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Abstract
Introduction  The overall survival in patients with gliomas has not significantly increased in the modern era, despite advances 
such as immunotherapy. This is in part due to their notorious ability to suppress local and systemic immune responses, 
severely restricting treatment efficacy.
Methods  We have reviewed the preclinical and clinical evidence for immunosuppression seen throughout the disease pro-
cess in gliomas. This review aims to discuss the various ways that brain tumors, and gliomas in particular, co-opt the body’s 
immune system to evade detection and ensure tumor survival and proliferation.
Results  A multitude of mechanisms are discussed by which neoplastic cells evade detection and destruction by the immune 
system. These include tumor-induced T-cell and NK cell dysfunction, regulatory T-cell and myeloid-derived suppressor cell 
expansion, M2 phenotypic transformation in glioma-associated macrophages/microglia, upregulation of immunosuppressive 
glioma cell surface factors and cytokines, tumor microenvironment hypoxia, and iatrogenic sequelae of immunosuppressive 
treatments.
Conclusions  Gliomas create a profoundly immunosuppressive environment, both locally within the tumor and systemically. 
Future research should aim to address these immunosuppressive mechanisms in the effort to generate treatment options with 
meaningful survival benefits for this patient population.
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Introduction

The overall survival in patients with gliomas has not 
improved significantly over the past decades, despite aggres-
sive treatments [1]. Recent research within the field has 
shown an increased emphasis on understanding the complex 
relationship between the immune system and these deadly 
central nervous system (CNS) tumors. The present find-
ings have significant implications not only from a research 
standpoint, but also in the daily management and treatment 
of glioma patients. This review aims to discuss the various 
ways that brain tumors, and gliomas in specific, co-opt the 
body’s immune system to evade detection and ensure their 
proliferation and survival.

Immune cell dysfunction

Lymphocyte dysfunction

T‑cells

High grade gliomas (HGG) are one of the most immuno-
suppressive solid tumors despite rare metastasis outside the 
CNS [2]. The ability to cause severe, systemic T-cell deficits 
is one of the most prominent and earliest reported immune-
related effects of HGGs (1). T-cell dysfunction in HGG 
(and glioblastoma [GBM] in specific) can be molecularly 
categorized into 5 domains: senescence, tolerance, anergy, 
exhaustion, and ignorance (Fig. 1) [3].

T-cell senescence is thought to be caused by telomere 
shortening from repetitive T-cell proliferation/activation 
and DNA damage events, such as exposure to reactive 
oxygen species (ROS) [4]. Proposed signature markers of 
T-cell senescence are upregulation of CD57, an indicator 
for T-cell terminal differentiation, as well as loss of CD27 
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and CD28, which are costimulatory markers [5, 6]. These 
phenotypes correlate well with telomere shortening and tel-
omerase activity loss. In GBM, T-cell senescence phenotype 
suggests poor prognosis, as GBM patients with higher level 
of CD4+CD28−CD57+ T-cells have shorter overall survival 
[7]. Additionally, thymic involution develops prematurely in 
patients with GBM. This phenomenon results in a reduced 
output of naïve T-cells (known as recent thymic emigrants 
[RTE]) from the thymus [8]. Lower RTE, as measured by 
lower T-cell receptor excision circles (TREC, indicating 
thymic senescence), was also shown to correlate with poor 
clinical outcomes in GBM patients [9].

In the normal physiologic state, the body prevents auto-
immunity through T-cell tolerance [10]. Central tolerance, 
mediated by negative selection in the thymus, is imperfect, 
with the chance for self-antigen reactivity. Therefore, periph-
eral tolerance outside the thymus serves as an additional 
safety net against autoimmunity. Peripheral T-cell tolerance 
is normally comprised of peripheral deletion and suppres-
sion by regulatory T-cells (Tregs). However this mechanism 
is hijacked by tumors, preventing an effective antitumor 
immune response [11]. T-cell apoptosis, mediated by the 
FasL-Fas pathway, has been described as a mechanism to 
delete T-cells in several types of cancer, including GBM 

