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Approximate conditional 
phenotype analysis based 
on genome wide association 
summary statistics
Peitao Wu1,9, Biqi Wang1,9, Steven A. Lubitz2,3, Emelia J. Benjamin  4,5,6, James B. Meigs7,8 & 
Josée Dupuis1*

Because single genetic variants may have pleiotropic effects, one trait can be a confounder in a 
genome-wide association study (GWAS) that aims to identify loci associated with another trait. A 
typical approach to address this issue is to perform an additional analysis adjusting for the confounder. 
However, obtaining conditional results can be time-consuming. We propose an approximate 
conditional phenotype analysis based on GWAS summary statistics, the covariance between outcome 
and confounder, and the variant minor allele frequency (MAF). GWAS summary statistics and MAF 
are taken from GWAS meta-analysis results while the traits covariance may be estimated by two 
strategies: (i) estimates from a subset of the phenotypic data; or (ii) estimates from published studies. 
We compare our two strategies with estimates using individual level data from the full GWAS sample 
(gold standard). A simulation study for both binary and continuous traits demonstrates that our 
approximate approach is accurate. We apply our method to the Framingham Heart Study (FHS) GWAS 
and to large-scale cardiometabolic GWAS results. We observed a high consistency of genetic effect size 
estimates between our method and individual level data analysis. Our approach leads to an efficient 
way to perform approximate conditional analysis using large-scale GWAS summary statistics.

Genome-wide association studies (GWAS) have been successful in identifying the associations between genetic 
variants and complex traits. Because genetic variants may have pleiotropic effects, one trait can be a confounder 
in a GWAS to identify loci associated with another trait. A typical approach to address the confounding issue is 
to test the association between the trait and a genetic variant adjusting for the confounders. Association results 
may vary due to confounding, so further adjustment for potential confounders in GWAS is crucial. Moreover, 
adjusting for traits that explain a large proportion of the variance may increase power to detect genetic associa-
tions by reducing the variance of the adjusted traits. For example, Dupuis et al. 2010 conducted a GWAS of fasting 
insulin (FI) without adjustment for body mass index (BMI) and identified two loci (GCKR, IGF1) associated 
with FI1. Manning et al. 2012 also conducted a GWAS meta-analysis of FI and additionally identified 6 previ-
ously unreported loci (COBLL1-GRB14, IRS1, PPP1R3B, PDGFC, UHRF1BP1, and LYPLAL1) after adjusting 
for BMI2. Conducting a sensitivity analysis for GWAS by additionally adjusting for one or more traits may lead 
to new findings. However, in analyses in which many studies contribute to the final results, as is often the case in 
consortia-based meta-analyses, asking each study to rerun a genome-wide is time-consuming and potentially 
prohibitive. Moreover, using GWAS summary statistics has the advantage of protecting personal identifiable 
information and making data sharing possible without violating the participants’ privacy.

We propose a method to evaluate genetic associations adjusting for a confounder using summary statistics 
from GWAS meta-analysis and covariance estimates between the trait of interest and the confounding trait. We 
allow the trait of interest and the potential confounder to be either continuous or binary.
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An approximate conditional analysis approach has been proposed earlier by Yang et al. 2012 to evaluate the 
association between a trait and a single nucleotide polymorphism (SNP) adjusting for other SNPs using summary 
statistics from GWAS and linkage disequilibrium (LD) estimates between SNPs3. To extend the conditional analy-
sis adjusting for SNPs to conditional analysis adjusting for another traits (i.e., confounders), in 2017 Deng and 
Pan proposed an approach to perform approximate conditional analysis to adjust for continuous confounders4. 
However, their method can only be applied to quantitative traits. Zhu et al. 2018 proposed a method to estimate 
the genetic effects of genetic variants on disease adjusting for other risk factors by integrating Mendelian ran-
domization of summary GWAS statistics and LD-score regressions to approximate the covariance between the 
trait of interest and the risk factors5. This method is applicable to both continuous and binary traits. In addition, 
Wolf et al. 2020 proposed an approach for continuous outcomes using summary statistics of outcomes and 
covariates derived from the same study6.

Our proposed approach differs from the above-mentioned methods that use genotype data to estimate the 
covariance between phenotypic traits. We propose estimating the covariance directly from the phenotype data. 
For example, in order to estimate the covariance between FI and BMI, the best approach would be to use all the 
available phenotypic data for FI and BMI. However, gathering the full phenotype data in a large consortium is 
challenging, and confidentiality restrictions often prohibit sharing individual level data. Alternative approaches 
to estimate the covariance include: (1) evaluating covariance in a subset of the full samples (e.g. estimating the 
covariance between traits from one cohort in a multi-cohort study); and (2) using a covariance estimate from 
published articles.

