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Abstract
Purpose Microbiota-derived metabolites could alter the brain tissue toward the neurodegeneration disease. This study aims to
select the genes associated with Propionic acid (PPA) and compromise Alzheimer’s disease (AD) to find the possible roles of
PPA in AD pathogenesis.
Methods Microbiota-derived metabolites could alter the brain tissue toward the neurodegeneration disease. This study aims to
select the genes associated with Propionic acid (PPA) and compromise Alzheimer’s disease (AD) to find the possible roles of
PPA in AD pathogenesis.
Results Amongst all genes associated with PPA and AD, 284 genes to be shared by searching databases and were subjected to
further analysis. AD-PPA genes mainly involved in cancer, bacterial and virus infection, and neurological and non-neurological
diseases. Gene Ontology and pathway analysis covered the most AD hallmark, such as amyloid formation, apoptosis, prolifer-
ation, inflammation, and immune system. Network analysis revealed hub and bottleneck genes. MCODE analysis also indicated
the seed genes represented in the significant subnetworks. ICAM1 and CCND1 were the hub, bottleneck, and seed genes.
Conclusions PPA interacted genes implicated in AD act through pathways initiate neuronal cell death. In sum up, AD-PPA
shared genes exhibited evidence that supports the idea PPA secreted from bacteria could alter brain physiology toward the
emerging AD signs. This idea needs to confirm by more future investigation in animal models.
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Introduction

Alzheimer’s disease (AD) is known as the most common neu-
rodegenerative disorder that its primitive hallmarks are the
accumulation of beta-amyloid peptide (Aβ) and neurofibril-
lary tangles [1]. In the recent decade, another hypothesis ex-
plains AD pathogenesis that named the infection hypothesis.
This hypothesis explains that microorganisms might have an
essential role in AD progression [2]. This hypothesis recon-
structed by pioneering work of Itzhaki’s group, who showed
that plaques contain residues of HSV-1 viral DNA and some
experimental data intimate that other viruses, such as CMV,
may also be involved in the pathogenesis of AD [3, 4]. The
epidemiological studies show that the presence of antiviral an-
tibodies has been correlated with the long-term development of
AD [5]. Other groups of investigators suggested a role for spi-
rochetes in the pathogenesis of AD or the presence of Borrelia
burgdorferi in the post-mortem brains of many AD patients [6,
7]. Cutibacterium acnes(propionibacterium acnes) was detect-
ed in the cortex of patients with AD [8]. Scientists at Bristol
University also used 16S ribosomal NGS to assess the bacterial
component of the microbiome in post-mortem tissue from the
temporal cortex of AD and control. This study suggests that AD
brains tend to have large bacterial loads compared to controls.
They reported phyla such as Firmicutes and most consistently
Actinobacteria, especially Cutibacterium acnes [9].
Cutibacterium acnes is a Gram-positive and anaerobic human
skin commensal that involved in the pathogenesis of acne. It
was formerly named Propionibacterium acnes for its ability to
generate propionic acid (PPA) [10, 11]. In addition to microbi-
ota found in post-mortem brain tissue of AD and related them to
neurological pathologies [9],we, therefore, hypothesized the
microbiota-derived metabolites such as PPA might be a signif-
icant risk factor for AD.

PPA is found in the gut, along with other short-chain
fatty acids, such as acetate and butyrate, which are major
metabolic products of enteric bacteria, following fermen-
tation of dietary carbohydrates and some amino acids [12,
13]. Many bacteria existing in the oral mucosa also pro-
duce PPA [14–16]. PPA is taken up by neuroglia and neu-
rons and enters the CNS, where it is thought to comprise a
significant energy source in cellular metabolism, particu-
larly during early brain development [17, 18]. Besides,
PPA changes several physiological processes such as neu-
rotransmitter synthesis and release, cell signaling, free rad-
ical production, mitochondrial function, lipid metabolism,
immune function, gap junction gating, intracellular pH
maintenance, and modulation of gene expression through
phosphorylation and histone acetylation [19, 18, 20–22].
PPA inoculation induced abnormal neural cell organiza-
tion, which may have led to autism-like neurobehaviors
[23, 24]. Studies showed that following PPA administra-
tion in rats elevates levels of microglia (CD68 positive)

and neurotoxic cytokines, including interleukin (IL)-6, tu-
mor necrosis factor (TNF)-α, and interferon-γ [25–27].

Tanzi and Moir have produced a compelling piece of evi-
dence demonstrating amyloid β that accumulated in the AD
brain is an antimicrobial peptide [28]. These observations
were supported by the in vivo testing of the antimicrobial
activity of Aβ [29]. Antimicrobial activity of Aβ in the pres-
ence of pathogens or pathogen-derived metabolites like PPA
could be a crucial trigger of starting AD pathogenesis.
Multiple studies focus on the positive effect of PPA on treated
cells in animal models [25–27], or determined its association
as an environmental contributor in autism spectrum disorders
[23, 24, 30]. Since there is no investigation directly shows the
AD pathology and neuronal toxicity of PPA in experimental
models, this study used bioinformatic analysis to identify PPA
complications link to emerge AD pathophysiology and signs.
Herein, we aimed to combine the multi-source PPA-related
data in a meaningful manner as retrieved from multiple data-
bases to uncover the mechanism associated with these critical
genes interacted with PPA and involved in AD. This study
will improve our ability to understand and diagnose the pos-
sible microbiota-derived PPA and consequences of AD pa-
thology and it will help to prevent long-term complications.

Methodology

Study design and prioritization of AD and PPA genes

To find the possible relationship of PPA secreted by microbiota
from variable resources and AD pathogenesis, we selected the
genes shared in PPA and AD for further functional and structural
analysis. There are different public resources that contain the
interactions of genes with chemicals, drugs, and other different
agents. These kinds of data emerged from experimental [31, 32]
and computational knowledge [32, 33]. Besides, database repos-
itories of high throughput gene expression, including Gene
Expression Omnibus (GEO) [34] and ArrayExpress [35]contain
data, have been produced from the direct effect of drugs and
chemicals on cell lines, animal models, or the result of human
clinical trials. In this study, collected genes associated with PPA
and AD separately from several of the following resources are
explained in data gathering part and selected the shared genes
(named AD-PPA shared genes or PPA-AD shared genes) for the
next analysis. Used Gene Ontology (GO) and Pathway enrich-
ment tools to find the mechanism related to these genes as the
functional analysis of data and applied network analysis as the
structural analysis of data to find the crucial genes. An outline of
the workflow of this study was summarized in Fig. 1. To prior-
itize the AD-PPA genes, first focused on the data gathering from
gene expression databases and compared significant data with
data obtained from public databases [36]. Public databases gen-
erally collected data from different molecular databases and,
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based on unique algorithms designed for their analysis; report the
output with significant value. In this study, it was almost selected
output from different databases with significant value for both
AD and PPA keywords. The other prioritization of AD-PPA
genes, analysis of AD, and PPA network separately and compare
the output with the network of AD-PPA genes. For analysis
gene-diseases association, gene ontology, and KEGG pathway,
used genes that are shared in AD and PPA.