Fig. 1   Five domains of T-cell dysfunction. Clockwise from top left—
Senescence: a Repetitive T-cell proliferation/activation and DNA 
damage events cause telomere shortening, decreasing the prolifera-
tive capacity of effector T-cells. b Thymic involution develops prema-
turely in patients with GBM, reducing T-cell output from the thymus. 
Tolerance: Gliomas induce T-cell apotosis via the FasL-Fas pathway, 
as well as generate proliferation of Tregs, which have suppressive 
effects on effector T-cells. Exhaustion: After repeated exposure under 
suboptimal conditions, T-cells end up expressing inhibitory immune 
checkpoints, with the major ones shown here. The degree of exhaus-
tion is correlated with expression of specific checkpoints. Anergy: 

T-cell  anergy can be caused by two broad mechanisms: insufficient 
co-stimulation leading to clonal anergy and impairment of T-cell acti-
vation, and continuous low level antigen exposure, leading to adap-
tive tolerance and reduced T-cell proliferation. Ignorance: T-cell 
ignorance is the result of fully functional T-cells that  are prevented 
from antigen exposure by anatomical barriers or insufficient antigen 
expression levels, such as is the case with the blood brain barrier and 
T-cell sequestration. T Eff effector T-cell, ROS reactive oxygen spe-
cies, RTE recent thymic emigrants TRECs T-cell receptor excision 
circles, T reg regulatory T-cell, MHC major histocompatibility com-
plex, TCR​ T-cell receptor. Created with BioRender.com
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[12]. The role that Tregs play in this peripheral T-cell toler-
ance in HGG will be discussed in a subsequent section.

T-cell anergy was originally used to describe the lack of 
type IV hypersensitivity response found in GBM patients 
who failed to react to recall antigen [13]. However, the term 
anergy now covers two separate entities: clonal/in vitro 
anergy and adaptive tolerance/in vivo anergy [13]. Clonal 
anergy is caused by insufficient co-stimulation, leading to 
defective RAS/MAPK activation and AP-1 transcription, 
which impairs T-cell activation [14]. Alternatively, adaptive 
tolerance arises from continuous low levels of antigen expo-
sure, which leads to NF-κB impairment, low IL-2 produc-
tion, and reduced T-cell proliferation [14]. While each entity 
represents different T-cell molecular states, both are present 
in GBM patients and contribute to global T-cell dysfunction.

Classically described in chronic viral infection, T-cell 
exhaustion occurs after repeated antigen exposure under 
suboptimal conditions. This results in activation of a spe-
cific transcriptional program that generates a hyporespon-
sive T-cell state [15]. Recently, gliomas have been shown to 
induce similar phenotypes of T-cell exhaustion [16]. Tran-
scription factors involved in programmed T-cell exhaus-
tion include T-bet, Eomesodermin (Eomes), and NFAT. 
Exhausted T-cells express high levels of Eomes and low 
levels of T-bet [17]. While in the exhausted state, failure 
of NFAT to form a complex with AP-1 results in expres-
sion of inhibitory immune checkpoints, such as PD-1 and 
CTLA-4 [18]. In addition to these conventional ones, 
other recently characterized checkpoints involved in T-cell 
exhaustion include TIM-3, LAG-3, BTLA, 2B4, SLAMF6, 
CD160, TIGIT, and CD39 [3]. A recent study looking at a 
variety of these exhaustion markers demonstrated that T-cell 

exhaustion is particularly severe in GBM compared to other 
types of cancer [16]. The authors showed that co-expression 
of PD-1, TIM-3, and LAG-3 rendered human GBM tumor-
infiltrating lymphocytes (TILs) in a severely hypofunctional 
state.