We evaluate our approximate conditional analysis approach and compare the results to the gold standard 
(conditional analysis using individual level data) using a simulation study. To illustrate results of the approach, 
we apply our method to cardiometabolic traits studied in one cohort, the Framingham Heart Study (FHS), and 
in meta-analysis results from several large-scale cardiometabolic GWAS consortia. We selected traits and out-
comes that are substantially influenced by one or more secondary traits. In FHS we evaluated anthropometric 
traits including waist circumference adjusted for BMI, or BMI adjusted for ever-smoking, and cardiac traits 
including atrial fibrillation adjusted for height or adjusted for both heart failure and myocardial infarction. In 
large-scale cardiometabolic GWAS consortia meta-analyses, we compared our method with existing approaches 
using results from multiple traits, including fasting insulin adjusted for BMI, BMI adjusted for ever-smoking, 
and atrial fibrillation adjusted for BMI or adjusted for coronary artery disease.

The rest of this article is organized as follows. We present simulation results comparing our approach to the 
gold standard. We then follow with applications to real data sets from FHS and consortium GWAS meta-analyses. 
In the Method section, we present the formulation details of our new approximate conditional phenotype analysis 
for the following four scenarios: (1) two continuous traits; (2) continuous outcome adjusted for a binary trait; 
(3) binary outcome adjusted for a continuous trait; and (4) two binary traits. Our investigation framework is 
presented in Fig. 1.

Results
Simulation results.  We compare our proposed method to the gold standard (using individual level data 
to estimate the genetic variant effect, β , and its statistical significance). As shown in Table  1, our proposed 
method performs well in estimating both the effect size (beta) and its standard error for MAF = 2%, 5%, 10%, 
and 25% when Y1 and Y2 are continuous, Y1 is continuous and Y2 is binary, and Y2 is continuous and Y1 is 
binary. Our method also yields good performance when the two traits are binary with MAF = 25%. However, 
the estimates of β are less accurate compared to the gold standard when MAF = 2% or 5% for two binary traits 
( |mean(β̂gold standard)−mean(β̂our method)|/mean(β̂gold standard) ≈ 10% ). Supplementary Figs.  1 to 8 present 
scatter plots for beta estimates and p-values comparing our method with the gold standard. In addition, in our 
simulations, when varying the proportion of variance explained by the adjustment covariate from 20 to 2%, we 
find that the variance explained did not have much impact on the accuracy of the approximation as shown in 
Table 1 and Supplemental Table 1. We also find a slight upward bias in effect size and standard error estima-
tions when the correlation is up to 20% lower than the true value (i.e., uniformly generate from 80 to 100% of 
true correlations), while a downward bias is observed when the correlation is up to 20% above the true value 
for continuous outcomes (i.e., uniformly generate from 100 to 120% of true correlations). For binary outcomes, 
there is a downward bias in effect size and its standard error estimations whenever the correlation is under or 
overestimated up to 20% (Supplementary Table 2).

Results from our evaluation of type I error and power are shown in Supplementary Table 3–8. We do not 
observe any inflation of the type I error in the scenario when the SNP and confounder are not associated. In the 
second scenario when there is an association between the SNP and confounder, inflation is only observed when 
the two traits are continuous and the correlation is estimated using a subset of individuals or using a correlation 
estimate from a prior study, which was mimicked by using a randomly generated estimate within ± 20% of true 
value. To further explore the possible causes of the observed inflation, Supplementary Tables 9–10 indicate that 
when we increased the ratio of subset sample set to full data set to estimate the relationship between the traits or 
restrict our literature estimate for the correlation between the covariate and the outcome to be more accurate, the 
inflation is reduced. The results of the power simulation demonstrate that our proposed approach gains similar 
power as the gold standard by inclusion of a covariate unassociated with the SNP but explaining a substantial 
proportion of the variance in the outcome.

Application to the Framingham heart study.  Estimated effect sizes and − log10 (p-values), and quan-
tile–quantile plots for the FHS GWAS results are displayed in Fig. 2. When the outcome is continuous (WC or 
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BMI), our method yields estimates with high consistency compared to the gold standard (estimates obtained 
from individual level data); the correlation coefficients (r) between the approximate effect sizes and the gold 
standard effect sizes are approximately equal to 1 for both continuous (BMI) and binary (ever-smoking) covari-
ates. In addition, for continuous outcomes, the type I error rate is well controlled. For the top WC GWAS hits 
adjusted for BMI, our method was more conservative compared to the estimates from individual level data 
(Fig. 2C).

When the outcome is binary (AF), our approximate approach does not perfectly match estimates from indi-
vidual level data (the correlation coefficient between the approximation and gold standard for the effect estimates 
(betas) ranges from 0.87 to 0.92, while correlation coefficient for –log10 (p-values) ranges from 0.64 to 0.75 
(Fig. 3A–E). There is no type I error inflation when the adjustment covariate is continuous (Fig. 3C). However, 
there is a little deflation when the outcome and adjustment covariates are both binary (genomic lambda = 0.98) 
when using the full phenotype data to estimate the relationship between the two traits. For the top signals in AF 
GWAS adjusted for both MI and HF, our method yields smaller p-values compared to the gold standard using 
individual level estimates (Fig. 3F). Individual level data analysis is the gold standard for estimation, “full” means 
the relationship between the outcome and the covariate is estimated using the full sample of individuals, “subset” 
means the relationship is estimated using a random sample of 1,000 individuals, and “litt.” or literature means 
the relationship is taken from published reports7–9. 

