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Abstract
Influenza and COVID-19 are infectious diseases with significant burdens. Information and 
awareness on preventative techniques can be spread through the use of social media, which 
has become an increasingly utilized tool in recent years. This study developed a dynamic 
transmission model to investigate the impact of social media, particularly tweets via the 
social networking platform, Twitter on the number of influenza and COVID-19 cases of 
infection and deaths. We modified the traditional Susceptible-Exposed-Infectious-Recov-
ered (SEIR-V) model with an additional social media component, in order to increase the 
accuracy of transmission dynamics and gain insight on whether social media is a bene-
ficial behavioral intervention for these infectious diseases. The analysis found that social 
media has a positive effect in mitigating the spread of contagious disease in terms of peak 
time, peak magnitude, total infected, and total death; and the results also showed that social 
media’s effect has a non-linear relationship with the reproduction number R

0
 and it will be 

amplified when a vaccine is available. The findings indicate that social media is an integral 
part in the humanitarian logistics of pandemic and emergency preparedness, and contrib-
utes to the literature by informing best practices in the response to similar disasters.

Keywords  Influenza · COVID-19 · Epidemiological modeling · Infectious disease · 
Humanitarian operations · Social media data · Disaster preparedness

1  Introduction

Influenza and COVID-19 are infectious diseases that have a range of mild to severe symp-
toms (Moghadami 2017; Rothan and Byareddy 2020). While a vaccine exists for influenza, 
there is not yet a vaccine widely available for COVID-19 (Houser and Subbarao 2015; 
Rothan and Byrareddy 2020). However, other preventative strategies exist for minimizing 
the spread of both diseases (Rabie and Curtis 2006; Rothan and Byrareddy 2020). This 
study models the use of social media as a tool to increase social awareness and prevention/
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treatment practices, which in turn can mitigate the COVID-19 pandemic as well as future 
influenza epidemics.

Influenza is a contagious respiratory disease. The Types A and B influenza viruses 
are responsible for seasonal flu epidemics and outbreaks each year. The flu is generally 
characterized by abrupt symptoms and individuals largely recovering within eight days, 
after the incubation period (Moghadami 2017; Gaitonde et al. 2019; Petrova and Russell 
2018). However, young children, those with underlying conditions, and adults older than 
65 are at high risk of serious influenza complications, which can lead to hospitalization and 
death (Clayville 2011; Schmid et al. 2017). The Centers for Disease Control and Preven-
tion (CDC) reports that since 2010, influenza has caused around 9 million to 45 million 
illnesses, 140,000 to 810,000 hospitalizations, and 12,000 to 61,000 deaths in the United 
States each year (see Fig. 1) (CDC, n.d.-a).

Effective influenza control strategies include vaccination, the use of drug therapy, hand-
washing, and social distancing (Moghadami 2017; Houser and Subbarao 2015; Roth and 
Henry 2011). However, the annual flu vaccination is considered the best method for flu 
prevention (Houser and Subbarao 2015). Recent CDC studies show that flu vaccination 
reduces the risk of flu illness between 40 and 60% among the overall population when the 
flu vaccine matches the circulating flu viruses (CDC, n.d.-b), but rates of vaccine coverage 
and vaccine effectiveness (VE) in the US are not optimal. In the 2018–2019 flu season, 
CDC estimates that 62.6% of children (6 months to 17 years old) in the US had at least one 
dose of flu vaccine, which is 4.7 and 3.6 percentage points higher than the 2017–2018 and 
2016–2017 flu season, respectively; and 45.3% of adults in the US had at least one dose 
of flu vaccine, which is 8.2 and 2.0 percentage points higher than the 2017–2018 and the 
2016–2017 flu season, respectively. Vaccine coverage among children and adults is shown 
in Fig. 2 (CDC, n.d.-d), and vaccine effectiveness has ranged from 19% (2014–2015 sea-
son) to 60% (2010–2011 season) (CDC, n.d.-c). Views on the influenza vaccine can create 
a barrier in individuals receiving his or her annual flu shot (Chen et al. 2020). When inves-
tigated, researchers found that a low perception of both vaccines and vaccine effectiveness, 

Fig. 1   Burden of influenza epidemics ( Source: CDC, n.d.-a)
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as well as an absence of trust in health authorities, affected an individual’s decision to get 
the vaccine. Additional reasoning included an individual’s feeling that those in his or her 
peer group did not receive the vaccine, low belief that influenza is severe, and low belief 
that himself or herself is at risk for influenza (Schmid et al. 2017).

COVID-19 is an illness caused by the SARS-CoV-2 virus, and primarily passes from 
person-to-person via respiratory droplets when individuals are in close proximity (Chavez 
et al. 2020). The disease mainly manifests in mild to moderate illness involving upper res-
piratory symptoms or mild pneumonia, but can also result in critical illness, severe pneu-
monia, and respiratory failure (CDC, n.d.-e). Individuals may also be asymptomatic. Popu-
lations that are at a higher risk include those of an older age or with preexisting medical 
conditions (Chavez et al. 2020).

In addition to the current development of potential vaccination for the disease, multi-
ple antiviral drugs are undergoing testing for COVID-19 treatment (CDC, n.d.-e). Current 
recommendations in place to prevent spread include the wearing of masks and social dis-
tancing (Andersen 2020; Courtemanche et al. 2020). Testing for the virus is available, and 
emergency medicine practitioners identify and isolate those who have or are at risk for hav-
ing the infection, when presented with patients (Chavez et al. 2020). As of July 27, 2020, 
there have been 4,225,687 reported cases of COVID-19 in the United States, and 146,546 
reported deaths (CDC, n.d.-f). Figure 3 below depicts reported recent US hospitalizations 
and cumulative deaths as collected by (The Covid Tracking Project 2020). Available infor-
mation on burden of the disease should be interpreted with prudence due to limitations, 
such as the early shortage of tests, misdiagnosis, and the asymptomatic nature of many 
cases.