Data gathering related to Alzheimer disease and
propionic acid

The parent terms “Alzheimer disease”was used to find the genes
and proteins. The AD data was collected from public databases
(CTD, and GeneCards) and gene expression data from text min-
ing. Comparative Toxicogenomics Database (CTD, http://
ctdbase.org) is a public resource that carries information about
interactions between gene products and environmental
chemicals. Over 15 million toxicogenomic relationships in
CTD provide a user-friendly database that helps to find the effect
of these interactions on human diseases [36]. In CTD, the input is

a gene list or gene name, drug, chemical agent, and disease term.
The output will be chemicals interact with genes, genes interact
with the drug and chemical agent, and genes involved in the
disease. We searched the keyword “Alzheimer’s disease” in the
search box related to keyword queries and selected Alzheimer’s
disease between 2 queries obtained from the input. Then we
opened the gene box in Alzheimer’s disease page to download
the genes associated with AD. We used all data retrieved from
this database without considering the inference score. For prior-
itizing inferences of the different database used in CTD, CTD
provides a statistic named “Inference Score” that it reflects the
degree of similarity between CTD chemical–gene-disease net-
works and a similar scale-free random network [36].

GeneCards (https://www.genecards.org/) includes
comprehensive useful and annotative information of known
and predicted human genes that categorized in different terms
including, genetic loci, gene clusters, RNA genes,
pseudogenes, and protein coding. These data integrate
automatically from over 125 data sources [37]. In this
database, also search for genes, biological process, or human
disease and output will be all genes linked to the searching

Fig. 1 The workflow of data gathering related to AD and PPA and their functional and structural analysis
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term. To find the gene associated with Alzheimer’s disease,
search this keyword as input in the search box of the
GeneCards database and exported all data related to
Alzheimer’s disease. For selecting the genes in this database
without considering scoring, applied all data as output.
GeneCards used GIFtS score linked to the GIFtS algorithm
that reflected the degree of a gene’s functionality. [37].

Gene expression data were obtained from text mining. We
found papers that analyzed themicroarray andRNAseq data [38,
39]. Brandon L. Pearson et al. used previously published neuro-
degenerative disease data, including these two data named
BLALOCK_ALZHEIMERS and SEKAR_ALZHEIMERS.
An Excel list of brain disorders gene sets and genes was acces-
sible in Supplementary Data 2 [40].We picked up
BLALOCK_ALZHEIMERS and SEKAR_ALZHEIMERS da-
ta (were statistically significant (FDR< 0.1)) and combined these
two AD datasets and introduced them as “text mining data.“

Blalock EM et al. have been generated microarray data that
used snap-frozen hippocampal specimens of 31 subjects at dif-
ferent levels of ADs that assessed with Braak stages, adjusted
Mini-mental Status Exam (MMSE) test and neurofibrillary tan-
gle (NFT) count. The control tissues were matched for age, and
neurodegenerative disorders (MMSE > 25, < Braak stage II).
The samples were provided by Brain Bank of the Alzheimer’s
Disease Research Center at the University of Kentucky. To
generate gene expression data used, human GeneChips (HG-
U133A) and MICROARRAY SUITE 5 (MAS5; 50) [38].

Sekar Sh. et al. in a study with dbGaP accession NO.
phs000745.v1.p1 also has been used ten post-mortem brain sam-
ples from late-onset AD subjects(Braak stages ranging from IV
to VI) and ten healthy elderly control subjects(Braak stages rang-
ing from I to IV). They were collected at the Banner Sun Health
Research Institute’s Brain and Body Donation Program. Library
pools were sequenced by synthesis on the Illumina HiSeq2000
using Illumina’s Truseq PECluster Kit v3 and Illumina’s TruSeq
SBS Kits v3 for paired 83 bp read lengths [39].

The final gene list related to AD was obtained from the
genes that were shared between CTD and GeneCards databases
and text mining.The parent term “propionic acid” was used to
find the genes that interact with propionic acid. In GEO or
ArrayExpress databases, there was not found high-throughput
data that have been directly produced from the effect of PPA on
cell line or animal models, so to collect PPA data used the
public databases, CTD and GeneCards, DGIDB, and
Coremine search engine. In CTD, searched propionic acid in
keyword queries and selected propionic acid between 316 re-
sults to find the genes associated with propionic acid. Then
opened the gene box in the propionic acid page and
downloaded all the genes as output. GeneCards also searched
the propionic acid in the keyword search box and exported all
genes associated with propionic acid as output. Here for CTD
and GeneCards, selected all genes without considering a spe-
cific threshold for scoring. The Drug Gene Interaction Database

(DGIDB, www.dgidb.org), is an open research resource for
drug-gene interaction. This database applies 30 disparate data-
bases and web resources to analyze information associated with
the interaction of genes and drugs [33]. In DGIDB databases,
input was the propionic acid in search category box and select-
ed drug sheet to search all genes interact with propionic acid but
did not use filter related to the Clinically Actionable, Druggable
Genome and Drug Resistance. All genes retrieved from this
database used for further analysis. Coremine search engine is
a free Internet service for searching that developed by PubGene
Company (www.coremine.com). Coremine Medical is a
domain for sharing medical information. In the Coremine
Medical search engine, propionic acid was explored as input,
then selected the gene/protein in extracted association part and
copied the genes that were highlighted based on the significant
level and shown by at least one blue rectangle.Final gene list of
PPAwas the combination of all genes obtained from databases,
CTD, GeneCards, and DGIDB, and Coremine search engine.

AD genes and genes interacted PPA were downloaded in
December 2019.

AD-PPA shared genes

To determine the shared AD-related genes from databases and
text mining applied Venn diagram software (http://
bioinformatics.psb.ugent.be/webtools/Venn/). To find the
shared genes between AD and PPA (shared genes) also used
Venn diagram software. All of these shared genes of AD and
PPA were selected for further analysis.

Gene-disease association analysis

In order to find the comorbidity disease-related to a gene set,
the Enrichr database use several disease databases, OMIM,
DSigDB, dbGaP, MSigDB, GeneSigDB, to analyze genes
for association with diseases. The input of this database is a
gene set, and output will be a table of significant diseases and
associated genes [41]. To identify the disease possibly related
to the AD-PPA genes used Enrichr database (http://amp.
pharm.mssm.edu/Enrichr). That is an open-source database
that used different libraries to enrich a gene list [41]. For
gene-disease association analysis, selected the DisGeNet da-
tabase in Enrichr database. We insert the AD-PPA genes as
input to the search box, then used the DisGeNet database
between disease databases in the disease page of Enrichr and
exported the table contain different statistical analyses for the
relationship between genes and diseases. We selected the dis-
eases that their P-values < 0.05.

Gene ontology and KEGG pathway analysis

Functional analysis was performed using the String database
(version 11.0) (https://string-db.org). This database
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determined the protein-protein interaction and held the enrich-
ment tools to analyze the ontologies and pathways. The Gene
Ontology (GO) categories are GO Biological Process, GO
Molecular Function, and GO Cellular Component. String da-
tabase connected to the KEGG database to analyze genes for
the enriching pathway. We inserted the AD-PPA genes as
input to search box related to multiple proteins and selected
homo sapience for the organism. The output contains network
and several characteristics information linked to genes in the
network. Then analysis box opened and find the different
enrichment analyses that we selected the Gene Ontology and
KEGG pathway analysis and downloaded. Enrichment anal-
yses in the String database contain only significant terms with
P-value < 0.05, and it is not necessary to select significant
output manually.