We compared our method with Wolf et al.’s proposed approximation in FHS using WC GWAS adjusted for 
BMI (Supplemental Fig. 9 and Supplemental Fig. 10). We found high consistency (correlation > 0.996) for both 
effect estimates and p values of the two methods.

Application to publicly available cardiometabolic GWAS meta‑analysis results.  When the 
outcome is natural log-transformed fasting insulin (FI) and the adjustment covariate is BMI, the correla-
tion between the gold standard effect estimates and the estimates obtained from our method, with relation-
ship between traits estimated from a subset of individuals, is r = 0.88, very similar to the correlation coefficient 
obtained from GCTA_mtCOJO (Fig. 4). The effect estimates obtained with GCTA_mtCOJO and our approach 
are almost identical (r = 0.99). There are only 9 variants with absolute difference of betas greater than 0.5, and all 
are from rare variants, with effect allele frequencies ranging from 0.8 to 1.3%.

The correlation coefficients of − log10 (p-values) between the gold standard (conditional analysis with indi-
vidual level data) and our method using a subset of the data to evaluate the relationship between outcome and 
adjustment covariate (r = 0.61) is similar to the correlation coefficient obtained for the − log10 (p-values) from 
gold standard versus GCTA_mtCOJO (r = 0.62).

Figure 1.   Framework for approximate conditional phenotype analysis evaluation.
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Our approach identifies many more genome-wide significant variants for FI with BMI adjustment than the 
FI marginal GWAS analysis or the GCTA_mtCOJO approximate BMI adjustment, of which 72 variants have 
been validated by the gold standard approach (Fig. 4C). In terms of genes closest to those significant variants, 
we also find three genes (COBLL1, ANKS1A, and TAF11) which have not been identified by GCTA_mtCOJO or 
marginal GWAS but have been validated by gold standard results (Fig. 4D).

For other trait applications (BMI adjusted for ever-smoking, AF adjusted for BMI, or AF adjusted for CAD), 
our method and GCTA_mtCOJO yields very similar results in effect estimates and p-values. Results from these 
analyses are presented in Supplemental Fig. 11.

In our investigation, we notice that most GWAS studies require data transformation (e.g., inverse normalized 
transformation) for continuous traits, especially when the continuous trait is the outcome. In order to see the 
effect of the data transformation, we apply an inverse-normal transformation to the WC residuals in FHS and 
use the full phenotype data to estimate the relationship between outcome and covariate. Despite high correlation 
coefficients for effect estimates (r = 0.95), the approximate effect sizes are two times smaller than the individual 
level data estimates. We also find biased estimates when we use mtCOJO by GCTA from consortium data (r for 
effect estimates = 0.69) when the trait of interest has been transformed.

Another issue when applying our method to existing GWAS results relates to allele frequency differences 
between GWAS datasets. This issue is observed when we analyzed FI adjusted for BMI; one variant has a very 
different allele frequency in the meta-analysis for BMI (MAF = 11.68%) compared to meta-analysis results for FI 
(MAF = 0.83%). This variant, rs11672564, also has a great discrepancy between the approximate method and gold 
standard, which can be explained by the effect allele frequency difference between the two datasets. To address 
this issue, we use the mean allele frequencies or the minimum allele frequency in the two consortia. However, 
the results do not improve substantially (see Supplement Fig. 12). Filtering variants with significant difference in 
allele frequencies (p-values less than 0.05 after Bonferroni correction) resolves this issue (see Supplement Fig. 13).

Table 1.   Simulation results for genetic effect estimation of our method and the gold standard. Number in 
the table represent averages over all simulation replicates. MAF: minor allele frequency. Individual level data 
analysis is the gold standard for estimation. “Full dataset” means the relationship between the outcome and 
the covariate is estimated in the full sample of individuals, but the effect is estimated using our approximate 
approach. “Subset dataset” means the relationship between the traits is estimated by randomly selecting 
200 individuals, or 20% of the total sample size. “Proposed method within ± 20% of true value” means the 
relationship between the outcome, and the covariate is a random estimate falling with 20% the true covariance 
between the traits. The latter scenario reflects what might happen when using estimates from published 
reports.

MAF

Individual level data 
frequency (gold 
standard)

Proposed method full 
dataset

Proposed method subset 
dataset (20%)

Proposed method 
within ± 20% of true 
value

β̂ SE(β̂) β̂ SE(β̂) β̂ SE(β̂) β̂ SE(β̂)