While the rates of vaccine effectiveness and vaccine coverage for influenza are not 
optimal, and a vaccine is not yet available for COVID-19, handwashing and social dis-
tancing practices, ranging from moderate to total isolation can be used at all times dur-
ing an infectious disease outbreak (Tam et  al. 2006). In practice, the more preventive 

Fig. 2   Influenza vaccine effectiveness and influenza vaccine coverage. Data source ( Source: CDC, n.d.-c; 
-d)
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knowledge people have, the better they are able to protect themselves by adopting nec-
essary measures. Media reports can contain such preventative knowledge, and are able 
to influence the behavior of the public (Wakefield et al. 2010, 2011; Funk et al. 2014; 
Collinson et  al. 2015). These media report outlets include informative literature (i.e., 
pamphlets), posters, newspaper articles and advertisements, radio and television mes-
sages, and social media (i.e., Twitter, Facebook).

Social media is prevalent today, particularly among the younger generation. Thus, it 
has been used in real-time analysis and for faster trend predictions in many areas (Moor-
head et al. 2013; Mishra and Singh 2018) such as traffic, waste, disaster prediction, and 
networking. It can serve as a resource for disease surveillance and is an efficient way to 
communicate preventative actions to slow spread during disease outbreaks (Corley et al. 
2010; Mowery 2016; Anparasan and Lejeune 2019).

Many studies in literature have used social media, specifically Twitter, to monitor the 
population’s health (Abbasi et al. 2014; Paul et al. 2016). Several researchers have used 
Twitter data to monitor influenza prevalence (Culotta 2010; Signorini et  al. 2011), to 
predict disease transmission between individuals (Sadilek et al. 2012), and to forecast 
future prevalence (Paul et al. 2014). Additionally, some studies have analyzed attitudes 
and sentiment toward vaccination using Twitter (Salathe and Khandelwal 2011; Salathe 
et al. 2013; Dunn et al. 2015; Dredze et al. 2016). The use of social media data to detect 
the spread of epidemics or pandemics, such as the flu or COVID-19 can help to obtain 
early warnings. New techniques for analysis of search engine logs (Polgreen et al. 2008; 
Ginsberg et al. 2009; Majumder et al. 2015) and social media data can be used to obtain 
real-time analysis, creating better services.

Social media can elicit positive behavior changes of the public, and therefore help 
to reduce the risk of infection in the population. For example, Ahmed et  al. (2018) 
examined the relationships among social media use, social media as a source of health 
information, and influenza vaccination status in 2015. Their results indicate that those 
who use Twitter and Facebook as sources of health information were more likely to 

Fig. 3   Burden of COVID-19 pandemic ( Source: The Covid Tracking Project 2020)
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be vaccinated than users who do not use Twitter or Facebook as sources of health 
information.

In general, social media sites are Internet platforms in which an individual creates a 
profile and associated list of fellow users, and views posts of various forms from oth-
ers on the platform (Boyd and Ellison 2007; Kullar et al. 2020). Twitter and Facebook 
are the largest two social networks (Kallas 2020). Twitter is a microblogging social 
media platform where individuals communicate through tweets, which are posts that 
are 280 characters or less and allow for the use of hashtags to indicate group topics. The 
platform had a wide and active use base of 152 million daily users in 2019, and many 
healthcare professionals use the social media site to deliver real-time health-related 
information across the globe (Kullar et  al. 2020; Holcomb 2011). Twitter has been 
reported to be the most highly utilized social media platform for healthcare communica-
tion (Pershad et al. 2018; Kullar et al. 2020). In a review of studies that used social net-
working platforms to predict and detect influenza, Twitter was a common representative 
of the social media component. This review reported several benefits to using Twitter 
including that the age of Twitter users is varied, posts are descriptive and highly fre-
quent, and demographic details of users can be available (Alessa and Faezipour 2018). 
Additionally, Twitter uses short messages and hashtags to communicate, provides con-
venience to collect data on an event, and is used by reliable institutions to collect data 
on events (Holcomb 2011). For these reasons, as well as in an effort to obtain accurate 
and cohesive data, we have set tweets via the Twitter platform to represent the social 
media component of our model.

Today, the humanitarian response logistics of many disasters, including influenza 
epidemics and the COVID-19 pandemic, likely utilize social media. Current disaster 
relief operations have the benefit of immediate information dissemination with wide 
reach. Through social media, individuals can be directed to journals and healthcare 
institution guidelines to seek prevention advice and understand symptoms. For indi-
viduals with mild illness, tools and guidelines from reliable sources can alleviate the 
burden on health systems during disasters. In dealing with an emerging disaster, scien-
tific research can be facilitated at a high speed, with additional social media data and 
connectivity between research institutions. Moreover, the humanitarian response to the 
current COVID-19 pandemic has shown the importance of social media during a dis-
aster in the form of other several other social factors, including increased capability 
of remote learning and access to psychological aid (Merchant and Lurie 2020). These 
items emphasize the need for social media in emergency preparedness today. Merchant 
and Lurie provide a powerful viewpoint that underscores the motivation for our study 
and its application in the humanitarian logistics of a pandemic response (2020).

This paper aims to study and quantify the effectiveness of using social media as a 
humanitarian response to mitigate influenza epidemics and the current COVID-19 pan-
demic. We extend the standard SEIR-V model to incorporate social media in order to 
increase the accuracy of transmission dynamics, and perform design of experiments and 
stochastic simulations to examine the following research questions:

1.	 Is social media a beneficial behavioral intervention for infectious diseases?
2.	 How has the inclusion of social media affected number of cases and deaths due to influ-

enza and COVID-19?
3.	 What is the most effective strategy of social media use on the response to infectious 

diseases?
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Our results indicate that social media has a positive effect in mitigating the spread of con-
tagious disease and a synergistic effect with other preventative and mitigating policies. We 
found that social media’s effect has a non-linear relationship with the reproduction number R0 , 
and is most effective when R0 is between 1.5 and 1.9. Social media’s effect on seasonal influ-
enza would be more evident if a vaccine is used, and is accompanied with other measures and 
policies in the mitigation of COVID-19.