Protein-protein interaction network construction and
topological analysis

Network topology indicates the topological structure of a net-
work [42]. In protein-protein interaction network is a layout of
the physical connections between proteins [43]. In the analysis
of biological networks used topological structure analysis to
identify some aspects such as hubs and bottleneck nodes or
modules as the groups of nodes with high topological overlap.
A biological network is a scale-free network contains a few
highly connected nodes (hubs) which link the rest of the less
connected nodes and are sensitive to deletion hubs. Also, hub
nodes in the protein-protein interaction network are more like-
ly to be essential for a vital cellular process [43]. All genes
related to PPA, AD, and AD-PPA shared genes were fed into
the String database to construct the protein-protein interaction
networks for each gene set. Then, the protein-protein interac-
tion network (tsv file) was imported to Cytoscape software
(version 3.5.1) (http://www.cytoscape.org/) to decipher the
crucial protein from the analysis of the network. The
Cytoscape is open-source software that constructs and analy-
sis network [44]. In order to introduce the hub and bottleneck
genes, it was employed network analysis that assesses the top
10% of degree and betweenness-centrality of every node, re-
spectively. Hub genes are defined as highly connected nodes
in the protein-protein interaction network. The network is sen-
sitive to delete the hub genes [45]. Betweenness-centrality is a
measure of centrality in a network based on shortest paths. In
network analysis, the genes with higher betweenness-
centrality are crucial nodes contain valuable information that
passes through these nodes, and whole network connectivity
depends on these nodes [46]. Hub and bottleneck genes play
essential roles in the characteristics and the development of
the disease [45]. To find the seed gene used the MCODE app
in Cytoscape. MCODE used the topological feature to find
highly interconnected regions in a network and introduce nu-
merous clusters and seed genes. The seed genes are interest

genes in identified subnetworks and defined as the highest-
scoring gene in a gene cluster [47]. The input for analysis in
MCODE was selecting every network and then separately run
the MCODE. The output was that the sub-networks of each
network were significant and contained a score. MCODE pa-
rameter was selected to analyze data included, Node Score
Cutoff: 0.2, Haircut: true, Fluff: false, K-Core: 2, Max.
Depth from Seed: 100. The clusters with the highest score
selected for functional analysis (GO andKEGGpathway anal-
ysis). Consequently, a protein-protein interaction network is
composed of many significant genes (hub and bottleneck
genes) and the seed genes allocated to the subnetwork analy-
sis. In this study, constructed networks from AD, PPA, and
AD-PPA shared genes, determined the hub and bottleneck
nodes in each network, then by MCODE determined the sub-
networks and compared the seed genes between all networks.
The data selected based on hub-bottleneck-seed genes were
listed for functional analysis by GO and pathway analysis.

Statistical analysis

All data with P-values of < 0.05 were considered to be statis-
tically significant.

Results

Genes associated with AD; genes associated with PPA
and shared genes between AD and PPA

There is no data that explain the role of microbiota-derived
PPA in AD pathophysiology. Here, by using available data
related to the AD and PPA, try to find how genes interacted
with PPA could affect and change the brain cells to promote
AD. In order to meet this aim applied several filters to prior-
itize genes and mechanisms. First, it was in data gathering that
integrated both gene expression data and data obtained from
public databases. In order to find the accurate genes related to
AD, we selected the expressed genes available in text mining
data produced from BLALOCK_ALZHEIMERS (1218
genes) and SEKAR_ALZHEIMERS (226 genes), and genes
available in public databases, CTD (22668 genes), and
GeneCards (8605 genes) databases. All shared genes were
obtained by Venn Diagram software (Supplementary Data
S1 and Fig. 2a). It was determined 667-shared genes in AD.
To find the interaction of the genes with PPA, we integrated
data available in CTD (17 genes), DGIDB (3 genes), and
GeneCards (2719 genes) databases and 513 genes found sig-
nificantly in the Coremine search engine. It was collected
2959 genes interact with PPA in different databases in which
found 284 shared genes with AD (Fig. 2b). These genes
named AD-PPA shared genes that contain genes associated
with both AD and PPA. All detected genes related to AD and
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PPA and AD-PPA shared genes were listed in Supplementary
Data S1. The second step in prioritization was the analysis of
AD, PPA, and AD-PPA genes separately, particularly net-
work analysis. AD network constructed from 667 genes
whereas the PPA network constructed from 2959 genes.

Gene-disease association

Enrichr database was used for gene-disease association analysis
and selected DisGeNet database to determine the possible dis-
ease enriched for 284 AD-PPA shared genes. The results of
Enrichr analysis within the DisGeNet database indicated that
AD-PPA shared genes are related to some diseases that orga-
nized in three categories, infection, cancer, and other diseases
(represented in Table 1 and Supplementary data S2). The most
significant disease enriched was allocated to cancer progression
and metastatic process and represented these genes are dysreg-
ulated in several cancer types. The next significant category
related to infection by several bacteria and viruses such as
HIV, Cytomegalovirus, Respiratory syncytial virus,
Helicobacter pylori, Epstein-Barr virus, Enterovirus infections,

Retroviridae infections, Salmonella infections, and Herpes
Simplex. Several neurocognitive disorders including, autistic
disorder, parkinsonian disorders, prion diseases, meningitis, ep-
ilepsy, transient cerebral ischemia, depressive symptoms, mar-
ijuana abuse, and dementia (vascular) or disability such as in-
tellectual disability, mental retardation, mental deficiency, and
poor school performance. In addition to neurological disorders,
AD-PPA shared genes enriched in non-neurological disease,
including obesity, hypertensive disease, diabetes mellitus, de-
generative polyarthritis, heart failure, asthma, endometriosis,
and keratosis. Several recognized disorders were associated
with the cellular alteration that emerged in AD condition, such
as memory loss, gliosis, Tauopathies, Neural Tube Defects,
protein deficiency.

Enriched Gene Ontology

Gene ontology enrichment for AD-PPA shared genes that
participated in the biological processes revealed in 1997 terms
that linked to the different hallmarks of AD. The biological
processes related to AD represented briefly in Table 2 and
completed shown in Supplementary Data S2. Hallmark of
AD was selected based on Kelly N. H. Nudelman et al. study
[48]. They have included AD neuropathology, cell death, pro-
liferative signaling, growth suppressors, angiogenesis, cell ad-
hesion, genomic instability, inflammation, immune function,
and cellular energetics. GO molecular function was enriched
219 terms that represented the top 20 in Table 3 and shown
Supplementary Data S2. Most significant molecular functions
were protein binding (P-value = 2.27E-48), signaling receptor
binding (P-value = 2.28E-26) and kinase activity (P-value =
6.97E-15). Out of them, 5 genes (CLU, INSR, LDLR,
SCARB1, TGFB2) associated with amyloid-beta (P-value =
0.0114). The significant cellular components terms enriched
from AD-PPA shared genes were 177 that listed the top 20 in
Table 4. The main cellular components are the cytoplasmic
part, extracellular region, cell surface, vesicle, Golgi, ER, mi-
tochondrion, cytoskeleton, or various parts of the neuron (cell
body, dendrite, synapse, myelin sheath). Supplementary Data
S2 contains all cellular components enrichment related to AD-
PPA shared genes.

Enriched KEGG Pathway

The KEGG pathway analysis demonstrated that 175 pathways
are linked to AD-PPA genes. Table 5 contains the top 20
pathways and complete result represented in Supplementary
Data S2. Themost important pathways are included, pathways
in cancer, microRNAs in cancer, proteoglycans in cancer,
MAPK signaling pathway, PI3K-Akt signaling pathway,

Fig. 2 Venn Diagram of genes associated with AD (a) and the common
genes detected in AD and PPA (b)
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Table 1 Top significant of DisGeNet disease related to PPA-AD genes that organized in 3 categories, infections, cancer and other diseases

Term Adjusted
P-value

Genes

Infections

HIV Infections 1.26E-25 APP;CDKN1A;MCM7;CD81;HFE;TAT;TNC;SLC2A1;GPT;ICAM1;EDNRA;…

Infection 9.58E-23 APP;SCARB1;KHDRBS1;CD81;HFE;PDGFB;SLC2A1;LPL;EGFR;ICAM1;PTGS1;…

Infection caused by Helicobacter
pylori

3.90E-16 HFE;ODC1;TGFA;EGFR;ICAM1;GJA1;KHSRP;CASP3;PIM1;HMOX1;RAC1;JUN;…

Herpes Simplex Infections 7.27E-15 HDAC4;APP;ITIH4;CDKN1A;SPARC;TAT;ODC1;LEF1;SLC2A1;NOLC1;COMT;EGFR;…

