3); in case of no reciprocals, 
we can remove the REC effects altogether, while in case of 
no reciprocals and no selfed parents, we can build a model 
with the GCA effect only.

Another possible model is:

that corresponds to Gardner–Eberhart model 2 (Eq. 4) 
and could be enhanced by including the effects ‘REC(Par1, 
Par2)’ or ‘RGCA(Par1, Par2) + RSCA(Par1, Par2)’, when 
reciprocals are available. Lastly, the GE3 model (Eq. 5) is: 

 that can, as well, be enhanced by adding reciprocal effects, 
if necessary.

In summary, we propose that diallel models are flexibly 
built by using the typical process of model fitting that has 
become in fashion with GLMs, considering: (i) the infor-
mation we have at hand (whether we have crosses, selfs 
and/or reciprocals) and (ii) the effects we want to estimate. 
In this process, we have only one model frame and differ-
ent parameterisations, as anticipated above.

However, we do not intend to neglect the importance 
of referring to some relevant model parameterisations, by 
using the names of the authors. For this reason, we also 
built a wrapper function named ‘lm.diallel()’, which can 
be used in the very same fashion as ‘lm()’. The syntax is:

where ‘formula’ uses the regular R syntax to specify the 
response variable and the two variables for parentals (e.g., 
Yield ~ Par1 + Par2). The two arguments ‘Block’ and ‘Env’ 
are used to specify optional variables, coding for blocks 
and environments, respectively. The argument ‘data’ is a 
‘dataframe’ where to look for explanatory variables. 
Finally, ‘fct’ is a string variable coding for the selected 
model. In this regard, we considered the main six diallel 
models in literature: Hayman’s model 1 (Eq. 2), Hayman’s 
model 2 (Eq.  3), Griffing’s model 1 (Eq.  2, with 
rij = rga

i
+ rgb

j
+ rsij ), Griffing’s model 2 (Eq. 2, without 

lm(yield ∼ GCA(Par1, Par2) +MDD(Par1, Par2) + DD(Par1, Par2)

+SCA(Par1, Par2) + REC(Par1, Par2), data = df)

lm(yield ∼ H.BAR(Par1, Par2) + VE.i(Par1, Par2)

+ H.i(Par1, Par2) + SCA(Par1, Par2), data = df)

lm(yield ∼ H.BAR(Par1, Par2) + SP(Par1, Par2)

+ GCAC(Par1, Par2) + SCA(Par1, Par2), data = df)

lm.diallel(formula, Block, Env, data, fct)
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reciprocal effects), Gardner–Eberhart model 2 (Eq. 4) and 
Gardner–Eberhart model 3 (Eq. 5). For these six models, 
the ‘fct’ string should take, respectively, the following val-
ues: “HAYMAN1”, “GRIFFING1”, “GRIFFING2”, 
“HAYMAN2”, “GE2”, “GE3”. The strings “GE2r” and 
“GE3r” can be used to specify the ‘enhanced’ GE2 and 
GE3 models, including the effect of reciprocals (REC).

As an example, the GE3 model can be fitted either by 
using ‘lm()’ (as shown above) or by using the following 
syntax:

For better clarity, we report a table of the correspond-
ences between the equations, the syntax for the ‘lm()’ 
function and the value for the ‘fct’ argument in the ‘lm.
diallel()’ function (Table 1).

One big advantage of fitting diallel models in R with 
the ‘lm()’ function or with the ‘lm.diallel()’ function 
is that we can exploit the whole infrastructure for ‘lm’ 
objects. In particular, we can make profit, e.g. of the usual 
‘plot’, ‘summary’ and ‘anova’ methods. With reference 
to these latter two methods, we should not forget that, by 
default, the residual term is used as an estimate of pure 
error. Although the genetic effects in our approach are 
fixed, using the residual error term is not necessarily a 
good way to go. For example, the residual error term may 
not be available, if we work with means and not with raw 
field data. Furthermore, if we have collected data about the 
reciprocals, but we do not want to fit reciprocal effects, the 
residual term is not a good estimate of pure error.