Continuous Y1 and continuous Y2

2% 0.710 0.146 0.710 0.146 0.709 0.145 0.709 0.145

5% 0.460 0.092 0.460 0.092 0.461 0.092 0.460 0.092

10% 0.332 0.065 0.332 0.065 0.331 0.065 0.332 0.065

25% 0.231 0.046 0.231 0.046 0.23 0.046 0.231 0.046

Continuous Y1 and binary Y2

2% 0.709 0.143 0.707 0.143 0.708 0.143 0.707 0.143

5% 0.460 0.091 0.455 0.091 0.457 0.09 0.455 0.090

10% 0.333 0.064 0.329 0.064 0.329 0.064 0.328 0.064

25% 0.228 0.046 0.222 0.046 0.223 0.046 0.221 0.046

Continuous Y2 and binary Y1

2% 0.597 1.072 0.561 1.101 0.571 1.144 0.541 1.057

5% 0.752 0.288 0.722 0.284 0.727 0.309 0.695 0.277

10% 0.809 0.203 0.781 0.200 0.782 0.215 0.750 0.192

25% 0.862 0.150 0.843 0.149 0.843 0.155 0.811 0.143

Binary Y1 and binary Y2

2% 0.867 0.364 0.786 0.340 0.784 0.342 0.784 0.340

5% 0.886 0.234 0.808 0.219 0.806 0.222 0.806 0.220

10% 0.842 0.172 0.782 0.162 0.784 0.165 0.780 0.162

25% 0.764 0.133 0.744 0.130 0.748 0.132 0.742 0.130
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Discussion
We propose an approximate method to estimate the effect of a variant on a trait of interest when adjusting for 
another trait using GWAS summary statistics. Our method is applicable to continuous and binary traits and 
can be applied to analyze a single SNP without requiring the availability of genome-wide results. We show that 
the variance of the outcome explained by the adjustment covariate does not have much impact on the accuracy 
of the approximation. We observed that our approximations for binary outcomes are not as good as continu-
ous outcomes based on our simulation and application results, but our approach is a reasonable approximation 
method when individual level data analysis is not feasible.

Our proposed method and the mtCOJO by GCTA achieve high consistency in applications to GWAS sum-
mary statistics based on consortia. Because our method does not depend on input parameters or require two 
additional external genetic datasets to estimate the relationship between the traits, our approach is more widely 
applicable and storage efficient, a great advantage as the number of SNPs included in GWAS increases along 
with the imputation panel density.

Another advantage of our method that merits discussion is the generalization to multiple confounders adjust-
ment. From the FHS application, we accurately approximate for both effect sizes and p-values when the outcome 
is binary with two binary confounders. Unlike the conservative approximation by mtCOJO implemented in the 
software GCTA with fasting insulin adjusted for BMI, our method identifies additional significantly associated 
variants without the need for individual-level data analysis. Moreover, our approach utilizes summary statistics 
without requiring individual level data, enabling data sharing without patient confidentiality issues.

Given the advantages mentioned above, we recommend using our approach to adjust for additional covariates 
when analyzing a large number of variants (e.g., candidate genes, sentinel genes or variants from GWAS) because 
our method is more efficient in data processing and data storage. When analyzing all GWAS variants, results 
obtained from our method and existing approaches (e.g., GCTA_mtCOJO) for continuous or binary outcomes 
are similar. However, we recommend our method over GCTA_mtCOJO in situations where there are very few or 
no genome-wide significant associations from the GWAS for the covariates because of the difficulty in estimating 
the genetic correlation between outcome and covariate from GWAS summary statistics.

One potential limitation of all conditional approaches is that sometimes further adjustment for a heritable 
covariate can lead to bias in estimation of genetic effect, unless the genetic variant is not associated with the 
covariate or the covariate mediates the genetic effect on the outcome12. Because the real causal relationships 
among genetic variants, the covariate, and the outcome are unknown, we suggest reporting the GWAS results 
with and without the covariate adjustment. Our approximation method can provide covariate adjusted results 
without requiring additional individual-level data analysis based on the summary statistics. With the adjusted 
and unadjusted information at hand, we can potentially estimate the bias of including the covariate and inter-
pret the GWAS results more cautiously12. For continuous outcomes, Wang et al13 provided corrections to filter 
potentially spurious associations (i.e., false positive associations) using GWAS summary statistics. We utilized 
their approach when applying our proposed method and removed more than 100 variants which might be false 
positives in the WC GWAS adjusted for BMI in the FHS (Supplemental Fig. 14).

There are at least some limitations of our method for applications to existing GWAS results. We used a 
heuristic justification to approximate β̂ by the right-hand site of (1) when Y1 is binary. However, the simulation 
studies show that the results of our method are similar to the gold standard except when both traits are binary 
and the variant has low frequency (MAF ≤ 5%). Another limitation relates to data transformation; when the 
outcome was rescaled or transformed using an inverse normalized transformation, the approximations for the 
effect estimates or p-values were less precise. Thus, when applying approximation methods to inverse normal 
transformed or standardized continuous outcomes, we recommend rerunning the analyses using individual level 
data whenever possible. One other limitation arises when there are large differences in allele frequencies across 
different consortia GWAS results. In this instance, we recommend applying our method to GWAS of identical 
ancestries, and to filter out variants with significant difference in allele frequencies (p-values less than 0.05 after 
Bonferroni correction) in the two GWAS datasets.