The last domain of T-cell dysfunction is T-cell ignorance, 
which occurs when fully functional T-cells are prevented 
from antigen exposure by anatomical barriers or insufficient 
antigen expression levels [19]. Theoretically, ignorance can 
be overcome by a sufficient quantity of T-cells undergoing 
antigen exposure. However, GBM patients frequently exhibit 
clinically significant lymphopenia [20]. A recent study again 
demonstrated this fact, and was able to show this is at least 
partially produced by T-cell sequestration in the bone mar-
row due to the loss of S1P1 receptors from the T-cell surface 
[20]. Lymphopenia combined with the blood brain barrier 
(BBB) limiting access into the immunologically-distinct 
brain prevents the antigen exposure necessary to produce 
robust, T-cell mediated immune responses in the tumor 
microenvironment (TME).

Regulatory T‑cells (Tregs)

Tregs are characterized by their ability to suppress effector 
T-cell activation through a variety of mechanisms (Fig. 2), 
most notably secretion of immunosuppressive cytokines 
and downmodulation of co-stimulatory molecules on anti-
gen presenting cells (APCs) [21]. The glioma TME favors 
recruitment and survival of Tregs by maintaining high con-
centrations of cytokines that support Treg persistence, such 
as transforming growth factor-β (TGF-β) and indoleamine 
2,3-dioxygenase (IDO) [22, 23]. While Tregs normally 

Fig. 2   Summary of glioma-
immune interactions. Gliomas 
secrete or express a variety of 
factors that attract or induce 
immunosuppressive cell types, 
or have direct inhibitory effects 
on immune effector cells. T Eff 
effector T cell, ROS reactive 
oxygen species, NO nitric 
oxide, GAM glioma-associated 
microglia/macrophage, MDSC 
myeloid-derived suppressor 
cell, T reg regulatory T cell, 
MHC major histocompatibility 
complex, APC antigen present-
ing cell. Created with BioRen-
der.com



6	 Journal of Neuro-Oncology (2021) 151:3–12

1 3

represent 5–10% of circulating CD4+T-cells, they are found 
in increased numbers and frequencies in a multitude of can-
cers, with higher numbers of Tregs associated with a worse 
prognosis [24, 25]. Glioma patients have higher proportions 
of circulating Tregs compared to healthy controls (even 
though absolute Treg numbers were decreased), and these 
patients have increased Treg numbers infiltrating the tumors 
themselves [26, 27]. These findings were recapitulated in 
murine glioma models, with subsequent studies demonstrat-
ing that Treg depletion prolonged survival in glioma-bearing 
mice [26]. Consequently, novel therapeutic approaches to 
either inhibit or reduce Treg numbers are an active area of 
research [27–29].

Natural killer (NK) cells

NK cells are innate lymphoid cells capable of directly lys-
ing infected or malignant cells. NK cells can target other 
cells missing MHC Class I, an adaptive process that is used 
by many viruses and tumors to evade detection by T-cells 
[30, 31]. By expressing a combination of inhibitory and 
stimulatory receptors, NK cells can tailor their response to 
specific insults [32]. For example, killer cell immunoglob-
ulin-like receptors (KIR) can recognize MHC Class I pre-
sent on healthy cells, preventing NK cell activation. In con-
trast, stressed or infected cells upregulate ligands that bind 
NKG2D, an activating receptor that triggers NK cell-medi-
ated killing of the target cell. The importance of NK cells 
in cancer is demonstrated by the fact that mice and humans 
with NK cell deficiencies are at a higher risk to develop 
certain malignancies [33, 34]. In GBM, some populations of 
patients have decreased levels of NKG2D on the surface of 
their NK cells, leading to decreased NK cell activation [35]. 
Additionally, HLA-G, an inhibitory ligand found on glio-
mas, is able to bind to NK receptors in the KIR family (such 
as KIR2DL4 and ILT2) and inhibit NK cytotoxicity, IFN-γ 
secretion, NKG2D activation, and chemotaxis (Fig. 2) [36]. 
Despite NK cells making up a relatively small proportion of 
tumor-infiltrating cells, studies have shown that these NKs 
residing in the GBM TME display characteristics that allow 
them to be considerably cytotoxic to tumor cells in other 
cancers [37]. Therefore, potential therapeutic opportunities 
are actively being pursued that focus on either modulating 
NK cell numbers/activation status, or utilizing chimeric 
antigen receptor (CAR) technology to generate NK cells 
expressing receptors that specifically target tumor antigens.