Therefore, we have coded the ‘anova.diallel’ and ‘sum-
mary.diallel’ methods that, optionally, allow the user to 
enter a value for the residual error variance and degrees of 
freedom. This user-defined value is used in inferences and 
tests of hypotheses, in place of the residual term.

lm.diallel(yield ∼ Par1 + Par2, data = df, fct = “GE3")

Linear/nonlinear functions of model parameters

One problem with diallel models is that the effects may not 
be orthogonal to each other, which may cause some incon-
sistencies in estimation (Murray et al. 2003). Therefore, it 
has been proposed that some meaningful quantities (the fore-
mentioned authors cite ‘heterosis effects’, ‘variety effects’ 
and GCA) are directly derived from variety and cross means. 
In the frame of linear models, it is possible to derive those 
meaningful quantities by linear and nonlinear functions of 
model parameters (Bretz et al. 2011), while standard errors 
can be derived by using the propagation of errors and the 
delta method (Weisberg 2005). In simple terms, when we 
combine the values of model parameters to derive some 
meaningful quantity, e.g. an index of heterosis, we can also 
combine the standard errors to derive a standard error for 
that heterosis index. If the function of model parameters 
is linear, the derived standard error is exact; otherwise, it 
is only approximate and takes the name of delta standard 
error. With specific reference to ratios, the Fieller’s method 
can also be used for inferences (Piepho and Emrich 2005).

For example, the parameters of Eq. 4 can be easily used to 
derive mid-parent heterosis (MPH) and best parent heterosis 
(BPH) (Li et al. 2018). The two equations are:

and:

Other useful measures can be derived in the very 
same fashion, as linear or nonlinear functions of model 
parameters.

(8)MPH(%) =
h + hi + hj + sij

�� + 0.5 ×
(

vi + vj
)

(9)BPH(%) =
h − 0.5 ×

(

vi + vj
)

+ hi + hj + sij

�� +max
(

vi, vj
)

Table 1   Correspondence between the Eqs. 2 to 5, the value for the ‘fct’ string in the ‘lm.diallel()’ function and the syntax for the ‘lm()’ function

a Terms are redefined as: rij = rga
i
+ rgb

j
+ rsij

b The term rij is not included

Equation Model name in ’lm.diallel()’ Model notation in ’lm()’

Equation 2 HAYMAN1 Y ~ GCA(Par1, Par2) + tSCA(Par1, Par2) + RGCA(Par1, Par2) + RSCA(Par1, Par2)
Equation 2a GRIFFING1 Y ~ GCA(Par1, Par2) + tSCA(Par1, Par2) + REC(Par1, Par2)
Equation 2b GRIFFING2 Y ~ GCA(Par1, Par2) + tSCA(Par1, Par2)
Equation 3 HAYMAN2 Y ~ GCA(Par1, Par2) + MDD(Par1, Par2) + DD(Par1, Par2) + SCA(Par1, 

Par2) + RGCA(Par1, Par2) + RSCA(Par1, Par2)
Equation 4 GE2 Y ~ H.BAR(Par1, Par2) + VE.i(Par1, Par2) + H.i(Par1, Par2) + SCA(Par1, Par2)
Equation 5 GE3 Y ~ H.BAR(Par1, Par2) + SP(Par1, Par2) + GCAC(Par1, Par2) + SCA(Par1, Par2)
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Extension to random and mixed models

Although we have so far focused on fixed effects, we do not 
neglect the importance and flexibility of building models 
with random genetic effects. A multilevel mixed model with 
r random terms can be written in matrix notation as:

where Z1, Z2 and Zr are the design matrices for random 
effects and b1, b2, br are the vectors of random effects, which 
are assumed to be independent from each other, independent 
from the residual error term and gaussian distributed, with 
means equal to 0 and variances respectively equal to σ2

b1, 
σ2

b2 and σ2
br (variance components). In contrast to Eqs. 6, 

10 has no immediate closed form solution and therefore, 
parameter estimates need to be obtained by using some 
sort of mixed model “solver”, such as those available in 
the EMMREML (Akdemir and Godfrey 2015) and SAMM 
(Akdemir 2018) packages, just to mention a few. These solv-
ers require the design matrices for fixed and random terms 
(X, Z1, Z2, …, Zr), which can be built by using the foremen-
tioned tools, together with the ‘model.matrix()’ function. 
We also built the ‘model.matrixDiallel()’ functions that is 
simpler to use and shares the same syntax as the ’lm.dial-
lel()’ function.