Respiratory syncytial virus
(RSV) infection in conditions
classified elsewhere and of
unspecified site

1.61E-12 ABCA1;TGFB1;VCAM1;IL15;IL18;CLU;CXCL2;EGFR;NFKB1;ICAM1;NFKBIA;IL1A;IL6;…

Cytomegalovirus Infections 3.10E-12 LRP1;ODC1;EGFR;ICAM1;EDNRA;GJA1;MAPK1;NCAM1;CD34;MICA;SREBF1;JUN;…

Bacterial Infections 3.45E-11 ITIH4;CD163;TGFB1;HFE;HGF;IL18;TGFA;PLA2G4A;CFLAR;CXCL2;EGFR;NFKB1;NFKBIA…

Epstein-Barr Virus Infections 6.07E-11 TGFB1;VCAM1;IL18;EGFR;NFKB1;DCN;ICAM1;IL1A;IL6;CCND1;BCL6;IFNG;CASP3;…

Cancer

Neoplasm Metastasis 3.89E-77 APP;SPARC;MYLK;ICAM1;AQP1;EDNRA;GJA1;PSMD4;RPS6KA1;DPYSL3;TNFSF10;…

Tumor Progression 4.82E-53 SPARC;CSF1;TNC;IRS2;FGF1;ELK1;CLU;ICAM1;IGF1R;EDNRA;GJA1;ZFP36;CCND3;…

Other Diseases

Rheumatoid Arthritis 1.52E-51 APP;TPMT;CSF1;HFE;TNC;FGF1;CLU;ICAM1;IGF1R;C4B;EDNRA;ZFP36;CCND3…

Atherosclerosis 3.47E-50 APP;SCARB1;SPARC;CSF1;HFE;TNC;IRS2;FGF1;ELK1;CLU;MYLK;ICAM1;…

Obesity 2.11E-48 APP;SCARB1;FAAH;SPARC;CSF1;CD81;HFE;INPPL1;TNC;IRS2;FGF1;…

Hypertensive disease 2.16E-46 APP;SPARC;HFE;INPPL1;TNC;IRS2;FGF1;COMT;CLU;MYLK;ICAM1;AQP1;…

Diabetes Mellitus 7.58E-41 APP;SCARB1;SPARC;HFE;INPPL1;IRS2;COMT;CLU;ICAM1;AQP1;IGF1R;EDNRA;…

Degenerative polyarthritis 1.34E-38 DDR1;APP;CDKN1A;CSF1;THRA;HFE;TNC;SLC2A1;PTPRK;FGF1;CLU;CXCL2;…

Heart failure 1.01E-36 DDR1;GSK3B;CDKN1A;CSF1;HFE;TNC;SLC2A1;GPT;ECE1;BRCA1;PRL;CXCL2;…

Asthma 5.29E-35 CDKN1A;TNC;CTSS;MYLK;ICAM1;CASP9;AKAP13;EDNRA;ZFP36;TNFSF10;…

Endometriosis 1.86E-34 CSF1;THRA;TGFB1I1;TNC;SLC2A1;IRS2;BRCA1;PRL;FGF1;COMT;ICAM1;…

Autistic Disorder 4.84E-11 APP;FAAH;TNC;PRL;COMT;AKAP1;C4B;GJA1;ERBB4;EP300;MAPK1;DMD;…

Parkinsonian Disorders 5.94E-10 PDGFRB;APP;NQO1;TBP;PDGFB;PRL;PLA2G6;COMT;SOD2;CP;GFAP;TPO;…

Neurocognitive Disorders 1.63E-06 ITIH4;ZFP36;IFNG;TAT;F2R;HMOX1;TP53;MAP3K11

Intellectual Disability 1.87E-06 APP;THRA;TAT;ARHGAP1;INPPL1;SLC2A1;ELK1;IGF1R;EDNRA;GJA1;SPTLC2;…

Mental Retardation 1.95E-06 HDAC4;APP;THRA;TAT;ARHGAP1;SLC2A1;PLA2G6;ASCL1;IGF1R;PURA;GJA1;TPO;…

Depressive Symptoms 1.95E-06 TGFB1;TAT;BRCA1;COMT;CYP3A4;EGFR;IL6;FOLH1;DAO;MAPK1;NCAM1;DRD2;CD34

Prion Diseases 1.97E-06 ABCA1;APP;IL1A;TGFB2;IL6;GSN;CYBB;SOD2;CLU;NFKB1

Marijuana Abuse 2.14E-06 ABCA1;SCARB1;FAAH;EDNRA;NCAM1;COMT;DRD2;TP53;EGFR

Memory Loss 2.52E-06 PDGFRB;ABCA1;APP;IL6;PAH;HSF1;PDGFB;BCL2;COMT;DRD2;EGFR;CTSB

Meningitis 6.05E-06 C4B;IL6;TGFB1;IFNG;TNFSF10;CYBB;FLNA;RAC1;JAK3;ICAM1

Dementia, Vascular 1.65E-05 APP;IL1A;IL6;TGFB1;EGF;MMP2;TP53;SREBF2;FGFR1

Epilepsy, Temporal Lobe 1.73E-05 SLC2A1;NFKB1;ICAM1;PLD2;TNFRSF1A;IL1A;GJA1;CASP3;TNFSF10;BCL2;MBP;FYN;TP53

Transient Cerebral Ischemia 1.75E-05 CASP9;MMP12;GSK3B;BAD;GPX3;SOD2;TP53

Autism Spectrum Disorders 6.17E-05 DDR1;FAAH;EGF;HFE;HGF;IL18;CASK;IRS2;PRL;SOD2;GFAP;IL1A;EDNRA;MMP16;IFNG;…

Keratosis 9.53E-05 CAST;MMP12;CCND1;BCL2;FGFR3;TP53

Gliosis 1.10E-04 TBP;HGF;ITGA1;MAPK1;PLA2G6;EGFR;LMNB1;GFAP

Poor school performance 4.44E-04 HDAC4;APP;TAT;SLC2A1;PLA2G6;ASCL1;IGF1R;PURA;GJA1;TPO;FLNA;EP300;MAPK1;
DMD;GGT1;…

Tauopathies 5.76E-04 APP;KHDRBS1;GSK3B;IL1A;TPO;IL6;HMOX1;MAPK1;TP53

Neural Tube Defects 6.58E-04 C5;FOLH1;TCN2;IFNG;SNAI2;NCAM1;COMT;TP53;LMNB1;LRP6

Basal cell carcinoma 7.90E-04 LATS1;IL6;TGFB1;CFLAR;TP53;EGFR;IGF1R;MCL1

Mental deficiency 9.18E-04 HDAC4;APP;TAT;SLC2A1;PLA2G6;ASCL1;IGF1R;PURA;GJA1;TPO;FLNA;EP300;MAPK1;…

Protein Deficiency 9.37E-04 C4B;APP;SCARB1;IFNG;SLC2A1;TP53;LDLR
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Ras signaling pathway, HIF-1 signaling pathway, focal adhe-
sion, EGFR tyrosine kinase inhibitor resistance, Jak-STAT
signaling pathway.