The remainder of the paper is organized as follows. Section 2 offers a review of related 
literature while also identifying research gaps and how this study will address them. Section 3 
offers the structure of the proposed generic model based on the SEIR dynamic transmission 
compartmental model by capturing the information of social media for influenza epidemic 
(see Fig. 4) and COVID-19 pandemic (see Fig. 5). This section also offers an estimation of 
parameters, detailed numerical analysis, and results obtained by running the two models, sepa-
rately. Section 4 offers a detailed discussion on findings from running the two disease mod-
els. Section 5 offers major takeaways including research contribution from this study. Finally, 
Sect. 6 discusses limitations of this study and potential future work.

Fig. 4   SEIR-V model for seasonal influenza modified for social media

Fig. 5   SEIR model for COVID-19 modified for social media
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2 � Literature review

Digital information has many uses in the study and mitigation of infectious diseases and 
disaster situations (Fast et al. 2018; Dubey et al. 2019a, b; Singh et al. 2019; DuHadway 
et al. 2019; Wamba et al. 2019). Some evidence also exists (Griffith et al. 2019) that the big 
data analytics and AI technologies can assist visibility (e.g. with open-source imagery tools 
and analytic mapping tools) in disaster relief operations, but this implementation process 
requires further investigation (Dubey et al. 2019a, b).

Social media is an omnipresent part of our world, and the current COVID-19 pandemic 
has shown what an integral role it plays in news, science, and personal communication. 
Human behavior is affected by information given and received via social media, and thus, 
social media is a factor in the use of intervention during times of infectious diseases. There 
is a dearth of infectious disease mathematical models that involve social media and its 
effects on behaviors. Ultimately, including this factor could greatly improve the accuracy 
and true reflection of disease spread.

Social media has recently been used in the detection, surveillance, and prediction of 
the flu via a variety of methods, including text mining, graph data mining, topic models, 
machine learning techniques, internal market, external market, math/statistical based mod-
els, and mechanistic disease models (Alessa and Faezipour 2018). Social media can be 
used to assess people’s sentiments regarding vaccinations (Salathe and Khandelwal 2011) 
and to track vaccination uptake (Huang et al. 2017, 2019). Aslam et al. (2014) successfully 
increases the immediacy of influenza surveillance through tweets. Santillana et al. (2015) 
proposes an improved ILI machine learning prediction model utilizing social media along 
with other data sources. By using these methods, authors were able to predict weekly ILI 
estimates up to four weeks prior to the release of the CDC’s ILI reports. Social media is an 
important tool that has the potential to be used for data collection amidst future influenza 
outbreaks (Allen et al. 2016).

Social media is now also being used as a method of data collection for COVID-19. Dur-
ing the emergence of a new disease, such as COVID-19, data on the spread and burden of a 
disease are essential. Social media can assist in surveillance when there is a dearth of infor-
mation and data available on an illness, such as COVID-19 (e.g., Li et al. 2020). Li et al. 
(2020) found that for every 40 social media posts, there were approximately ten additional 
reported COVID-19 cases in the region. Studies that mined Twitter for COVID-related 
data (e.g., Mackey et al. 2020) have been emerging over the last few months as part of an 
effort to fill in the large knowledge gaps on data surrounding the disease (Qazi et al. 2020).

A common method that is used in studying the spread of both influenza and COVID-19 
is the use of a compartmental model, which will also be employed throughout this paper. 
This method is effective in its incorporation of a constantly changing transmission rate, 
as is characteristic of infectious diseases, such as influenza and COVID-19. For example, 
Wang et  al. (2011) extended a SEIR epidemic model that incorporated influenza-related 
complications. Yang et al.’s (2018) paper analyzed cost-effectiveness of the universal influ-
enza vaccination using a similar epidemic model. Sah et al. (2018) used an age-structured 
dynamic model showing influenza transmissions and vaccinations to study the 2017–2018 
flu season and analyze how low-efficacy vaccinations still had an impact. Kucharski et al. 
(2020) utilized a stochastic SEIR dynamic transmission model and data on COVID-19 
cases in and originating in Wuhan to evaluate spread of the disease in January and Febru-
ary of 2020. Matrajt and Leung (2020) used an age-structured SEIR transmission model to 
investigate how social distancing affected the spread of COVID-19.
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However, fewer studies exist that incorporate social media effects. Pawelek et al. (2014) 
built a transmission model with susceptible, exposed, and infected compartments, while 
also incorporating the number of tweets that were affiliated with influenza. Authors con-
cluded that Twitter may be better used for surveillance, as opposed to being used as an 
early detector. Mitchell and Ross (2016) utilized a deterministic SEEIIR-M model, which 
included two compartments for exposed and infected people, as well as one susceptible and 
one recovered with media compartment, finding a relationship between media awareness 
and the size of an outbreak.

In summary, most studies in current literature focus on the use of social media data 
in forecasting and surveillance of infectious diseases, but few examine its use in control-
ling an outbreak. Our study will further the knowledge of the effectiveness of using social 
media to mitigate an infectious disease outbreak, such as influenza epidemics or the cur-
rent COVID-19 pandemic. In this paper, we incorporate the concept that social media can 
impact individual behavior during a pandemic. We investigate how using social media 
reduces an outbreak at different contagiousness levels of an infectious disease, as well as 
how using social media interacts with other mitigation measures (e.g., vaccination). We 
hope that our findings underscore the importance and multitude of uses of social media 
data collection during infectious disease outbreaks, and help decision makers to prepare 
effective responses to public health crises.

3 � The model

The system of differential equations has been used to study the effect of mass media on epi-
demics by employing the well-known Susceptible-Exposed-Infectious-Recovered (SEIR) 
model and various extensions (e.g., Tchuenche et al. 2011; Cui et al. 2008). In this study, 
mass media has been incorporated using different, but qualitatively similar, functions that 
directly affected disease transmission and susceptibility. In general, the chosen functions 
are decreasing functions with respect to the current number of infected individuals in the 
population. Our generic model extended the SEIR dynamic transmission compartmental 
model by capturing the information from social media for influenza epidemics (see Fig. 4) 
and the COVID-19 pandemic (see Fig. 5), respectively. M(t) is the total number of tweets 
about the infectious disease at any given time. Since there is no vaccine widely available 
yet for the COVID-19 disease, the generic model for COVID-19 pandemic shown in Fig. 5 
does not include a vaccine compartment “V” nor the two vaccine rates v and v1 in Fig. 4 
(generic model for influenza epidemic).