Myeloid dysfunction

G/M‑MDSCs

Myeloid-derived suppressor cells (MDSCs), identified as 
CD11b+CD33+HLA-DR−/low cells, are a heterogeneous 

population of immature myeloid cells that also play an 
important role in tumor-induced immunosuppression [38]. 
MDSCs, whose phenotype comprises 20–30% of the bone 
marrow, make up only 0.5% of peripheral blood mononu-
clear cells (PBMCs) as they quickly differentiate into mature 
subtypes in a normal, non-pathologic state. However, in 
disease states such as cancer, this population increases sig-
nificantly due to alterations in myelopoiesis [39]. To date, 
elevated levels of MDSCs have been found in melanoma, 
glioma, renal, gastric, bladder, esophageal, and pancreatic 
cancers [40]. GBM, however, has one of the highest levels 
of circulating MDSCs of these cancers, with ~ 12 × greater 
than normal levels [41–43].

MDSCs, whose two major subsets include granulocytic 
(G-MDSC, identified as CD15+ in addition to the previously 
mentioned markers) and monocytic (M-MDSC, addition-
ally CD14+), exert their immunosuppressive effects through 
inhibition of innate antitumor immunity by several mecha-
nisms (Fig. 2) [44, 45]. These mechanisms include: expres-
sion of arginase, which decreases the level of L-arginine in 
the blood/tumor (an amino acid needed for normal T-cell 
function, specifically translation of the T-cell CD3 zeta 
chain); secretion of nitric oxide and production of ROS, 
which themselves are capable of inducing T-cell suppres-
sion; and expression of PD-L1 to participate in checkpoint 
blockade [46, 47]. Raychudhuri et al. demonstrated that 
T-cells obtained from GBM patients have suppressed IFN-γ 
production, and that removal of MDSCs from the patients’ 
PBMC population restored T-cell function [41]. In addition, 
several other studies have shown secretion of immunosup-
pressive cytokines, Treg stimulation, and the positive rela-
tionship between immunosuppression and tumor angiogen-
esis, which is mediated by MDSCs and dependent on STAT3 
activation [39, 48, 49].

In light of their widespread immunosuppressive effects, 
elevated levels of MDSCs have been shown to be correlated 
with clinical cancer stage, histologic tumor grade, metastatic 
tumor burden, radiographic progression, and/or prognosis in 
a variety of cancers [46, 50, 51]. While the volume of litera-
ture linking MDSCs to these clinical variables in glioma is 
not as robust as in other types of cancer, recent publications 
have focused on this topic. Alban et al. found that GBM 
patients with a better prognosis had decreasing numbers in 
their peripheral circulation over time, as well as reduced 
MDSCs in their tumors [52]. Another study found that a 
subtype of G-MDSCs accumulated in the peripheral blood 
of GBM patients, and correlated with reduced numbers of 
effector immune cells, early recurrence, and disease progres-
sion [53]. In light of these results, a trial was performed in 
GBM patients to reduce MDSCs in peripheral circulation 
and increase cytotoxic immune infiltration into the TME 
[54]. Future studies are needed to further assess the asso-
ciation of MDSCs to clinical disease course.
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Tumor‑associated macrophages/microglia