For one of our examples, we used the very popular, gen-
eral purpose MCMC sampler JAGS with its companion R 
package ‘rjags’ (Plummer 2019), which appear to be underu-
tilised in the context of plant breeding, although they are 
very powerful and flexible. JAGS is rooted in the Bayes-
ian framework and requires prior information about all the 
estimands. For fixed effects, we used Gaussian priors with 
means equal to 0 and precisions equal to 0.0001 (the preci-
sion is the inverse of the variance and it is used in place of 
this latter in the definition of mixed models in JAGS). For 
variance components, we used uniform priors from 0 to 100. 
The MCMC sampler was used with five chains, 10,000 itera-
tions and a burn-in of 1000 iterations.

R package

All the above R functions and JAGS model definitions are 
freely available in a gitHub repository (https​://githu​b.com/
Onofr​iAndr​eaPG/lmDia​llel) and they have been used to 
produce an R package (lmDiallel), which can be freely 
downloaded from gitHub (the code download and installa-
tion are shown below). They were written by the standard 
R language, and they depend on the basic packages ‘base’ 
and ‘stat’, as well as on the package ‘plyr’ (Wickham 2011). 
The engine for the JAGS sampler also needs to be installed, 
together with the ‘rjags’ package.

(10)y = X� + Z1b1 + Z2b2 +…+ Zrbr + �

Results

The functionalities and approach of our package can be 
better described by using a few examples, relating to dif-
ferent experimental situations.

Example 1  As an example of mating design 1, we used the 
dataset shown in Hayman (1954), concerning the flower-
ing times in Nicotiana rustica, in a diallel cross with eight 
inbred varieties. The design was a randomized complete 
block design with two replicates and for this analysis, we 
will regard the block as fixed effect. The dataset is available 
in the ‘lmDiallel’ package as ‘hayman54’.

Relating to the code in Box 1, the first three lines install 
(if necessary) and load the ‘lmDiallel’ package from 
gitHub (the ‘devtool’ package is necessary to perform the 
installation and it must have been already installed in the 
system). The forth line loads the dataset and the subse-
quent lines fit the Eq. 2 (model HAYMAN2) and show the 
ANOVA table. The results are entirely the same as those 
reported in the original paper (see also the supplemental 
material in Möhring et al. 2010). Being in the typical R 
platform for linear models has the great advantage that 
we can use most of the available methods for linear mod-
els. Apart from the ‘anova()’ method, we can also use the 
‘summary()’ method to retrieve the genetic parameters, as 
commonly done for linear models in R. In Box 2, we show 
an excerpt of the output.

From Box 2, we see that some estimates are missing. 
Indeed, we should not forget that parameter estimation 
is performed under some restrictions, e.g. 

∑

i ji = 0 and 
∑

i ki = 0 , therefore, j8 = −
∑7

i=1
ji and k8 = −

∑7

i=1
ki . Lin-

ear functions of model parameters can be built by using 
the standard facilities in R, such as the ‘glht()’ function in 
the ‘multcomp’ package (Bretz et al. 2011). An example 
is given in Box 3.

A frequently neglected aspect is that diallel models, as 
all linear models, should be carefully inspected in relation 
to the basic assumptions of normality and homoscedastic-
ity of residuals. A graphical inspection can be obtained 
with the usual ‘plot.lm()’ method, the result is shown in 
Fig. 1. We see some slight signs of heteroscedasticity, 
which we will not address here, although we would like 
to mention that such a problem might be solved by using 
stabilising transformations or appropriately modelling the 
variance–covariance matrix for model residuals (Pinheiro 
and Bates 2000). The selection of the most appropriate 
method is still under debate, and both solutions have 
advantages and drawbacks. We refer the readers to the 
available literature for multi-environment experiments 
(e.g. Annicchiarico 2002), and we only emphasize that the 

https://github.com/OnofriAndreaPG/lmDiallel
https://github.com/OnofriAndreaPG/lmDiallel
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inspection of model residuals appears to be as fundamental 
for diallel models as it is for all other linear models.

An alternative, though less flexible, way of fitting the 
same model is by using the wrapper function ‘lm.diallel()’, 
which is shown in Box 4. In this case, we do not have to 
specify the effects, we only have to indicate what model we 
want to fit (see also Table 1).