Variables and parameters shown in Figs. 4 and 5, as well as the respective system of 
differential equations given in (1) and (2) for the two models are as follows: S contains the 
susceptible individuals who are not influenced by the tweets. S1 contains the susceptible 
individuals who read and are influenced by the tweets. V includes all vaccinated individu-
als. Flow rates between compartments are defined by model parameters. Exposed individu-
als enter the infectious compartment I, at the rate �, and infectious individuals enter the 
recovered compartment R, at rate γ, with immunity thereafter, or enter the death compart-
ment D at rate � . For influenza, the susceptible individuals in S are vaccinated at per capita 
rate v , and the susceptible individuals in S1 are vaccinated at per capita rate v1 . For COVID-
19, since no vaccine is available, variable V is set to 0 and vaccine rates v and v1 are both 
set to 0. Individuals who are influenced by the tweets at time t will move to S1 at the rate of 
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�M(t) . The transmission rates � and �1 are the rates at which a susceptible individual in S 
and S1 is infected by infectious individuals, respectively. N is the total population.

Seasonal influenza:

COVID-19:

Section 3.1 provides details on the estimation of parameters in the SEIR-V model for 
seasonal influenza modified for social media, whereas Sect. 3.2 provides numerical analy-
sis and results obtained from running the model. Section 3.3 provides separate numerical 
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analysis, and is dedicated to the SEIR COVID-19 model modified for social media with a 
different set of parameter estimations than those used for seasonal influenza.

3.1 � Model parameters for influenza

We obtained the number of flu tweets from HealthTweets.org. The data collection process 
in HealthTweets.org uses “streams” of public data of Twitter. The “health” stream down-
loads only tweets containing any of the 269 health-related keywords, which include lists for 
possessive words, flu related words, fear related words, “self” words, and “other” words. 
The specific data collection methodology is explained in Lamb et al. (2013). Figure 6 plots 
the daily normalized number of flu tweets in the 2018–2019 season. These data will serve 
as M(t), where t is a day.

According to the CDC, handwashing, one of the most effective prevention measures, 
can reduce the risk of respiratory infections by 16–21% (CDC, n.d.-h). We therefore 
assume that:

where � ∈ (16%, 21%) . There is no available data regarding parameters �, v, v1 defined in 
this model. We developed the following three conditions based on observable information 
to formulate an optimization model to estimate these parameters.

Flu vaccine coverage in the 2018–2019 season was 45.3% among adults, and 62.6% 
among those less than 18 years old (CDC, n.d.-d). The 2010 US census reported that 76% 
of Americans are adult, and 24% are less than 18 years old. Thus, the average flu vaccine 
coverage in the US population is approximately ( 45.3% × 76% + 62.6% × 24%) = 49.5% . 

(3)�1 = �(1 − �),

Fig. 6   The normalized number of tweets about influenza in 2018–2019 season by day
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Because the vaccine effectiveness in 2018–2019 was 29%, the effective vaccine coverage in 
2018–2019 was approximately ( 49.5% × 29%) = 14.36% (Condition 1).

Ahmed et al. (2018) found that the odds of getting the flu vaccine among Twitter users 
is 4.4 times the odds among non-Twitter users. There are 330 million active Twitter users 
worldwide (Statista 2019a, b -a) and 262 million international active Twitter users (Statista 
2019a, b). Thus, there are approximately (330–262) = 68 million active Twitter users in 
the US, which is about 21% of the total US population (about 327.2 million people, see 
USAFacts 2019). Let x be the number of non-Twitter user getting vaccinated and x1 be the 
number of Twitter user getting vaccinated. Assume US population = 100, then the number 
of Twitter users = 21, the number of non-Twitter users = 79, and the number of total people 
getting vaccinated = 50. So, we have:

Solving Eqs. (3), we have x = 33.9, x1=16.1. In other words, among all people receiv-
ing the vaccine in the entire season, the number of people from compartment S is 
2.1(= 33.9/16.1) times the number of people from  S1 (Condition 2).

Assume p% of Twitter users are influenced by Twitter, but not all of them get vaccines. 
Assume the US population = 100, then the size of S1 ≤ 21 . Because x1=16.1, the size of 
S1 ≥ 16.1, i.e., 16.1% of the size of total population ≤ the size of S1 ≤ 21% of the total 
population (Condition 3).

Let V̂  be the total number of people vaccinated at the end of a flu season, Ŝ1 be the total 
number of people who have entered S1 by the end of a flu season, and ŜV  be the total num-
ber of people vaccinated who are from S , and Ŝ1V  be the total number of people vaccinated 
who are from S1 . According to Conditions 1 through 3, we formulate an optimization prob-
lem as follows to estimate �, v, v1.

subject to

We numerically solve the above optimization problem (4) by searching the solution 
space through iteratively running the differential Eqs.  (1) in MATLAB. Tables  1 below 
summarizes the initial parameters used in the model to solve (4).

When � = 16% , the best found solution is 
v = 4.16 × 10

−4
, v1 = 9.92 × 10

−4
, � = 3.66 × 10

−3 , with the objective value of 0.0010; 
when � = 21% , the best found solution is 
v = 4.07 × 10

−4
, v1 = 10.21 × 10

−4
, � = 3.48 × 10

−3 , with the objective value of 0.0004. In 
order to accommodate potential errors in estimation, instead of using the single best solu-
tion, we include all feasible solutions that we found numerically as long as the objective 

(3)x + x1 = 50

x1

21 − x1
=

4.4x

79 − x

min
|||ŜV − 2.1Ŝ1V

|||

16.1%N ≤ Ŝ1 ≤ 21%N

14.3%N ≤ V̂ ≤ 14.4%N

v1 ≥ v ≥ 0
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function |||
�SV − 2.1�S1V

||| < 0.5 . Let the solution set S𝜂 =
{
𝜏, v, v1|

|||
�SV − 2.1�S1V

||| < 0.5, 𝜂
}

 . 
|||S�=16%

||| = 519 , and |||S�=21%
||| = 385 . The descriptive statistics of the two solution sets in 

Table 2 show that the solutions are very close to one another within S� and across S� . The 
solutions are insensitive to the value of �.