Although our method can adjust for multiple covariates simultaneously, the feasibility of including multiple 
covariates depends on the number of variants analyzed, the number of covariates, and the available comput-
ing resources. In a preliminary implementation with continuous outcomes and covariates, the computing time 
increases somewhat linearly with addition of covariates. Therefore, our method could feasibly be applied to tens 
of covariates simultaneously if sufficient computing resources are available.

In conclusion, we propose an approximation to adjust estimates of genetic effects for covariates using GWAS 
summary statistics. Our approach is applicable to both continuous and binary outcomes, and continuous and 
binary adjustment covariates, and does not require the availability of genome-wide results. Based on simulations 
and applications, our approach leads to an efficient way to perform approximate conditional phenotype analysis 
using widely available summary statistics.

Method
Proposed method for approximate conditional analysis.  When individual level data for two traits 
Yi , i = 1, 2 and a genetic variant X are available for a sample of size n, we write a generalized linear models (M1 
& M2) for each trait as a function of the genetic variant as:

in which the function gi(.) = logit if Yi is binary, gi(.) = identity if Yi is continuous.
The relationship between Y1 and Y2 can also be modelled as a generalized linear model (M3):

gi(E(Yi)) = µi + Xβi , i = 1, 2,
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Finally, we model the trait Y1 as a function of the genetic variant X adjusting for Y2 with model 4 (M4):

The parameter β in M4 is what we want to estimate based on GWAS summary statistics.

Continuous Y1 and Y2.  When Y1 and Y2 are two continuous traits, then gi(.) is the identity function and 
M1-M4 are ordinary least square linear models (OLS). Based on the ordinary least squares estimator, we can 
write

We can obtain XT
X , XT

Y1,X
T
Y2,Y

T
1 Y1,Y

T
2 Y2 by the following equations:

in which MAF is the minor allele frequency of a genetic variant and Eq. (2) holds under Hardy–Weinberg 
equilibrium (HWE). The projection matrix PC(X) = X(X′

X)−1
X
′ , n is the total sample size. The variance of B̂ 

is estimated by

Because XT
X,XT

Y1,X
T
Y2,Y

T
1 Y1,Y

T
2 Y2 can be estimated from Eqs. (2)–(6) using summary statistics, we only 

need to estimate γ̂m (the coefficient in the model M3 relating Y1 to Y2) in order to perform a statistical test of the 
hypothesis H0:β = 0. For continuous traits, we propose estimating γ̂m from M3 with a subset of individual-level 
phenotype data. In addition, if the relationship between the two traits has been studied in previous publications, 
possibly in cohorts with similar characteristics, the prior results can be utilized to estimate γ̂m and infer β in M4. 
A third option was proposed by Deng and Pan 2017, who approximated γ̂m using cor(Z1,Z2) , for which Zi ∈ ℝm×1 
is a vector of test statistics (beta/SE(beta)) from the unadjusted models testing the association of genome-wide 
SNPs other than SNP X . This method works well only if both traits are quantitative4.

Continuous Y1 and binary Y2.  When the adjustment trait is binary, M2 becomes a logistic model. However, 
other models (M1, M3 and M4) remain OLS models. Note that Eqs. (4) and (6) will not hold when M2 is a logis-
tic regression model, so we cannot obtain XT

Y2 and YT
2 Y2 directly from summary statistics.

When Y2 is binary, our proposed approximation requires knowledge of the number of cases ( n1 ) and controls 
( n0 ) in addition to the total sample size n = n0 + n1 . Using this information, we can calculate YT

2 Y2 as

To get an estimate of XT
Y2 , we take advantage of the information provided by the genotype frequencies in 

cases and controls separately. Genotype frequencies stratified by case status, Pij = P(X = i|Y2 = j) for i = 0, 1 or 
2 and j = 0 (controls) or 1 (cases), may be available, but if not, they can be estimated from available summary 
statistics. See the Appendix for details.

Using the stratified genotype frequencies in cases and controls, the quantity XT
Y2 can be approximated by

Finally, we apply Eqs. (1) and (7) to evaluate the approximate effect size of β̂ and its corresponding variance.

Binary Y1 and continuous Y2.  When Y1 is binary and Y2 is continuous, M1, M3, and M4 are logistic models, 
while M2 remains an OLS model. In order to estimate the genetic effect size after adjusting for Y2 , we use Eq. (1) 
to calculate β̂ . Note that the equality in Eq. (1) is an approximation and no longer an equality because model 

g1(E(Y1)) = γ0 + Y2γm.

g1(E(Y1)) = β0 + Xβ + Y2γ .

(1)B̂ =

(
β̂

γ̂

)
=

(
X
T
X X

T
Y2

Y
T
2 X Y

T
2 Y2

)−1(
X
T
X 0

0 Y
T
2 Y2

)(
β̂1
γ̂m

)
.