Example 2  Very often, diallel experiments are repeated 
across environments (different locations and/or different 
years). The method outlined in the previous example can 
be used to produce separate analyses for each environment. 

However, if the environment is regarded as a fixed factor, we 
could be interested in testing the significance of the genetical 
effects and their interactions with the environment.

In order to show how this can be performed in R, we 
used the dataset shown in Zhang et al. (2005), reporting 
the results of a diallel experiment with five parents, in 
two blocks and two environments. Reciprocal crosses are 
not considered, and they were deleted from the dataset. 
The dataset (‘Zhang05’ in Box 5) contains the ‘Par1’, 
‘Par2’, ‘Env’, ‘Block’ and ‘Yield’ variables, coding for 

Box 1   Sample code to fit Eq. 2 to the data in Hayman (1954)

Box 2   Genetical parameters for the data in Hayman (1954)
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the parents, environments, blocks and yield, respectively. 
Box 5 shows the code to fit Eq. 4.

The ANOVA table shows that there are no significant 
interactions between genetical parameters and the environ-
ment. Therefore, we can remove those interactions and refit 
the model to get the average value of genetical parameters.

Functions of model parameters can also be used to 
retrieve the MPH (%) and BPH (%) (see Eqs. 8 and 9), 
together with standard errors. In this respect, we can 
use the ‘deltaMethod()’ function in the ‘car’ package 

(Weisberg 2005). Box 6 gives a simple example for the 
‘1 × 2’ cross, which can be easily extended to other crosses 
by an appropriate script.

Once again, we see that all analyses can be performed 
by the typical facilities in R, with a little experience in lin-
ear modelling. We also like to emphasise that in Box 7 we 
have removed the environment effects altogether, although 
in other instances, we might be interested in removing 
the interaction with the environment only for a subset of 
genetical effects.

Box 3   Use of the glht() function in the multcomp package to build linear functions of model parameters

Fig. 1   Graphical inspection of residuals for a diallel model: plot of residuals against expected values (left) and QQ-plot of standardised residuals 
(right)



594	 Theoretical and Applied Genetics (2021) 134:585–601

1 3

Box 4   Use of the lm.diallel() wrapper to fit the same model as in Box 1

Box 5   Example of how diallel models can be fit by using the ‘lm()’ function in R.



595Theoretical and Applied Genetics (2021) 134:585–601	

1 3

Example 3  This dataset is from a diallel experiment with 
six maize varieties and no reciprocals (Gardner and Eber-
hart 1966) and consists of means across blocks, a possibility 
when we perform the analyses in two-steps: firstly, running 
separate analyses for all locations and secondly, fitting a 
model to the entry means. In order to perform the correct 
inferences, we need an estimate of an appropriate error term, 
that is usually obtained in the first step; in this example, we 
used the residual variance (MSE = 7.10 with 60 degrees of 
freedom), as reported in the paper.

The dataset is available as ‘lonnquist61’ in the ‘lmDial-
lel’ package. The code shown in Box 8 is used to fit a model 
with GCA effects retrieve the value of estimated parameters. 
Please, note that the residual variance is passed as an argu-
ment to the ‘summary()’ function, to obtain reliable esti-
mates of standard errors. The estimated parameters and the 
partitioning of sum of squares are entirely the same as those 
reported in the paper.

Example 4  (extension to mixed models) For this final exam-
ple, we used a multi-environment half-diallel dataset with 

Box 6   Using the delta method to retrieve MPH and BPH with standard errors.

Box 7   Removing the environment effect from the model in Box 5.
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six parentals, in five blocks and ten environments; the data-
set is factitious and was obtained by Monte Carlo simulation, 
starting from the data shown in Example 2. It is available in 
the ’lmDiallel’ package in the ’diallelMET’ data object. We 
want to fit the Gardner–Eberhart model 2 and as we have a 
relatively high number of blocks and environments, we are 
willing to consider these two effects as random. Extending 
Eq. 10, the model is:

where X is the design matrix for fixed effects, β is the 
vector of fixed effects; ε is the vector of model residuals, 
that is assumed as normally distributed with mean equal to 
0 and standard deviation equal to σ; the number of columns 
in X is equal to the number of elements in β, that is 21 (with 