3.2 � Numerical analysis: influenza

We use the following performance measures to evaluate the effectiveness of social media: 
(1) peak time when the infected is at its maximum, (2) peak magnitude, which is the num-
ber of people who are infected at the peak time, (3) total infected, which is the cumulative 
number of people who get influenza by the end of the season, (4) total vaccinated, which is 
the cumulative number of people who get vaccinated by the end of the season, and (5) the 
total deaths caused by influenza.

We design an experiment to examine the effects of three factors: social media, vaccine, 
and reproduction number R0 (see Table 3). Social Media has three levels, respectively rep-
resenting no effect, low transmission rate reduction, and high transmission rate reduction. 
Vaccine includes two levels, with and without vaccine. Biggerstaff et al. (2014) found that 
the median value of the R0 of seasonal epidemic influenza is 1.28 with the 25th percentile 
of 1.19 and the 75th percentile of 1.37, according to 24 studies on 47 seasonal flu epidem-
ics. Chowell et al. (2008) found the R0 of seasonal epidemic influenza with the mean of 
1.3 and the year-to-year variability (range 0.9–2.1). Cowling et al. (2010) studied the 2019 

Table 1   Model Parameters Parameter Value Reference

N 10,010 Assumed
S(0) 10,000 Assumed
I(0) 10 Assumed
R
0

1.28 Biggerstaff et al. (2014)
� (� + �)R

0
Carcione et al. (2020)

� 1/2.5 Godman (2016)
� 1/6 Godman (2016)
� 16%;21% Calculated as in (2)
� 0.001 CDC (n.d.-a)
M(t) Daily normalized num-

ber of tweets
HealthTweets.org

Table 2   Descriptive statistics of the optimal solutions

� = 16% � = 21%

v v
1

v v
1

�

Mean 4.19 × 10
−4

9.23 × 10
−4

3.93 × 10
−3

4.11 × 10
−4

9.78 × 10
−4

3.64 × 10
−3

Median 4.21 × 10
−4

9.10 × 10
−4

3.98 × 10
−3

4.11 × 10
−4

9.82 × 10
−4

3.62 × 10
−3

SD 4.36 × 10
−6

5.20 × 10
−5

2.18 × 10
−4

4.07 × 10
−6

5.02 × 10
−5

1.96 × 10
−4

Range 1.53 × 10
−5

1.57 × 10
−4

6.50 × 10
−4

1.70 × 10
−5

2.0 × 10
−4

7.60 × 10
−4
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H1N1 infections in Hong Kong and found that the effective reproduction number ranges 
from 1.1 to 1.5. Thus, in our study, we set three levels to R0 , where R0=1.1 represents a 
less mild seasonal influenza epidemic, R0=1.28 represents a typical seasonal influenza epi-
demic, and R0=1.5 represents a severe seasonal influenza epidemic. There are a total of 18 
= 3 × 2 × 3 design points.

We use a stochastic simulation model to examine the 18 design points listed in Table 3, 
and we ran 1,000 replications on each design point. To simulate the process in a design as 
in Table 3, we model, ΔNij , the number of people moving from compartment i to j over a 
time interval Δt as a binomial random variable (e.g. King and Ionides 2016). Table 4 dis-
plays the specific binomial distributions.

The simulation procedure developed in MATLAB is described as follows.

Table 3   Design of experiment Factor 1 2 3

Social media (�, �) No
� = � = 0

� = 16%

� ∈ S�

� = 21%

� ∈ S�

Vaccine (v, v
1
) No

v = v
1
= 0

Yes
(v, v

1
) ∈ S�

R
0

1.1 1.28 1.5

Table 4   Probability distributions of the number moving between compartments over time interval Δt

Description Distribution

ΔN
SV

The number moving from S to V over Δt Binomial(S, 1 − e−vΔt)

ΔN
S
1
V

The number moving from S1 to V over Δt Binomial(S
1
, 1 − e−v1Δt)

ΔN
SE

The number moving from S to E over Δt
Binomial(S, 1 − e

−
�

N
IΔt

)

ΔN
S
1
E

The number moving from S1 to E over Δt
Binomial(S

1
, 1 − e

−
�1
N
IΔt

)

ΔN
SS

1
The number moving from S to S1 over Δt Binomial(S, 1 − e−�M(t)Δt)

ΔN
EI

The number moving from E to I over Δt Binomial(E, 1 − e−�Δt)

ΔN
IR

The number moving from I to R over Δt Binomial(I, 1 − e−�Δt)

ΔN
ID

The number moving from I to D over Δt Binomial(I, 1 − e−�Δt)
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Figure  7 shows the main effects of R0 , social media, and the vaccine on the five 
responses based on the simulation results. Among the three factors, R0 has the larg-
est effect on all five responses. As  R0 increases (i.e., the disease becomes more conta-
gious), the peak magnitude, the total infected, and the total deaths all increase sharply; 
but the peak time shortens, and the vaccine coverage decreases. For example, in a severe 
flu season ( R0 = 1.5 ), the total infected could be 4 times and the peak magnitude could 
be nearly 8 times as in a mild flu season ( R0 = 1.1 ), and it would peak about 40 days 
sooner. However, the difference between the peak times when R0 = 1.1 and R0 = 1.28 is 
statistically insignificant.