Protein-protein interaction networks construction
and analysis

The Cytoscape software was used for network analysis. We
constructed three protein-protein interaction networks, AD,
PPA, and AD-PPA, then analyzed every network separately
and finally compared the crucial genes related to each net-
work. The primary protein-protein interaction network obtain-
ed from the String database was imported into Cytoscape.
Constructed AD network contains 591 nodes and 5076 edges,
while the PPA network contains 2768 nodes and 104202
edges. The network analysis determined hub and bottleneck
genes for AD and PPA network that represented in
Supplementary Table S1 and S2 respectively. We used the
lists obtained from the hub, and bottleneck nodes of AD and
PPA network to prioritization the genes belong to AD and
PPA and then compare the list will obtain from the network
of AD-PPA shared genes. The constructed network from AD-
PPA shared genes (284 genes) contains 280 nodes, which are
connected to 2859 edges. The overview figure of integrating 3
networks was represented in Supplementary Figure S1. All
three networks were a scale-free network that included a few
numbers of hub genes with the most number of interactions
and many numbers of nodes with a few interactions. Figure 3a
represented the protein-protein interaction network of AD-
PPA genes in which hub and bottleneck nodes have a more
prominent size with different colors and located in the center,
and Fig. 3b represented the node degree distribution. Besides,
the analysis of the AD-PPA network revealed the several pa-
rameters that are containing; the clustering coefficient is
0.402, network density is 0.073, the network diameter is 5,
and the connected component is 1, the shortest paths are
78120. The network hub and bottleneck nodes were also listed
in Table 6. Out of them, HDAC1, SHC1, CD44, APP, EGFR,
IGF1R, EGF, FYN, MAPK1, CREBBP, JUN, CASP3,
CCND1, VCAM1, RAC1, TP53, HGF, EP300, IL6, and
PXN are the genes shared between hub and bottleneck and
introduce as relevant genes in the protein-protein interaction
network.

Construction and analysis of subnetworks

The subnetworks were studied for protein-protein interaction
networks, AD, PPA, and AD-PPA through MCODE app in
Cytoscape to identify the seed genes. AD genes could be
clustered in 14 subnetworks with seed genes, including
ARL17B, ITGA6, HDAC4, CYP3A4, RUNX2, TAT, TCF3,

CR1, FDFT1, SART1, and CCND1. For PPA genes, recog-
nized 45 subnetworks with the seed genes, CCR3, CERS1,
HIST2H3C, KRT10, TFAP2A, SLC22A1, MYBL2, IL2,
EARS2, WNT11, VPS4B, WNK1, ACSF3, ABCG4, PIK3R2,
LIPA, AQP1, PCBP2, LMX1B, BYSL, DSG2, CYP17A1,
VANGL1, IL4R, COG6, SLC38A2, CCDC6, NAA30, LYST,
TNFRSF10A, IFNA2, andCOL2A1. MCODE analysis of AD-
PPA network recognized clusters showed in Fig. 3c and
Supplementary Table S3 represented the score of each cluster.

Identification and analysis of hub, bottleneck and
seed nodes in AD-PPA shared genes

As depicted in Supplementary Figure S2, 80 genes of 284
AD-PPA shared genes at least had overlap with hub or bottle-
neck genes in one of two AD and the PPA networks. Between
these overlap genes, 51 genes were shared between 3 net-
works. When comparing the hub or bottleneck genes in 3
networks (represented in Supplementary Figure S3), 32 genes
were shared between them.

Amongst 280 AD-PPA shared genes, only seven genes,
i.e., SREBF1, ICAM1, SLC2A1, EFNA1, PC, TNC, and
TPMT, were identified as seed genes. When compared, the
seed genes of the three networks, found no shared genes be-
tween them. As represented in the Venn diagram of
Supplementary Figure S4, when compared the seed genes of
AD and PPA with the all 284 shared genes of AD-PPA, found
two shared genes with PPA and seven shared genes with AD.
This data represented two genes; TFAP2A and AQP1 in the
PPA network are crucial genes that could not distinguish as
the seed genes in topological analysis of the AD-PPA subnet-
works. TFAP2A was not the hub and bottleneck in the PPA
network. AQP1 also was not hub and bottleneck in the PPA
network but seen in the AD network. Seven genes, HDAC4,
TAT, ITGA6, CCND1, CYP3A4, CR1, and RUNX2, are seed
genes of AD network that could not be detected as seed genes
in AD-PPA subnetwork. CCND1 seen in all three networks
AD, PPA, and AD-PPA, belongs to the hub and bottleneck
nodes.CCND1was also observed in most of GO categories or
KEGG pathways. CYP3A4, also seen in three networks, had
high betweenness centrality. CYP3A4was also seen in several
GO categories and diseases. RUNX2 detected as hub and bot-
tleneck nodes in the PPA network and recognized as a hub in
the AD network. This gene was not a hub and bottleneck
nodes in the AD-PPA network. HDAC4, ITGA6, CR1 seen
in three networks but not the hub and bottleneck nodes. TAT
was seen in AD but was not a hub and bottleneck nodes.

ICAM1 is a seed gene of AD-PPA subnetwork that belongs
to the hub and bottleneck genes. This gene also allocated to
several biological processes and diseases. SLC2A1 is a seed
gene of AD-PPA subnetwork that also detected as a bottle-
neck gene. SLC2A1 is a part of genes attributed to biological
processes, including cellular response to glucose starvation
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Table 2 Biological process related to common genes in PPA-AD po-
tentially involved by Ontology with default parameters. Observed gene
count indicate the number of genes from our list and background gene

count indicate the number of genes allocated to the specific GO term in its
library. The head title obtained from the important hallmarks of cancer
that observed in AD

Gene Onthology ID Description Observed
gene count

Background
gene count

False
discovery
rate

AD Neuropathology

GO:1904645 response to amyloid-beta 5 29 0.00063

GO:1900221 regulation of amyloid-beta clearance 4 10 0.00023

GO:1902003 regulation of amyloid-beta formation 4 18 0.0012

GO:1902947 regulation of tau-protein kinase activity 3 10 0.0033

Cell Death

GO:0043523 regulation of neuron apoptotic process 23 195 2.08E-12

GO:0043067 regulation of programmed cell death 100 1516 4.65E-36

GO:1903201 regulation of oxidative stress-induced cell death 7 65 0.00044

GO:1901030 positive regulation of mitochondrial outer membrane
permeabilization involved in apoptotic signaling pathway

4 34 0.0078

GO:2001238 positive regulation of extrinsic apoptotic signaling pathway 4 51 0.0238

Proliferative Signaling

GO:0048666 neuron development 38 758 1.17E-09

GO:0031175 neuron projection development 31 616 5.69E-08

GO:0048699 generation of neurons 64 1422 2.33E-14

GO:0030182 neuron differentiation 45 940 8.53E-11

GO:0042127 regulation of cell population proliferation 115 1594 5.60E-46

GO:2000177 regulation of neural precursor cell proliferation 6 79 0.0056

GO:0007265 Ras protein signal transduction 12 155 4.03E-05

GO:0043406 positive regulation of MAP kinase activity 27 264 3.48E-13

Growth Suppressors

GO:0045787 positive regulation of cell cycle 31 376 7.98E-13

GO:0007346 regulation of mitotic cell cycle 31 608 4.28E-08

GO:0045786 negative regulation of cell cycle 19 517 0.0014

GO:0007050 cell cycle arrest 9 149 0.0022

GO:0090400 stress-induced premature senescence 2 8 0.0253

GO:0090399 replicative senescence 2 13 0.0482

Angiogenesis

GO:0001568 blood vessel development 29 464 2.07E-09

GO:0008015 blood circulation 22 373 7.13E-07

GO:0003073 regulation of systemic arterial blood pressure 7 92 0.0025

GO:0007596 blood coagulation 11 288 0.0136

GO:1903589 positive regulation of blood vessel endothelial cell
proliferation involved in sprouting angiogenesis