(11)

{

y = X� + Z1b1 + Z2b2 + Z3b3 + Z4b4 + Z5b5 + Z6b6 + �

� ∼ N(0, �)

Box 8   Sample code to fit Eq. 4 to the data in Gardner and Eberhart (1966), either with the ‘lm()’ function or with the ‘lm.diallel()’ wrapper.
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five parentals: one column/element for the interaction effect, 
one for the H.BAR effect, five for the VE.i effect, five for the 
H.i effect and nine for the SCA effect). The six Zi matrices 
and bi vectors are, respectively, the design matrices for the 
random effects of ‘environments’ (Z1b1, with 9 columns/
elements), ‘blocks within environments’ (Z2b2, with 40 col-
umns/elements), ‘H.BAR by environments’ (Z3b3, with 9 
columns/elements), ‘VE.i by environments’ (Z4b4, with 45 
columns/elements), ‘H.i by environments’ (Z5b5, with 45 
columns/elements) and ‘SCA by environments’ (Z6b6, with 
81 columns/elements). All random effects are assumed as 
gaussian, with means equal to 0 and standard deviations 
equal to �1, �2, �3, �4, �5 and �6, respectively. As specified 
in Eq. 11, the residual term ε is also assumed as gaussian, 
with mean equal to 0 and standard deviation σ. As the con-
sequence, there are 28 estimands.

In order to fit the above model with JAGS, we have to 
specify the definition (in JAGS code) in a text file, as shown 
in the Supporting Information S1. This definition should 
contain the likelihood expression for the model to be fit-
ted (Eq. 11), the priors for all estimands (β and b1 to b6) 
and the hyperpriors for the standard deviation parameters (σ 
and σ1 to σ6). The definition of a JAGS model may require 
some experience; to ease the task, we provide several tem-
plate files as a list in the ‘bugs_mods’ dataset, which can 
be loaded in R and saved to a text file within the working 
directory. In Box 9, we show how to load the dataset and 
JAGS model definition, saving this latter to the ‘modelDef.
txt’ file, to be used in subsequent steps.

Now, we need to create the design matrices, which is fea-
sible by using the ‘model.matrix()’ function and dismantling 
the resulting object by way of the ‘assign’ attribute. We need 
to know that such an attribute labels the columns belonging 
to each effect in the model, according to their positioning, 
from left to right (see Box 10). We also need starting values 
for the estimands; for fixed effects, we can use the results 
of a fixed model fit, while for random effects we can set the 
starting values to 0.1. Care should be taken to ensure that 
the naming of parameters in the JAGS call correspond to 
their naming within the model definition file. In the end, 
we can start the MCMC sampler to obtain samples from 
the posterior distribution for all the estimated parameters. 
For the random effects, we request samples for the variance 

components, although the model was parameterised in terms 
of the standard deviations.

The model may take some time to fit: in the end, for all 
estimated parameters we obtain information about the pos-
terior distribution, i.e. the median as measure of central ten-
dency and the credible interval, which is the Bayesian ana-
logue to the confidence interval, although the interpretation 
is rather different (Onofri 2015). The whole code to perform 
the analyses is shown in Box 10, where for brevity reasons, 
we omitted the report about random effects and we only 
show variance components. Random effects can be simply 
obtained by appropriately changing the ‘init’ and ‘params’ 
variables in model definition.

Discussion

Diallel experiments are frequently used to obtain informa-
tion about the genetical parameters of parental lines. A sur-
vey of literature shows that, starting from the mid of the 
previous century, several models and methods have been 
proposed, which may be overwhelming for a novice. The 
most confusing aspect is that all those models and methods 
are not presented on a common platform, which enhances 
the perceived difference from one model to another. In this 
regard, we have tried to reinforce the idea that all diallel 
models are special cases (different parameterisations) of the 
same general linear model (see also Möhring et al. 2011).

In order to promote the above view, we have argued that 
it should be possible to fit diallel models by using the typical 
frame of OLS estimation, with no need for additional fitting 
tools. So far, software development has followed the route to 
building specific tools for diallel analyses; we thought that, 
instead of building brand new functions for diallel models, it 
would be relevant to give geneticists and plant/animal breed-
ers the tools to fit diallel models within the general platform 
of linear models in R.