(2)X
T
X ≈ 2n×MAF× (1−MAF),

(3)β̂1 = (XT
X)−1

X
T
Y1,

(4)β̂2 = (XT
X)−1

X
T
Y2,

(5)σ̂ 2
1 =

1

n− 1
Y
T
1 (I− PC(X))Y1 = X

T
Xv̂ar(β̂1),

(6)σ̂ 2
2 =

1

n− 1
Y
T
2 (I− PC(X))Y2 = X

T
Xv̂ar(β̂2),

(7)v̂ar(B̂) =
1

n− 2

(
X
T
X X

T
Y2

Y
T
2 X Y

T
2 Y2

)−1
(
Y
T
1 Y1 −

(
β̂

γ̂

)T(
X
T
Y1

Y
T
2 Y1

))
.

(8)Y
T
2 Y2 = n1

(
1−

n1

n

)
.

(9)n1(P11 + 2P21)−
n1[n0(P10 + 2P20)+ n1(P11 + 2P21)]

n
.
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M1 is no longer an OLS model. In addition, β̂1 and γ̂m are the corresponding beta coefficients from two logistic 
regressions, M1 and M3. The estimation of var(B̂) can be approximated by:

where V =

(
X
T
X X

T
Y2

Y
T
2 X Y

T
2 Y2

)
 , and D =

(
X
T
X 0

0 Y
T
2 Y2

)
 . In Eq. (10), the covariance between the estimated param-

eters, β̂1and γ̂m cannot be obtained directly from summary statistics. Because the score test and Wald test in 
logistic regression are asymptotically equivalent, we replace the ĉorr(β̂1, γ̂m) by ĉorr(β̂∗

1 , γ̂
∗
m) , in which β̂∗

1 and 
γ̂ ∗
m are OLS estimators. Then we can approximate ĉov(β̂1, γ̂m) by

In Eq. (11), the only statistic that cannot be obtained directly from summary statistics is YT
1 Y2 . Two additional 

quantities would allow the estimation of YT
1 Y2 : the mean of Y2 among cases ( Mean(Y2|Y1 = 1) and among con-

trols ( Mean(Y2|Y1 = 0) ). These two additional summary statistics are usually available from each cohort, and 
allow for the estimate of YT

1 Y2 as follows:

Binary Y1 and Y2.  When both Y1 and Y2 are binary traits, M1 to M4 are logistic models. Equation (1) can 
be used to estimate β in M4, where YT

2 Y2 and XT
Y2 are calculated using our proposed approximation method 

from Eqs. (8) and (9). We also use Eq. (10) to estimate the variance of our proposed β̂ , for which ĉov(β̂1, γ̂m) is 
calculated from Eq. (11) in Sect. 4.1.3.

Although the description of our proposed method includes only one confounder (Y2), the method is easily 
extended to multiple confounders ( Y2, . . . ,Ym ) if we infer the relationships between outcome and confounders 
from summary statistics and phenotypic data (see Appendix for details). We apply the multivariable models to 
the Framingham Heart Study (atrial fibrillation as the outcome, with history of myocardial infarctions and history 
of heart failure as confounders) as an example to illustrate the approach for multiple confounder adjustment.

Simulation studies.  We perform a simulation study to evaluate the accuracy of our proposed method in 
estimating β̂ and its variance. For each of 1000 simulation replicates, we generate 1000 independent individuals. 
We first generate the genotype ( X ) using a random binomial variable with a minor allele frequency ( p ) equal to 
0.02, 0.05, 0.10, or 0.25.

The traits are simulated as follows. When Y1 and Y2 are continuous, we generate Y2 from the equation 
Y2 = Xβ2 + ε2 , where ε2 is normally distributed, and β2 is fixed so that the genotype explains 4% of the variance 
in Y2 . We generate Y1 based on equation M4, assuming 2% variance of Y1 can be explained by the genotype X 
and 20% can be explained by Y2.

When Y1 is binary and Y2 is continuous, we generate Y2 using the same parameters used in the two continu-
ous trait scenario. We generate the binary variable Y1 using a latent uniform (0, 1) variable, setting Y1 = 1 when 
two conditions are met: 1) the latent variable exceeds the genotype specific thresholds of 0.1 (X = 0), 0.2 (X = 1) 
and 0.4 (X = 2); and 2) Y2 exceeds the 20th percentile of the Y2 distribution.

When Y1 is continuous and Y2 is binary, we generate Y2 using the approach used to generate Y1 in the scenario 
above, without the additional condition on the second trait exceeding a certain threshold. Then we generate Y1 
based on M4, assuming 2% of the variance in Y2 can be explained by the genotype X and 20% of the variance 
can be explained by Y2.

If Y1 and Y2 are both binary variables, first we generate Y2 using the same method and parameters as the 
scenario with continuous Y1 and binary Y2 . Then we calculate Y∗

2 using Y∗
2 = Xβ∗

2 + Y1γ
∗ , assuming β∗

2 = 0.8 
and γ ∗

2 = 2.0 . Note that Y∗
2 now is a continuous variable. We then transform Y∗

2 to Ỹ2 via

We updated Ỹ2i by adding a random error generated independently from a centered normal distribution with 
standard deviation equal to 0.1. Finally we convert the continuous traits Ỹ2i to binary traits Y2i using the 80% 
quantile of Ỹ2(Y2i = I(Ỹ2i ≥ Q80%(Ỹ2))) as the threshold.