Tumor-associated macrophages (TAMs) and their resident 
CNS correlate, microglia, are able to infiltrate gliomas and 
comprise a substantial proportion of cells in the TME, up 
to 15–30% depending on glioma grade [55]. While micro-
glia are yolk sac–derived with the capacity for limited self-
renewal, TAMs are monocyte-derived from the bone marrow 
and peripheral circulation, extravasating into the tumor as 
a result of the breakdown of the BBB near the tumor [56]. 
While glioma-infiltrating TAMs and microglia (termed gli-
oma-associated microglia/macrophages [GAMs] as a group) 
have been identified in the past by the markers CD163, 
CD200, CD204, CD68, and Iba-1, the most common iden-
tification strategy in the literature considers microglia to be 
CD11bhighCD45low, while TAMs are CD11bhighCD45high 
[51]. Multiple studies have shown the correlation between 
the number and morphology of GAMs with glioma grade 
(higher numbers and amoeboid morphology), as well as 
increases in GAM numbers correlating with increased 
aggressiveness within specific tumor grades [57–61].

GAMs are noted to have a significant degree of plasticity 
in regards to their effector functions. The M1 phenotype 
is considered pro-inflammatory and anti-tumor, typically 
acquired after stimulation with GM-CSF, toll-like receptor 
4 (TLR4) ligands, and/or IFN-γ [51, 62]. Conversely, the M2 
phenotype is considered cytoprotective, immunosuppressive, 
and protumorigenic, occurring after M-CSF (expressed by 
glioma cells, as well as normal human astrocytes), IL-4, 
IL-10 and/or IL-13 exposure. The M2 polarized GAMs 
produce high levels of IL-10, transforming growth factor 
(TGF)-β, epithelial growth factor (EGF), matrix metallo-
proteinase (MMP)-2 and MMP-9, and low levels of IL-12, 
which overall promotes tumor cell immune evasion, inva-
sion, proliferation and angiogenesis (Fig. 2) [51, 62]. How-
ever, it should be noted that these phenotypes were gener-
ated in vitro under ideal conditions, and thus GAMs in vivo 
likely have a variety of functions along the M1/M2 spec-
trum (moreover, additional subpopulations have also been 
defined, such as M2a, M2b, M2c, etc.) [55]. Recent work 
now aims to go beyond cell surface markers to gather in 
depth gene expression profiling data, to gain greater under-
standing of the functions of GAMs and discern potential 
therapeutic targeting strategies [63, 64].

Tumor‑related immunosuppressive factors

Glioma cell surface factors and cytokine secretion/
dysregulation

Gliomas employ several mechanisms to evade the immune 
system. Among others, these include modulation of cell 
surface molecules, and secretion of cytokines. Gliomas can 
express PD-L1, and when bound to PD-1 on T-cells, can 
suppress T-cell activation. In addition, gliomas downregu-
late HLA-class I and can upregulate certain HLA-class II 
molecules, resulting in a deficient cytotoxic T-cell response 
and skewing toward a CD4+T-cell response. Gliomas also 
have the capacity to interfere with antigen processing or 
presentation on HLA [65, 66].

Cytokines play an important role in glioma progression, 
as they can affect proliferation, angiogenesis and aggres-
siveness of the tumor. Classic immunosuppressive cytokines 
associated with glioma are TGF-β and IL-10. TGF-β levels 
are associated with glioma grade, triggering proliferation 
in HGGs. It is also a regulator of VEGF (vascular endothe-
lial growth factor), implicated in angiogenesis [67]. TGF-β 
suppresses lymphocytes and NK cells and can cause inhi-
bition of antigen presentation [68]. In addition to TGF-β, 
IL-10 is largely responsible for shifting the TME toward an 
immunosuppressive phenotype. IL-10 can be produced from 
the glioma directly or gliomas can stimulate the production 
of IL-10 by macrophages and microglia [67, 68]. IL-1β, a 
classical pro-inflammatory cytokine, is also overexpressed 
in gliomas as compared to healthy controls, and has been 
shown to regulate both the survival and invasiveness of 
GBM. IL-6, TNF-α, and IL-8 have all also been shown to 
be upregulated in gliomas as compared to healthy individu-
als and play a role in tumor growth and invasion [69].