Linear fixed effect models in R are mainly fitted by using 
the ‘lm()’ function and related methods, although at the 
moment, diallel models cannot be fit by using such func-
tion. The problem is that there are no tools to automatically 
build the design matrices, as implied by the available dial-
lel models. We overcame this gap by building the ‘model.

Box 9   Loading the dataset and model definition.
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Box 10   R code to fit a GE2 
model to a multi-environment 
diallel experiment, with random 
environments and blocks.
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matrixDiallel()’ function, which is tailored to build the cor-
rect model matrix for all the main equations in literature. 
Possible variations and enhancements (e.g. see Murray et al. 
2003; Yao et al. 2013) can be accommodated within the 
same function.

Once the model matrix is defined, model fitting can be 
performed by usual tools, such as the ‘lm()’ function or 
the ‘lme.fit()’. For less experienced users, we built the ‘lm.
diallel()’ function, that is a wrapper to the ‘lm.fit()’ func-
tion with a higher degree of usability, in relation to diallel 
models. The advantage of both approaches is that they can 
exploit several powerful methods for linear models, such as 
‘summary()’, anova() or ‘glht()’ in the ‘multcomp’ package. 
In particular, the inspection of model residuals can be made 
in the very same fashion as for all other linear models, an 
aspect very frequently neglected in specialised diallel analy-
ses softwares.

Increasing the usability of existing packages that have 
gained a wide popularity may be an advantageous program-
ming strategy, compared to the usual strategy of building 
brand new platforms. From the point of view of the devel-
oper, it is efficient, as it requires a minor programming effort. 
From the point of view of the users (professionals, techni-
cians and students), it is handy to be put in the conditions of 
making statistical analyses, without the need of learning new 
softwares and/or languages and/or syntaxes. In general, due 
to its open-source nature, the R environment is often over-
whelming for users, that are confused by the extremely wide 
availability of alternative methods to perform the same task. 
In this regard, a programming strategy aimed at supporting 
some existing reference platforms might help build a more 
comfortable environment for statistical analyses.

One further aspect to be considered is that the dichot-
omy between random/mixed and fixed diallel models might 
be regarded as rather outdated; indeed, the availability of 
REML estimation has opened a third possibility, where we 
have a specific interest in the lines involved in the experi-
ment, but, nonetheless, we model them as random. It is 
possible to obtain best linear unbiased predictors (BLUPs) 
that have been shown to be more accurate than best linear 
unbiased estimators (BLUEs) of genetical effects (Piepho 
et al. 2008). It is necessary to point out that good variance 
component estimates require a relatively high number of 
parents, which is not often the case with diallel experiments. 
Therefore, the use of OLS continues to be preferable for 
experiments conducted with a small number of parent lines, 
which motivated our initial focus on fixed effects model.

Nonetheless, our tools can also be useful to fit random 
effects and mixed effects diallel models. In particular, we 
have shown that it is possible to make use of the design 
matrices produced as the output of the ‘model.matrix()’ or 
‘model.matrixDiallel()’ functions within the general purpose 
MCMC sampler JAGS; our fourth example relates to an 

experiment where the environment is random, while genetic 
effects are fixed, although a further extension to models with 
random genetic effects is immediate. Turner et al. (2018) 
showed that the Bayesian framework may be advantageous 
for fitting diallel models, while JAGS represents one of 
the most flexible and widespread general purpose MCMC 
samplers around. Both the framework and the sampler still 
deserve a wider appraisal in plant breeding. Obviously, such 
aspects as the selection of priors or the check for conver-
gence are fundamental to sound analyses in the Bayesian 
framework and may require further attention and research 
by plant breeders. We did not consider these aspects as they 
appear to be beyond the scope of this manuscript and may 
require further work.

It is not clear whether and how our tools can be used 
for REML-based estimation of random diallel models. In 
principle, the design matrices as used in JAGS can also be 
used in other REML-based mixed model solvers, which are 
available within R packages, such as EMMREML (Akdemir 
and Godfrey 2015) and SAMM (Akdemir 2018), but fur-
ther research is needed in this respect. For those who favour 
REML estimation, we provide a few examples on how ran-
dom diallel models can be fitted in R by using the ‘sommer’ 
package (see Supplemental material).
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