2 9 0.0296

GO:0090049 regulation of cell migration involved in sprouting angiogenesis 4 37 0.01

GO:0001525 angiogenesis 17 297 2.46E-05

GO:0001666 response to hypoxia 26 288 1.36E-11

Cell adhesion

GO:0022409 positive regulation of cell-cell adhesion 22 238 4.63E-10

GO:0007155 cell adhesion 39 843 5.40E-09

GO:0001952 regulation of cell-matrix adhesion 9 105 0.00024

GO:0048041 focal adhesion assembly 3 24 0.0206

GO:0001764 neuron migration 7 118 0.0081

Genomic Instability

GO:0006974 cellular response to DNA damage stimulus 22 749 0.0067
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and response to peptide. Moreover, SLC2A1 was recognized
in most of the diseases enriched by DisGeNet analysis but not
the virus and bacterial infection. When assessed functionally
40 hubs, bottlenecks, and seed genes of AD-PPA network in
the String database, these genes were found that enriched all
biological process, molecular function, cellular component,
and pathways obtained from all genes. The most significant
GO and Pathways listed in Table 7. For two top ranked AD-
PPA subnetworks obtained from MCODE (score 16.146 and
score 13.125 contain 59 genes) included 29 genes had overlap
with 40 hub-bottleneck-seed genes. In addition, the functional
analysis in Enrichr for GO and KEGG pathway enrichments
found a similar result to the analysis of 40 hub-bottlenecks-
seed genes.

Discussion

The infection hypothesis is an interesting theory in
Alzheimer’s disease onset and explains the role of microbiota

in inducing AD [49]. In addition to microbiota, the
microbiota-derived metabolites play important roles in vari-
ous neurological pathologies. Propionic acid(propionate) is
one of the most short-chain fatty acids metabolites produced
by a variety of microbiota [12, 50]. Since there is no experi-
mental data related to the effect of PPA in AD pathology here
used the system biology approaches and bioinformatics anal-
ysis to find the association of PPA and AD. The system biol-
ogy approach integrates different levels of molecular biology
to deeply interpret the pathological origin of a multifactorial
disease [51].

In the present study, we combined the genes involved in
PPA available in CTD, DISEASES, and Gene Cards data-
bases and the Coremine search engine by Venn diagram soft-
ware. As a result, according to the Fig. 1, 284 PPA genes were
found to be shared with AD genes (extracted from text min-
ing, CTD, and GeneCards databases). We used network and
enrichment analysis to uncover critical molecular mechanisms
and relationships between PPA and AD. DisGeNet enriched
diseases that arranged in categories related to infection, can-
cer, and neurological and non-neurological diseases. As

Table 2 (continued)

Gene Onthology ID Description Observed
gene count

Background
gene count

False
discovery
rate

GO:0006978 DNA damage response, signal transduction by p53 class
mediator resulting in transcription of p21 class mediator

3 17 0.0101

GO:0006268 DNA unwinding involved in DNA replication 2 8 0.0253

GO:0006975 DNA damage induced protein phosphorylation 2 8 0.0253

GO:0032392 DNA geometric change 4 63 0.0408

GO:0000077 DNA damage checkpoint 6 138 0.0451

GO:2001252 positive regulation of chromosome organization 9 160 0.0033

Inflammation

GO:0006954 inflammatory response 41 482 2.20E-17

GO:0002526 acute inflammatory response 8 73 0.00014

GO:0002248 connective tissue replacement involved in
inflammatory response wound healing

3 5 0.00082

GO:0006925 inflammatory cell apoptotic process 2 5 0.0138

GO:0002544 chronic inflammatory response 2 13 0.0482

GO:0001774 microglial cell activation 3 20 0.0138

GO:0034097 response to cytokine 77 1035 3.86E-30

GO:0019221 cytokine-mediated signaling pathway 55 655 2.51E-23

Immune Function

GO:0045824 negative regulation of innate immune response 5 49 0.0044

GO:0002376 immune system process 105 2370 1.19E-24

GO:0002250 adaptive immune response 24 280 2.53E-10

GO:0006959 humoral immune response 14 252 0.0002

Cellular Energetics

GO:0043467 regulation of generation of precursor metabolites and energy 7 96 0.0031

GO:0042593 glucose homeostasis 7 169 0.0367

GO:0005979 regulation of glycogen biosynthetic process 5 29 0.00063
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Table 3 Top 20 of Molecular
function obtain from enrichment
of PPA- AD common genes.
Observed gene count indicate the
number of genes from our list and
background gene count indicate
the number of genes allocated to
the specific GO term in its library

Gene Onthology ID Description Observed
gene count

Background
gene count

False
discovery
rate

GO:0005515 protein binding 221 6605 2.27E-48

GO:0005488 binding 266 11878 1.97E-34

GO:0005102 signaling receptor binding 87 1513 2.28E-26

GO:0019899 enzyme binding 98 2197 2.95E-22

GO:0004672 protein kinase activity 46 635 2.48E-16

GO:0016773 phosphotransferase activity, alcohol
group as acceptor

50 767 3.44E-16

GO:0044877 protein-containing complex binding 54 968 6.79E-15

GO:0016301 kinase activity 50 835 6.97E-15

GO:0019900 kinase binding 44 678 3.82E-14

GO:0042802 identical protein binding 72 1754 8.55E-14

GO:0019901 protein kinase binding 40 599 3.29E-13

GO:0098772 molecular function regulator 69 1793 6.63E-12

GO:0008134 transcription factor binding 38 610 1.05E-11

GO:0004713 protein tyrosine kinase activity 22 180 1.08E-11

GO:0003824 catalytic activity 140 5592 1.43E-11

GO:0043167 ion binding 145 6066 1.44E-10

GO:0043168 anion binding 85 2696 1.44E-10

GO:0140096 catalytic activity, acting on a protein 74 2176 1.77E-10

GO:0008144 drug binding 63 1710 4.28E-10

GO:0097367 carbohydrate derivative binding 72 2163 9.22E-10

Table 4 Top 20 of cellular
component enrichment detected
from common AD-PPA genes.
Observed gene count indicate the
number of genes from our list and
background gene count indicate
the number of genes allocated to
the specific GO term in its library