TME hypoxia

Tumor cell viability and response to therapeutic agents 
is highly influenced by several factors, including tissue 
hypoxia. Hypoxia, defined as an oxygen saturation of less 
than 2% (compared to 2–9% in healthy tissue), is a hallmark 
of the GBM TME [70]. Low oxygen tension (i.e. hypoxia) 
is caused by the tumor cells rapidly outgrowing their blood 
and nutrient supply, resulting in increased cellular necrosis 
and acidosis [71, 72]. Gliomas adapt to the hypoxic TME 
via oxygen-sensitive transcription factors called hypoxia-
inducible factors (HIFs), the most notable of them being 
HIF-1α and HIF-2α [72]. These HIFs play an important role 
in tumor growth and survival through regulation of several 
key components of tumor biology, including glycolytic 
metabolism, pH homeostasis, angiogenesis, mitochondrial 
autophagy and resistance to apoptosis [72, 73].
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HIF activation is also important for tumor immunogenic-
ity, as certain immune cells that promote tumorigenesis can 
infiltrate and preferentially target these areas of hypoxia [72, 
74]. TAMs have been shown to infiltrate hypoxic regions 
within solid tumors, with VEGF increasing TAM recruit-
ment in a HIF-dependent manner [72, 74]. Likewise, tumor-
associated fibroblast expression of the chemoattractant 
CXCL12 is upregulated under hypoxic conditions and also 
plays an important role in TAM recruitment [72]. While 
TAM polarization in the M1 or M2 phenotype is mainly 
induced by interferon-regulatory factor/signal transducer and 
activator of transcription (IRF/STAT) signaling pathways, 
hypoxia also can regulate this phenomena and activate HIFs 
differently to induce an M1 or M2-like phenotype [75]. Spe-
cifically, HIF2α activation is involved in the M2 polarization 
axis, with these TAMs being associated with immunosup-
pression, tumor cell proliferation, angiogenesis, and local 
invasion, resulting in poor patient outcomes [76, 77]. Simi-
larly, elevated expression of HIF-2α is associated with poor 
prognosis and higher tumor grade in numerous cancer types 
[78]. Due to these reasons, HIFs may be a promising treat-
ment target, with studies in several murine models showing 
that HIF inhibition (e.g. acriflavine) improves destruction of 
cancer cells and increases survival [73].

Systemic/treatment‑related immune 
suppression

Steroid therapy

The use of high-dose glucocorticoids, such as dexametha-
sone, is standard of care to reduce the life-threatening vaso-
genic edema seen in patients with CNS tumors. Although 
the exact mechanism is not well understood, several studies 
have proposed that glucocorticoids reduce cerebral edema by 
stabilizing the capillary membrane and blocking expression 
of VEGF [79, 80]. However, the potent anti-inflammatory 
and immunomodulatory effects of dexamethasone are well 
described in the literature, producing clinically significant 
lymphopenia via signaling through the lymphotoxic gluco-
corticoid receptors on both B and T lymphocytes, and atten-
uating the CD28 co-stimulatory pathway [81, 82]. Studies 
have shown that dexamethasone doses as little as 0.25 mg/
kg/day result in reduced numbers of TILs and other impor-
tant immune cells in the TME [83]. Therefore, the positive 
benefits of edema reduction are countered by the negative 
sequelae of immune suppression. While steroid administra-
tion is an absolute necessity in many circumstances, their 
immunosuppressive side effects should prompt dose reduc-
tion or cessation by clinicians whenever possible, especially 
in patients that are on immunotherapies.