Social media displays a similar pattern on peak timing, peak magnitude, total 
infected, and total deaths. As the effect of social media increases, the peak timing, the 
peak magnitude, the total infected, and the total deaths all decrease, but the vaccine 
coverage increases. For example, when social media is in effect ( � = 0.21 ), the total 
infected could be reduced by about 11% and the peak magnitude could be reduced 
by 12% from the level when there is no social media, and it would peak about 7 days 
sooner. As the effect of social media � increases from 0.16 to 0.21, the decreases in the 



837Annals of Operations Research (2022) 319:823–851	

1 3

peak time, the peak magnitude, the total infected, and the total deaths are relatively 
small, and statistically insignificant.

Vaccine has significant impact on the influenza progression. When a vaccine is pre-
sent (about 14% of the population is effectively vaccinated), the peak time, the peak 
magnitude, the total infected, and the total deaths are all significantly decreased in 
comparison to a scenario with no vaccine. For example, the total infected and the peak 
magnitude could be both reduced by 21%, and it would peak approximately 16  days 
sooner.

We also examine the interaction effects between these factors on all five responses. 
Almost no interaction between the factors was observed on the peak magnitude, total 
infected, total deaths, and vaccine coverage, except the peak time. Figure  8 displays 
the interaction effect between any pair of the factors on the peak time. Vaccine has 
no practically meaningful effect on the peak time when R0 = 1.28 or 1.5, but the peak 
time is significantly shortened when R0 = 1.1 . In other words, the 14% effective vac-
cine coverage is large enough for a mild influenza season so that the time to peak can 
be shortened by 46 days, but would have limited effect on peak time during a regular 
or severe influenza season. A similar pattern also presents with social media. The peak 
time remains largely unchanged regardless of social media use during a regular or a 
severe influenza season, but peak time could be shortened by about 20 days during a 
mild season. Vaccine and social media can amplify the other’s effect on the peak time. 
When vaccine presents, social media can further shorten the time to peak, in compari-
son to no vaccine. Similarly, when social media presents, vaccine can shorten the peak 
time even more, in comparison to no social media.

Note that Figs. 7 and 8 are created in Minitab 18.

Fig. 7   Main effect of R0, social media and vaccine
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3.3 � Numerical analysis: COVID‑19

COVID-19 is a coronavirus, which is a type of pathogen that generally affects the 
human respiratory system (Rothan and Byrareddy 2020). An outbreak was predicted 
due to the early reported reproduction number of the virus, which was thought to be 
greater than 1 (Zhao et  al. 2020). Patient age and state of his or her immune system 
affects the length of this time period, and common symptoms include fever, fatigue, 
dry cough, headache, as well as a variety of issues within the respiratory tract and 
intestine. The virus is thought to spread primarily via person-to-person transmission, 
such as through droplet spread or direct contact. Efforts to reduce person-to-person 
spread—particularly among susceptible populations—has been a top priority in the 
control of the disease spread (Rothan and Byrareddy 2020). With no vaccine avail-
able, social distancing is considered a vital method to slow spread of the disease. Sev-
eral researchers have examined social distancing measures in the context of COVID-19 
spread in the United States. Mandatory measures were found to have been effective, 
and results of voluntary measures vary across numerous demographic traits and media 
consumption levels, which were associated with different levels of social distancing 
across counties (Andersen 2020; Courtemanche et al. 2020).

In this section, we use the same performance measures to evaluate the effectiveness of 
social media in the COVID-19 pandemic: (1) peak time when the infected is at its maxi-
mum, (2) peak magnitude, which is the number of people who are infected at the peak 
time, (3) total infected, which the cumulative number of people who get influenza by the 
end of the season, and (4) the total deaths caused by COVID-19.

We use the same simulation procedure as described above to examine the effective-
ness of social media. Table 5 shows all the values of the input parameters for the model. 
The raw number of COVID-19 tweets in the world is provided by Lamsal (2020). Ninety 

Fig. 8   Interaction plot for peak time
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four keywords and hashtags are used to collect tweets, such as "corona", "coronavirus", 
"covid", "covid19", "covid-19", "sarscov2", "sars cov2", "sars cov 2", "quarantine", "flatten 
the curve", "#flattenthecurve." The data collection process made significant changes (e.g., 
adding more coronavirus-specific keywords) on April 18, 2020 and May 16, 2020, respec-
tively; which resulted in substantial increases in the number of tweets collected since. 
Thus, we adjusted the raw data to make the daily number of tweets consistent during the 
time period from March 22, 2020 to July 20, 2020.1 We also normalized these numbers in 
the same way that HealthTweets.org normalizes the number of tweets of influenza (Bronia-
towski et al. 2013). Figure 9 plots the daily normalized number of COVID-19 tweets in the 
world from March 22, 2020 to July 20, 2020. These data will serve as M(t) where t is a day.

According to Chu et al. (2020), the social distancing measures—including keeping dis-
tance, wearing masks, and eye covers—could decrease the transmission risk by 7.5% to 
15.9%. Thus, we set up three scenarios for � ∈ {0, 7.5%, 15.9%}. As discussed earlier, the 
solutions of � are insensitive to the values of � . Thus, we combined the two solution sets, 
S16% ∪ S21% , from which we randomly drew � in the simulation process. For each value of 
� , we ran 1,000 replications.

The simulation results show that social media only has a statistically significant effect 
on the peak time and the total number of deaths when � is sufficiently large. As � increases 
from 0 to 7.5%, there is no statistical significance on the changes of the peak time nor the 
number of deaths. But as � increases from 0 to 15.9%, the peak time would increase by 
0.6% and the number of deaths would be reduced by 0.25%, with statistical significance. 
However, such differences have little practical meaning.