Gene Onthology ID Description Observed
gene count

Background
gene count

False discovery rate

GO:0044444 cytoplasmic part 214 9377 4.25E-18

GO:0005576 extracellular region 97 2505 1.46E-17

GO:0005737 cytoplasm 235 11238 2.71E-17

GO:0009986 cell surface 49 690 2.71E-17

GO:0005615 extracellular space 62 1134 4.48E-17

GO:0044421 extracellular region part 68 1375 7.88E-17

GO:0031982 vesicle 90 2318 1.44E-16

GO:0044459 plasma membrane part 95 2651 1.71E-15

GO:0005829 cytosol 138 4958 3.91E-15

GO:0031410 cytoplasmic vesicle 83 2226 3.69E-14

GO:0071944 cell periphery 139 5254 1.63E-13

GO:0005886 plasma membrane 137 5159 2.17E-13

GO:0044464 cell part 277 16244 3.10E-13

GO:0012505 endomembrane system 120 4347 2.48E-12

GO:0098805 whole membrane 63 1554 5.50E-12

GO:0045121 membrane raft 27 300 8.19E-12

GO:0044422 organelle part 191 9111 6.90E-11

GO:0043227 membrane-bounded
organelle

219 11244 1.20E-10

GO:0044446 intracellular organelle part 187 8882 1.20E-10

GO:0005622 intracellular 254 14286 2.61E-10
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depicted in Table 1, several bacteria and virus infections were
disclosed. Out of them, Salmonella typhimurium able to gen-
erate PPA during fermentation [52]. Prior microbiome re-
searches have also shown oral and genital herpes, Epstein
Barr virus, cytomegalovirus, HIV, gut bacteria, liver bacteria,
Hel icobacter pylor i , per iodontal pathogens, and
Chlamydophila pneumonia present in AD pathogenesis [49,
53, 54]. These pathogens may cross the blood-brain barrier or
brain-CSF barrier and attack the CNS [55, 56]. Also, it was
determined that microbiotas influence CNS by microbiota-
derived metabolites and inflammation [49, 55, 57–60]. Since
we used the AD-PPA genes to detect the diseases, this data
suggests that PPA can induce the same effect provided by
microbiota. The most significant diseases were related to can-
cer progression and metastatic processes that also validated by
the KEGG pathway analysis and previously were mentioned
as familiar hallmarks of cancer and AD [48]. In the analysis of
biological process also enriched cancer as the first gene ontol-
ogy. Our results are supporting this evidence that PPA could
able to promote brain tissue toward AD pathology like seen in
cancer. AD-PPA genes also identified disease-related
Neurocognitive Disorders and several disabilities. It has been
reported excessive PPA has implied disadvantageous effects
such as propionic acidemia, a neurodevelopmental metabolic
disorder, that identified by elevation of PPA levels in the
blood, cerebrospinal fluid, and neurons [61, 62]. For instance,

several studies showed that intraventricular inoculation of
PPA created behavioral and brain abnormalities in rats similar
to autism spectrum disorder [53–56].

Dysregulation in the cell cycle was another significant
KEGG pathway that previously has been contributed to sur-
viving neuron cells and accumulating the amyloid fibril,
which eventually undergoes apoptosis [63]. Dysregulation in
proliferative signaling and evade growth suppressor have been
identified as an important hallmark of AD [64]. The shared
genes of AD-PPA enriched the biological processes related to
neuron generation, development, projection, and differentia-
tion. Besides, they contain genes that describe the positive and
negative regulation of proliferation. MAP kinase pathway that
enriched in our data is the primary signaling activity in neuron
and glial cells that promote phosphorylation of tau deposit
[65]. Also, another proliferative signaling is RAS that the
pathway-related this GTPase also enriched and previously
suggested in tau phosphorylation [66]. It has been determined
that neurodegeneration is associated with improper cell cycle
progression that increases neuropathological processes and
finally leads to apoptosis [67]. Out of genes, 19 genes found
the negative cell cycle regulators while there existed 31 genes
with function in positive regulation of cell cycle that most of
them were shared in apoptosis and proliferative process. In
AD patients, Aβ42 causes hyperactivation of MEK-ERK sig-
naling lead to cell death by possibly mediating Tau

Table 5 Top 20 of KEGG
pathways of common AD-PPA
genes. Observed gene count indi-
cate the number of genes from our
list and background gene count
indicate the number of genes al-
located to the specific KEGG
pathway term in its library

KEGG- ID Description Observed
gene count

Background
gene count

False
discovery rate

hsa05200 Pathways in cancer 63 515 5.19E-35

hsa04010 MAPK signaling pathway 43 293 3.02E-26

hsa05206 MicroRNAs in cancer 32 149 8.06E-24

hsa04151 PI3K-Akt signaling pathway 41 348 6.08E-22

hsa04014 Ras signaling pathway 32 228 4.91E-19

hsa05167 Kaposi’s sarcoma-associated
herpesvirus infection

28 183 1.58E-17

hsa05215 Prostate cancer 22 97 6.66E-17

hsa04066 HIF-1 signaling pathway 21 98 9.72E-16

hsa05169 Epstein-Barr virus infection 26 194 3.77E-15

hsa05205 Proteoglycans in cancer 26 195 3.80E-15

hsa04380 Osteoclast differentiation 22 124 4.05E-15

hsa04510 Focal adhesion 26 197 4.05E-15

hsa05210 Colorectal cancer 19 85 1.03E-14

hsa05166 HTLV-I infection 28 250 1.04E-14

hsa01521 EGFR tyrosine kinase inhibitor resistance 18 78 3.30E-14

hsa04630 Jak-STAT signaling pathway 23 160 3.34E-14

hsa05211 Renal cell carcinoma 17 68 5.75E-14

hsa04933 AGE-RAGE signaling pathway in diabetic
complications

19 98 7.24E-14

hsa04722 Neurotrophin signaling pathway 20 116 9.34E-14

hsa04015 Rap1 signaling pathway 24 203 3.29E-13
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hyperphosphorylation. In addition, the Aβ42-mediated aber-
rant MEK-ERK signaling pathway may promote S-phase cell
cycle reentry through inducing expression of cyclin
D1(CCND1) and neuronal cell death [68, 69]. CCND1 as a
crucial gene in cell cycle reentry of postmitotic neurons was
an important hub and bottleneck gene in three networks AD,
PPA, and AD-PPA. Other impressive gene ontology enrich-
ment results had a direct link to the amyloid formation and tau
pathology. This finding was also confirmed by gene-disease
association analysis. Tauopathies, Neural Tube Defects,
Protein Deficiency were recognized in DisGeNet analysis.
These results confirm the role of PPA in AD as a risk factor
could able to enhance the process, leading to cell cycle dereg-
ulation and contribute to neuronal loss and neurodegeneration
observed in the AD brains. This finding was also supported by
the enrichment output of AD-PPA genes that associated with

apoptosis activated by the p53 signaling pathway or cell death
through both intrinsic and extrinsic apoptosis signaling path-
ways. Apoptosis activated by the p53 signaling pathway has
implicated by the treatment of neuronal cells by PPA in vitro
[70]. Lobzhanidze G et al. reported that a low level of PPA
could change amygdala cells toward apoptosis [30].
Previously indicated enhanced Caspase-3 mRNA expression
and inhibited Bcl-2 mRNA expression in the brain of rat pups
that had been exposed to PPA [71].

Another mediator of brain injury in AD is Oxidative stress
[72] that regulation of oxidative stress-induced cell death was
the significant biological processes detected by AD-PPA
genes. Increased reactive oxygen species (ROS) production
may lead to apoptosis [73]. Alteration of PPA treatment in
the enzymatic antioxidant capacity in rat brains has been rep-
resented a significant decrease in superoxide dismutase (SOD)

Fig. 3 The protein-protein interaction networks of 284 genes are com-
mon in AD and PPA (a) that constructed by Cytoscape software. The size
of nodes was determined by their degree. Hub and bottleneck genes are
purple ellipse nodes. The genes that are only hub are pink triangle nodes

while the genes that are only bottleneck represented as green rectangle
nodes. Degree distribution related nodes in network (b) revealed the AD-
PPA network is a scale free network. MCODE analysis detected 12 clus-
ters that seed detected as diamond nodes with yellow color(c)
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and catalase(CAT) activities [71, 74]. According to Table 6,
SOD2 is the bottleneck genes distinguished in network anal-
ysis, play role as a critical antioxidant. Accumulating evidence
disclosed that ROS produced by various enzymatic reactions
and chemical processes had implicated the pathogenesis of
neurodegenerative disorders such as AD [75]. ROS involved

in the expression of well-defined inflammatory mediators, in-
cluding MMPs, cPLA2, COX-2, and adhesion molecules. We
recognized several pro-inflammatory genes and the protein
response to this event, including APP, CASP3, EGF, EGFR,
EP300, HMOX1, ICAM1, IL6, JUN, MMP2, PDGFRB, and
VCAM1 that were belonged to the hub- bottleneck- seed

Fig. 3 (continued)
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genes. The previous research on natural products such as res-
veratrol, curcumin, berberine has been shown that they could
able to elicit anti-cancer and antiaging by intracellular signal-
ing mechanisms. Many of the beneficial effects have been
attributed to their anti-inflammatory properties [76].
Between the genes underlying these effects, we detected
APP, CASP3, GPT, HMOX1, ICAM1, IL6, JUN, MAPK1,
TGFB1, TP53, and VCAM1 that are significant genes of our
gene list. As mentioned, they belong to inflammatory genes
that also targeted in antiaging investigations. Within this list,
ICAM1 was the only gene distinguished as a hub-bottleneck-
seed node. Several studies have been emphasized the impor-
tance of ICAM1 gene polymorphism and its expression levels
in AD pathogenesis [77–79].