In our simulation, we estimate γm in M3 using three different approaches: 1) using the individual level from 
the full dataset to fit model M3; 2) using a subset of the individual level data (200 out of 1,000) to fit model M3; 
and 3) generating γ̂m from a uniform distribution with support interval (0.8 ∗mean(γ̂ ∗

m), 1.2 ∗mean(γ̂ ∗
m)) to 

(10)v̂ar(B̂) = V
−1

D

(
v̂ar(β̂1) ĉov(β̂1, γ̂m)

ĉov(β̂1, γ̂m) v̂ar(γ̂m)

)
DV

−1,

(11)

ĉov(β̂1, γ̂m) = ĉorr(β̂1, γ̂m)

√
v̂ar(β̂1)

√
v̂ar(γ̂m) ≈

ĉov(β̂∗
1 , γ̂

∗
m)√

v̂ar(β̂∗
1 )
√
v̂ar(γ̂ ∗

m)

√
v̂ar(β̂1)

√
v̂ar(γ̂m)

≈
var(Y1)(X

T
X)−1

X
T
Y2(Y

T
2 Y2)

−1
√

v̂ar(β̂1)
√

v̂ar(γ̂m)√
1

n−1 (X
TX)−1

(
Y
T
1 Y1 − Y

T
1 X(X

TX)−1XTY1

)√
1

n−1 (Y
T
2 Y2)−1

(
Y
T
1 Y1 − Y

T
1 Y2(Y

T
2 Y2)−1YT

2 Y1

) .

(12)Y
T
1 Y2 = n× Ĉov(Y1,Y2) = n1

(
1−

n1

n

)
[Mean(Y2|Y1 = 1)−Mean(Y2|Y1 = 0)].

Ỹ2i =
1

1+ exp(−Y∗
2i)

.
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mimic the approximate estimation from literature where γ̂ ∗
m is estimated from full data. Then we compare our 

method to the gold standard (using individual level data to estimate β and its statistical significance).
In addition, we compute the type I error and power of our proposed approaches and compare them to the 

gold standard. For the type I error, we consider the following two scenarios: (1) genetic variant X is not associ-
ated with outcome of interest Y1 or the covariate Y2 ; (2) genetic variant is not associated with Y1 but is associated 
with Y2 . In the second scenario, we generate Y2 using the same setting in the coefficients estimating simulations 
described above.

We assess power assuming X is not associated with the covariate Y2 . We take the variance of Y1 explained 
by Y2 as 5%, 10%, 20%, and 40% (as γ

2var(Y2)
var(Y1)

= 0.05, 0.1, 0.2, or 0.4 ). When Y1 is continuous, we let 
2β2MAF(1−MAF)

var(Y1)
= 1% ; when Y1 is binary, we set 2β

2MAF(1−MAF)
var(Y1)

= 8% in order to get the compareable value of 
power when the outcome is continuous.

Real data applications.  Framingham heart study.  The Framingham Heart Study (FHS) is an observation-
al community-based longitudinal study, launched in 1948 to assess risk factors for cardiovascular diseases14–16. 
Details of the genotype and phenotype data collection for FHS can be found elsewhere17. A subset of FHS partic-
ipants with available genotypes for approximately 550,000 SNPs was selected for analysis. The phenotypes were 
measured at the time closest to the DNA collection. Our method was applied to the FHS under four scenarios: 
(1) the outcome is waist circumference (WC) and the adjustment covariate is BMI; (2) the outcome is BMI and 
the adjustment covariate is ever-smoking; (3) the outcome is atrial fibrillation (AF) and the adjustment covari-
ate is height; and (4) the outcome is AF and the two adjustment covariates are history of myocardial infarction 
(MI) and history of heart failure (HF). Age, sex, and the first ten principle components, to account for possible 
population stratification, are included as covariates in the models.

The gold standard for our method is the GWAS analysis conducted on individual level data. We compare the 
effect sizes and significance of each SNPs with the approximate estimates using our proposed approach based 
on GWAS summary statistics. When applying our proposed method, the phenotypes relationships are estimated 
under the following three scenarios: (1) using the full phenotypes data; (2) using a randomly selected sample 
of 1,000 individuals from the full phenotypes data; and (3) using published study estimates. Such published 
reports include the study of Bozeman et al7 reporting on the relationship between WC and BMI, the reports 
from Plurphanswat et al8 and Dare et al9, describing the relationship between BMI and ever smoking, the report 
from Alonso et al10 on the relationship between AF and height, or the article from Schnabel et al11 describing 
the relationship between AF and MI or HF.