Table 5   Model parameters Parameter Value References

N 10,010 Assumed
S(0) 10,000 Assumed
I(0) 10 Assumed
R
0

3.87 Enns et al. (2020)
�∕N (� + �)R

0
Carcione et al. (2020)

� 1/5.2 Enns et al. (2020)
� 1/7.8 Enns et al. (2020)
� 0%;7.5%;15.9% Chu et al. (2020)
� 0.04 CDC (n.d.-f)
� � ∈ S

16% ∪ S
21%

M(t) Daily normalized number 
of tweets

Lamsal (2020)

1  To adjust the data, we assume that there was no substantial difference in reality between April 17 and 
April 18 and between May 15 and May 16. We fit a polynomial regression with a quadratic term to the 
number of tweets from March 22 to April 17 and estimated the number of tweets on April 18 based on this 
model. The difference between the estimated number and the real number on April18 was added to the 
number to tweets on each day from March 22 to April 17. Similarly, we fit a linear regression to the number 
of tweets from April 18 to May 15 and estimated the number of tweets on May 16 based on this model. The 
difference between the estimated number and the real number on May16 was added to the number to tweets 
on each day from March 22 to May15.
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As � increases, the peak magnitude and the total number of infected would decrease 
with statistical significance. Figures  10 and 11 show the means with 95% confidence 
intervals based on simulation results. In other words, social media could reduce the 

Fig. 9   Number of normalized tweets about COVID-19

Fig. 10   Peak magnitude as � increases
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highest amount of infected per day and reduce the total number of infected. However, 
social media is less effective on COVID-19 than influenza, in terms of the percentage of 
reduction during the peak magnitude and the total infected.

From the above results of the COVID-19 example, we discovered that the effective-
ness of social media on mitigating the infectious disease depends on how contagious 
the disease is. R0 describes the intensity of an infectious disease outbreak. In order to 
examine this phenomenon, we perform further simulation experiments, where R0 is set 
from 1.1 to 3.87 with an increment of 0.2. In this range, R0 = 1.1 represents an infec-
tious disease similar to a mild seasonal influenza epidemic and R0 = 3.87 represents a 
pandemic as COVID-19. For each value of R0, we run the simulation model with 1,000 
replications using the parameters specified in Table 5. The differences of the peak time, 
the peak magnitude, the total infected, and the total deaths between the situations with-
out social media ( � = 0 ) and with social media ( � = 7.5% and � = 15.9% ) are calculated 
respectively for each R0. Figures 12,13,14 and15 illustrate the average difference with 
the 95% confidence interval at each R0.

Peak time, when the number of infected a day reaches the highest level, can be pro-
longed or shortened when social media is in effect. The extension or reduction in peak 
time is influenced by R0 and � . Figure 12 demonstrates a non-linear pattern between the 
reduction in peak time and R0 . Social media prolongs peak time if R0 = 1.3 , but short-
ens peak time if R0 > 1.5 . The largest reduction on peak time appears at R0 = 1.9 , and 
such reduction on peak time gradually decreases as R0 increases if R0 > 1.9 . Regardless 
of R0 , higher � leads to more peak time reductions.

Peak magnitude, or the highest number of infected in a day, can be reduced when 
social media is in effect. Figure 13 demonstrates a non-linear pattern between the reduc-
tion in peak magnitude and R0 . The largest reduction on peak magnitude appears at 
R0 = 1.7 . If R0 < 1.7 , lower R0 will result in smaller reduction in peak magnitude; 

Fig. 11   Total infected as � increases
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and the reduction on peak magnitude gradually decreases as R0 increases, if R0 > 1.7 . 
Regardless of R0 , higher � leads to more peak magnitude reductions.

Total infected, or the number of total infected in the entire time duration, can be 
reduced when social media is in effect. Figure  14 demonstrates a non-linear pattern 
between the reduction in total infected and R0 . The largest reduction in total infected 

Fig. 12   Differences in peak time as R0 changes

Fig. 13   Differences in peak magnitude as R0 changes
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appears at R0 = 1.7 . If R0 < 1.7 , lower R0 will result in smaller reduction in the number 
of total infected; and the reduction on the total infected decreases as R0 increases if 
R0 > 1.7 . Social media’s effect nearly vanishes when R0 = 1.1 and R0 = 3.87 . Regardless 
of R0 , higher � leads to greater reductions in the total infected.

Fig. 14   Differences in total infected as R0 changes

Fig. 15   Differences in total deaths as R0 changes
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Total deaths, or the number of total deaths in the entire time duration, can be reduced 
when social media is in effect. Figure 15 demonstrates a similar non-linear pattern between 
the reduction in total deaths and R0 . The largest reduction in total deaths appears at 
R0 = 1.9 . Regardless of R0 , higher � leads to more total infected reductions. Social media’s 
effect nearly vanishes when R0 = 1.1 and R0 = 3.87 . Regardless of R0 , higher � leads to 
higher total death reductions.

Social media impacts the four metrics differently. Peak time appears to be least affected 
by social media. Social media’s effect on total infected and total deaths is more sensitive to 
R0 than it is compared to peak magnitude. When R0 > 1.9 , the reductions in total infected 
and total deaths caused by social media diminish more quickly than the reductions in peak 
magnitude. Overall, social media is less effective when the infectious disease is mild or 
very severe, and social media is most effective in mitigating the pandemic if the disease’s 
R0 is between 1.5 and 1.9.

4 � Discussion

Social media is an omnipresent part of today’s world. We suggest that moving forward, it 
should be considered as a part of the larger body of preventative social tools that can be 
used to spread awareness and mitigate the disease, and be synergistically used with other 
measures and policies to be most effective. Although misinformation, amongst other fac-
tors, are large drawbacks in the usage of social media during endemics and pandemics, it is 
vital to understand how we can use this tool to benefit public health, especially during an 
infectious disease outbreak.

Understanding the complexities between social media and subsequent changes in behav-
ior in the context of infectious disease can aid the advancement of public policy regarding 
social media utilization in healthcare communication. With the growing knowledge in this 
area, resources could more efficiently be allocated towards public awareness campaigns for 
the prevention of and response to pandemics, and further research could determine specific 
social media strategies that would be most beneficial to mitigate the spread of future dis-
eases (Mitchell and Ross 2016). With a better understanding of the effect social media has 
on infectious disease transmission, physicians, scientists, researchers, and other members 
of the healthcare community may also be influenced to appropriately incorporate social 
media into their healthcare communication strategies in prevention, ongoing, and recov-
ery phases of pandemics; and this could be achieved through sharing up-to-date applicable 
knowledge and protective behaviors. In addition, social media companies may wish to have 
empirical information to better understand how their platforms do and could aid in other 
emergency situations.