Animal studies showing that oxidative damage to proteins
may be involved in the pathophysiology of PPA [80]. The
alterations of protein structure by oxidants may affect the
function of receptors, enzymes, and transport proteins,
resulting in a partial or complete loss of protein functionality
[81]. The most crucial molecular function enrichments link to

protein binding and kinase activity that this oxidation could
change the protein interaction, and unfavorable results would
contain alteration seen in the protein-protein interaction net-
work. Previously determined, the increase of phosphorylation
promotes pathogenesis-related TAU protein [1]. In AD-PPA
genes enriched protein binding as the most significant molec-
ular function. It has been previously indicated the aberrant
protein binding in AD [63]. In addition to protein oxidation,
PPA animates lipid peroxidation in the rat brain and the plas-
ma of patients with propionic academia that are finally
resulting in cell damage [82, 83]. PPA inhibits the antioxidant
enzyme activities and induces Malondialdehyde, which may
have happened in mitochondrial dysfunction [84, 85].
Mitochondrial hypometabolism characterizes brain aging
and AD. Redox dysregulation and chronic neuroinflammation
are observed in brain aging and AD that linked to energy
metabolism and inflammatory responses. The metabolic-
inflammatory axis describes the dynamic interaction of these
systems in the brain [86]. Changing in brain metabolism and
cellular energy are the hallmark of AD that increased levels of

Table 6 Hub genes and
bottleneck related the common
genes of AD and PPA network
obtained from Cytoscape
software

Gene name Degree (Hub) Gene name Betweenness centrality (Bottleneck)

IL6 128 EGFR 0.097698

EGFR 124 IL6 0.093625

TP53 116 TP53 0.075256

EGF 114 MAPK1 0.069349

MAPK1 111 EGF 0.063399

JUN 98 APP 0.038658

CASP3 89 JUN 0.038026

CCND1 80 CASP3 0.036808

CD44 68 CCND1 0.029613

APP 64 RAC1 0.02678

MMP2 61 EP300 0.022104

HGF 58 GPT 0.022064

ICAM1 56 SOD2 0.021618

EP300 54 SLC2A1 0.019361

SHC1 54 PXN 0.018438

VCAM1 53 HGF 0.017373

PDGFRB 53 CYP3A4 0.016507

IGF1R 52 CD44 0.015733

IFNG 52 CREBBP 0.015148

TGFB1 50 SHC1 0.014951

CREBBP 48 HDAC1 0.014795

CD34 48 IGF1R 0.012673

PECAM1 48 HMOX1 0.01255

RAC1 47 ICAM1 0.012427

PXN 46 CDKN1A 0.012121

FYN 46 CLU 0.010988

MAP2K7 44 FYN 0.010582

HDAC1 42 VCAM1 0.010404
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PPA affect several processes related to energy metabolism
[87]. Here, we detected a few genes of our list implicated in
glucose hemostasis. One of the critical genes in our gene list
was SLC2A1 that was a bottleneck-seed gene. This gene pro-
vides instructions for producing GLUT1 that acts as a media-
tor for transporting glucose at the blood-brain barrier.GLUT1
diminutions worsen cerebrovascular degeneration in AD [88].

PPA induced not only lipid damage but also DNA damage
[71]. In this study, AD- PPA genes enrich the process re-
sponse to DNA damage, DNA geometric change, DNA dam-
age checkpoint, or activated apoptotic pathway in response to
DNA damage and positive regulation of chromosome organi-
zation. Previously determine the association of genomic insta-
bility observed in AD that one of evidence is emerging early-
onset AD in a patient with down syndrome [89].

Inflammation process and response to acute and chronic
inflammation or cytokine production by the immune system
are processes that enriched AD-PPA genes. Inflammation in
glia cells “Gliosis” is the hallmark of AD that enhances the
amyloidogenic process [90] and detected by analysis of our
genes in DisGeNet. Innate and adaptive immune response or
humoral immune system enriched by 284 genes. The immune
system plays an essential role in the progression, or maybe it is
a risk factor for AD [91]. Lobzhanidze G et al. have been
recognized the significant structural alteration in the amygdala
beyond the administration of PPA in adolescent rats. They
reported the Glial alterations, the activation of astrocytes and
microglia, and axons demyelination [30]. Microglia plays an
essential role in the clearance of tau oligomers and the actin
cytoskeleton for phagocytosis in AD [92]. In addition, the
pathway-related proliferation immune system response and
inflammation induced by PPA noticed in autism spectrum
disorder [25].

There was the amount of biological process linked to an-
giogenesis blood circulating and allocated the 26 genes to the
hypoxia-induced response. Previous studies have indicated
the vascular dysfunctions in the early year increase regionally
blood flow as a compensatory mechanism while observed
decrease eventually in the later stage of AD. The capillary
amyloid angiopathy induced by hypoxia through activating
β- and γ-secretases can be attributed to AD pathology [93].
Hypoxia condition modulates hypometabolism in several re-
gions of the brain by overexpression of amyloid precursor
protein and decreases the clearance of Aβ. This event pro-
motes inflammation and, ultimately, neuronal cell death
[94]. HIF-1 signaling pathway supports cellular adaptation
in hypoxic conditions that were seen in the KEGG pathway
of AD-PPA genes.

Cell adhesion that detected in AD-PPA genes enriched
biological processes related to cell-cell adhesion and cell-
matrix adhesion. It has been determined that the genes with
pleiotropic roles in cell adhesion highlighted in AD pathogen-
esis [95] ] and PPA also had been prepared induced extensiveT
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alterations in gene expression, including neuronal cell adhe-
sion molecules [90].

Cellular component analysis enriched the critical part of a
cell that promotes AD pathogenesis. Cytoskeleton change in
neuron cell that enriched by AD-PPA genes effect on the
synapse. Rush T et al. reported that Aβ oligomers induce
aberrant actin stabilization and synaptic loss and impairment
[96]. Dysfunctionality was observed in several parts of the
neuron, i.e., synapse or cellular secretion [90, 97]. Elevated
PPA could also produce sensitivity to oxidative stress and, in
turn, increase the damage caused by other toxic environmental
factors such as metals or infectious agents [87]. Mitochondria
also implicated alteration specific in function, size, and form
by PPA treatment in vivo [30, 90, 98].

Conclusions

AD-PPA genes analysis unveiled the comorbidity with dis-
eases that surprisingly were related to the effect of bacteria
and virus infection or enriched the neurological disease that
previously reported in PPA intervention, such as meningitis or
autism disorder. It could be pinpointed that AD-PPA genes
carry biological processes that cover almost all of AD patho-
genesis hallmarks. Functional analysis of hub-bottleneck-seed
genes represented the role of these crucial genes in redox
signaling, neuroinflammation, and cell cycle, and cell death.
Since it has not been produced high throughput data directly
obtained from the effect of PPA on cell line or animal models,
our analysis opens the view of the possible effect of PPA on
AD pathogenesis. Therefore, it is necessary to design further
empirical investigations to attain deep insights into the PPA
metabolite secreted by microbiota and implicated in AD
pathogenesis.
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