Table 1   Chemotherapeutic 
drugs commonly used alone or 
in combination for the treatment 
of malignant tumors of the CNS

a National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Central 
Nervous System Cancers. V.2.2019. Accessed at www.nccn.org/profe​ssion​als/physi​cian_gls/pdf/cns.pdf on 
October 5, 2019
b Lexicomp Online, Hudson, Ohio: Wolters Kluwer Clinical Drug Information, Inc.; 2013; January 28, 
2020
c Lalami Y, Paesmans M, Muanza F, et  al. (2006) Can we predict the duration of chemotherapy-induced 
neutropenia in febrile neutropenic patients, focusing on regimen-specific risk factors? A retrospective anal-
ysis. Ann. Oncol, 17:507–514. https​://doi.org/10.1093/annon​c/mdj09​2
d Based upon single drug therapy. A weight (0–4) is assigned to each drug according to its expected fre-
quency of severe neutropenia (0 unusual, 1 very rare, 2 rare, 3 frequent, 4 very frequent)

Chemotherapeutica Mechanism of actionb Myelosuppression scorec,d

Carmustine/Lomustine DNA cross-linking/alkylating agent 4
Carboplatin DNA cross-linking/alkylating agent 3
Cisplatin DNA cross-linking/alkylating agent 1
Cyclophosphamide DNA cross-linking/alkylating agent 3–4 (based on dose)
Etoposide DNA Topoisomerase II inhibitor 4
Irinotecan DNA Topoisomerase I inhibitor 4
Methotrexate Anti-metabolite (dihydrofolate reductase inhibitor) 2
Procarbazine DNA cross-linking/alkylating agent Unavailable
Temozolomide DNA cross-linking/alkylating agent 2
Vinblastine Cell cycle specific microtubule/tubulin inhibition 2
Vincristine Cell cycle specific microtubule/tubulin inhibition 0

http://www.nccn.org/professionals/physician_gls/pdf/cns.pdf
https://doi.org/10.1093/annonc/mdj092
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Chemotherapy

Glioma patients may be repeatedly pancytopenic for peri-
ods of time due to chemotherapy-induced myelosuppression 
and myeloablation, exposing them to the risk of infection 
and limiting mechanisms of innate anti-tumor immunity 
(Table  1). The most commonly used chemotherapeutic 
in glioma treatment is temozolomide, a DNA methylator 
that is known to cause long-lasting lymphopenia [84, 85]. 
Additionally, the use of temozolomide is associated with an 
upregulation of T-cell exhaustion markers such as LAG-3 
and TIM-3, which has unique implications for its concomi-
tant use with immunotherapy [86]. As studies have shown 
that treatment-related immunosuppression from temozolo-
mide/radiation therapy is long-lasting and associated with 
early death from tumor progression in HGG patients, new 
approaches need to be devised to overcome these detrimental 
effects [85]. Recent work by Karachi et al. demonstrated that 
metronomic dosing of temozolomide in combination with 
anti-PD-1 therapy decreased TIL exhaustion markers and 
rescued the survival benefit seen with immunotherapy in two 
syngeneic murine GBM models. As temozolomide is part 
of the current standard of care treatment of GBM, further 
evaluation of this study and others is needed [86].

While these negative chemotherapy-induced side effects 
are well noted and should be minimized whenever possible, 
a recently-devised strategy uses the lymphotoxicity of temo-
zolomide to the clinician’s advantage within a specific treat-
ment paradigm. Suryadevara and colleagues were able to 
utilize a dose-intensified temozolomide regimen to deplete 
host lymphocytes prior to CAR administration, which was 
associated with dramatically improved CAR prolifera-
tion, complete tumor regression, and increased survival in 
a murine model of GBM [84]. Examples such as this one 
highlight the ability of clinicians and researchers to develop 
innovative and/or unconventional uses of traditional chemo-
therapeutics to enhance antitumor immunity.

Conclusions

Gliomas create a profoundly immunosuppressive environ-
ment both locally at the tumor and systemically in the body, 
creating a number of challenges that negatively impact 
patient well-being and efficacy of novel immunotherapeutic 
approaches. In attempting to understand the pathobiology 
of these complex tumors, a multitude of mechanisms have 
been uncovered by which neoplastic cells develop the ability 
to evade detection and destruction by the immune system. 
By targeting one or more of these mechanisms, researchers 
hope to discover the next major treatment breakthrough that 
provides a meaningful survival benefit to a patient popula-
tion greatly in need of one.
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