We hope understanding how best to use social media during pandemics and emergen-
cies, as well as how to use social media in conjunction with other interventions, will be 
practically applied in future emergency situations. Real-world examples of using Twitter to 
mitigate situations have shown promise in disaster response. For example, in 2012, Fairfax 
County experienced a rapidly-moving group of severe and destructive thunderstorms. The 
Fairfax County Office of Public Affairs had begun incorporating social media and simi-
lar outreach technologies in prior years, and was able to utilize social media to directly 
communicate with community members and keep them updated with vital information in 
real-time. Twitter was used to spread disaster-related information at a rapid rate, as well 
as guide the public to other sources of information. As Twitter has the mechanisms of 
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retweeting, community-specific hashtags, and similar tools, information regarding a 911 
outage and other guiding updates spread through the platform and were able to contribute 
to keeping community members safe (Space and Naval Warfare Systems Center Atlantic 
2013). As more information emerges on how best to utilize Twitter and other social media 
platforms, such successful implementation of social media use in emergency situations 
may become more commonplace.

During the present SARS-COV-2 outbreak, individuals have become more attuned to 
the notion of social media as a source of public health information. This can currently 
be seen in action as the public utilizes Twitter to share information on awareness, medi-
cal breakthroughs, emerging guidelines and rules, and best practices to minimize adverse 
outcomes from the current pandemic. This study has provided results that show empirical 
evidence of the potential effects Twitter could have on outcomes of both coronavirus and 
influenza outbreaks.

Another practical implication of our study is to underscore that social media is an impor-
tant, model-supported intervention for pandemics and other disasters in which behaviors 
strongly affect health and safety outcomes. Quantifying that social media campaigns are 
crucial intervention in outbreak response is one of the first steps in implementing modern 
plans for various communities. Further, understanding how social media may enhance the 
effectiveness of other interventions can provide a powerful strategy for those who have the 
ability to plan emergency response measures. This study will add greater comprehension of 
how the multifaceted relationship of social media, awareness, and transmission can be most 
accurately integrated into infectious disease transmission modelling. As we are currently 
experiencing, mathematical modelling is integral to infectious disease spread predictions 
and potential policies enacted to safeguard our communities. The emergence of a social 
media component requires a great amount of study and understanding in order to best be 
incorporated into these models moving forward (Mitchell and Ross 2016).

Finally, much of the world’s population has experienced at least some sort of restric-
tion to their home due to social distancing and quarantine guidelines, which may have 
resulted in an increased usage of social media to stay connected, keep up-to-date on coro-
navirus news and scientific information, and share support with others. As social media use 
becomes more commonplace in public health, it is essential for studies to understand how 
best to utilize it, backed by quantifiable data.

5 � Conclusion

Through our analysis, we determined that social media is able to have an effect in mitigat-
ing the spread of contagious disease in terms of peak time, peak magnitude, total infected, 
and total death. Particularly, we found that social media’s effect is amplified when a vac-
cine is available.

Social media’s effect has a non-linear relationship with R0 , and we found that social 
media is more effective in mitigating the pandemic if R0 is between 1.5 and 1.9. This 
implies that if the effective reproduction number of a severe infectious disease, such as 
COVID-19, can be brought down to this range through other policies, the effectiveness of 
social media will be amplified and have a synergistic effect. However, R0 of seasonal influ-
enza is likely to be less than 1.5, and R0 of COVID-19 is likely to be greater than 1.9. This 
implies that the effects on controlling these diseases are limited if we rely on social media 
only. Social media’s effect on seasonal influenza would be more apparent if vaccine is also 
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used, and social media should also be accompanied with other measures and policies in the 
mitigation of COVID-19.

6 � Limitations and future scope

There are several limitations in our study that should be considered in its interpretation. 
The parameter values, such as R0, used in our compartmental model for both seasonal 
influenza and COVID-19 are based on CDC data and other published estimates for various 
disease attributes. The specific range of R0, where social media is most effective, should be 
re-evaluated for different diseases, although we believe the non-linear relationship between 
social media’s effect and R0 should remain unchanged. Twitter data for both diseases may 
vary depending on which keywords are used, and data extraction utilizing social media will 
likely be refined as an increasing number of studies use this source.

An important consideration for future study is effects of other forms of social media, 
including Facebook, Instagram, LinkedIn, etc., which were not included in our model. 
By focusing on Twitter, certain populations may be underrepresented in our sample data. 
According to a recent national survey conducted by the Pew Research Center (Wojcik and 
Hughes 2019), Twitter users are younger, more leaning towards Democrats, more educated 
and have higher incomes than the general public in the U.S. Their views are likely to differ 
from the general public on political and social issues, such as immigration, racial and gen-
der-based inequality. On other issues, the views of Twitter users are similar to those of all 
U.S. adults. Seasonal influenza seems to be a non-political and non-social issue, while the 
COVID-19 becomes a more political issue in the U.S. Fortunately, our analysis is based on 
the quantity rather than the content of the COVID-19 related tweets. Thus, we believe that 
the potential bias, if any, due to using Twitter in our study has limited impact on the results 
of our analysis. Additionally, while Twitter provides important information regarding 
healthcare communication through social media, it does not wholly replace data retrieved 
from all platforms. Other social media sites provide different forms of information and 
posts that are also leveraged for healthcare communication, and their impacts should be 
studied in the context of how they affect infectious disease transmission in future models.

Finally, we have primarily utilized social media in our model as a tool to help inform 
individuals, which we believe may help influence behavior and subsequently affect disease 
spread through constantly-updated knowledge of the relevant viruses and best practices for 
prevention. However, social media could also potentially provide benefit during the recov-
ery stage of a pandemic, or other possible future disasters. This factor is also worth fur-
ther investigation to better understand the comprehensive role of social media in disaster 
situations.
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