Publicly available GWAS meta‑analysis results.  We download GWAS summary statistics of fasting insulin (FI), 
BMI, ever-smoking, AF, and coronary artery diseases (CAD) from several consortia: Meta-analysis of Glucose 
and Insulin-related traits (MAGIC) for FI1,2, Genetic Investigation of Anthropometric Traits (GIANT) for BMI18, 
Tobacco and Genetics (TAG) for ever-smoking19, Atrial Fibrillation Consortium (AFGen)20, and Coronary 
Artery Disease Genome wide Replication and Meta-analysis plus The Coronary Artery Disease (C4D) Genetics 
consortium (CARDIoGRAMplusC4D) for CAD21. Because some summary statistics are based on Genome Build 
36, we use the web provided tool to convert the genome coordinates to Genome Build 37 (https​://genom​e.ucsc.
edu/cgi-bin/hgLif​tOver​) to get the same coordinates for the different assemblies.

We then use the summary statistics and the estimates of relationship between the outcome and the covariate 
based on FHS phenotypes data, a participating cohort in these consortia, to approximately estimate the GWAS 
effect after adjustment for one additional covariate: (1) FI adjusted for BMI; (2) BMI adjusted for ever-smoking; 
(3) AF adjusted for BMI; and (4) AF adjusted for CAD. Among those four applications, we only have the gold 
standard (individual level data) from MAGIC for FI adjusted for BMI. For the other analyses, GWAS results 
adjusted for the additional trait are not available for comparison purpose. We also compare our method with the 
multi-trait-based conditional and joint analysis (mtCOJO) implemented in GCTA 1.9 which leverages GWAS 
summary statistics to estimate the relationships for both continuous and binary traits. When conducting the 
analysis by GCTA_mtCOJO, we use unrelated individuals from FHS as the LD reference panel. We compare the 
effect sizes and − log10 (p-values) obtained from our method, the gold standard, and GCTA_mtCOJO.

The difference between our method and GCTA_mtCOJO results from the way the relationship between the 
outcome and the covariates is estimated: we directly estimate the relationship based on phenotype data (usually 
one cohort from a consortium or from published reports), while GCTA_mtCOJO uses a causal variants set and 
heritability of the outcome to estimate the phenotypes relationship. Details regarding estimation of the relation-
ship between the two traits for both methods are in Table 2.

All our analyses (approximation functions, simulations, and applications) were run using R/3.6.0. For details, 
see http://sites​.bu.edu/fhspl​/publi​catio​ns/appro​ximat​e-condi​tiona​l-analy​sis/.

Table 2.   Details of the estimation of the trait relationship using our method and GCTA_mtCOJO.

Our method GCTA_mtCOJO

Parameters Not required Significance level for selecting GWAS signals for instrumental variable. Typically set to 5 × 10–8 for most analysis. 
We reduce this threshold to 5 × 10–6 for the BMI GWAS adjusted for ever-smoking

External data FHS phenotype at the time closest to DNA draw Genotype data from FHS unrelated individuals are used as LD reference panel
LD-score regression results from European population based on 1,000 Genomes for the outcome

https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/cgi-bin/hgLiftOver
http://sites.bu.edu/fhspl/publications/approximate-conditional-analysis/
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Figure 2.   Estimated effect sizes, − log10 (p-values) and quantile–quantile plots for GWAS with continuous 
outcomes measured in the Framingham Heart Study. Panels (A–C) present the estimated effect sizes, − log10 
(p-values), and quantile–quantile plot (q-q plot), respectively, for GWAS results from analyzing waist 
circumference (WC) adjusted for body mass index (BMI); panels (D–F) present the estimated effect sizes, 
− log10 (p-values), and q-q plot, respectively, for BMI adjusted for ever-smoking.
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Figure 3.   Estimated effect sizes, − log10 (p-values) and quantile–quantile plots for GWAS results with binary outcomes measured 
in the Framingham Heart Study. Panels (A–C) present estimated effect sizes, − log10 (p-values), and quantile–quantile plot (q-q 
plot), respectively, for GWAS results from analyzing atrial fibrillation (AF) adjusted for height; panels (D–F) present the estimated 
effect sizes, − log10 (p-values), and q-q plot, respectively, for AF adjusted for both myocardial infarction (MI) and heart failure 
(HF). Individual level data analysis is the gold standard for estimation, “full” means the relationship between the outcome and the 
covariate is estimated using a full sample of individuals, “subset” means the relationship is estimated using a random subset of 1,000 
individuals, and “litt.” or literature means the relationship is taken from published reports10,11.
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Figure 4.   Estimated effect sizes (A), − log10 (p-values) (B), number of genome-wide significant variants 
(C), and genome-wide significant genes (D) for existing GWAS meta-analysis for fasting insulin adjusted 
for body mass index. Individual level data results provide the gold standard for estimation and is denoted as 
“gold_standard” in the Venn diagram, “marginal” results are the fasting insulin GWAS results without BMI 
adjustment, and “gcta” results are obtained using multi-trait-based conditional and joint analysis (mtCOJO) 
implemented in GCTA 1.9 (GCTA mtCOJO), with the Framingham Heart Study (FHS) unrelated subset of 
individuals used for the LD reference panel. “Novel” results are obtained from our novel method with phenotype 
data from FHS to estimate the relationship between traits. Genome-wide significant level equals to the 0.05/total 
number of variants (0.05/2,407,460 = 2.08 × 10–8). Genome-wide significant genes are the genes closest to the 
significant variants.
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