Chen et al. Molecular Cancer (2021) 20:23
https://doi.org/10.1186/s12943-021-01323-9

Molecular Cancer

LETTER TO THE EDITOR Open Access

Non-invasive lung cancer diagnosis and
prognosis based on multi-analyte liquid

biopsy

Check for
updates

Kezhong Chen'", Jianlong Sun®', Heng Zhao'", Ruijingfang Jiang?, Jianchao Zheng?, Zhilong Li%, Jiaxi Peng?,
Haifeng Shen', Kai Zhang', Jin Zhao?, Shida Zhu**, Yuying Wang?', Fan Yang' and Jun Wang""

[ Keywords: Lung cancer, Diagnosis, Prognosis, Liquid biopsy, cfDNA, Mutation, DNA methylation, Multi-analyte ]

Main text

Lung cancer (LC) is the leading cause of death in many
countries including China. The stage at which LC is di-
agnosed has a significant impact on prognosis. However,
timely detection of LC remains difficult since patients
are often asymptomatic at early stages. Low-dose com-
puted tomography (LDCT) is the most extensively rec-
ommended LC screening method currently, but it poses
radiation risks and only a small fraction of the nodules
detected are true lung cancers. In clinical practice, it re-
mains a challenge to differentiate malignant tumors
from benign solitary pulmonary nodules, which may
greatly benefit from non-invasive diagnostic tools. TNM
stage currently remains the most widely used prognostic
tool in lung cancer. However, the variability of survival
within staging groups suggests that search for additional
prognostic parameters is necessary. Molecular alter-
ations such as cancer driver gene mutational status and
expression signatures have been implicated in LC prog-
nosis; meanwhile, there have been emerging evidence
that support the prognostic value of epigenetic alter-
ations, which remains to be fully elucidated.
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Circulating tumor DNA (ctDNA) in plasma of cancer
patients provides valuable information for cancer gen-
ome and also holds great promise for non-invasive can-
cer detection [1, 2]. However, since ctDNA is diluted by
abundant circulating cell-free DNA (cfDNA) of noncan-
cerous origins, its detection poses significant challenges
especially during early stages of cancer when the tumor
mass is small. In this study, we developed a set of experi-
mental and computational tools to measure both genetic
and epigenetic signals from plasma cfDNA of LC pa-
tients as well as patients bearing benign lung nodules
(BLN) using high-throughput sequencing [3], aiming to
explore the potential utility of blood-based biomarkers
for LC diagnosis and prognosis.

Results and discussions

Targeted ultra-deep sequencing detected distinct
mutational spectra of plasma cfDNA and WBC gDNA

A cohort of 128 LC patients represented a natural tumor
stage distribution (66% of the cases were stage 0 or stage
I) and 94 BLN patients were enrolled in this study
(Fig. 1a and Table 1). To detect genomic sequence alter-
ations, we performed targeted ultra-deep next-
generation sequencing (NGS) on plasma cfDNA ex-
tracted from 111 LC patients and 78 BLN patients using
a panel covering exons of 139 cancer driver genes se-
lected based on TCGA and COSMIC databases (Supple-
mentary Table 1 and 2, and Supplementary Fig. 1).
Adaptors that contained 6bp duplex unique molecule
identifiers (UMI) were used in the library preparation
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Fig. 1 Study design and classification models based on variants detected in plasma cfDNA after filtering with matched WBC sample for shared
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variants. a Schematic view of the study design. b Pearson correlation of AF in cfDNA (x-axis, log scale) and AF in matched WBC gDNA (y-axis, log
scale). Each point represents one variant detected in matched cfDNA and WBC gDNA samples from the same patient. ¢ Oncoplot showing the
153 mutations detected in 67 out of 111 (60.36%) LC samples. Fourty-five LC samples without any mutation detected were not shown. Each
column represents a sample and each row a different gene. The upper barplot represents the frequency of mutations for each sample, and the
right barplot represents the frequency of mutations for each gene. Samples are ordered by the most mutated genes. d Allele fractions (x-axis, log
scale) of mutations detected in plasma cfDNA of BLN patients (blue) and LC patients (red). @ Oncoplot of the 28 mutations detected in 23 out of
78 (29.49%) BLN samples. 55 BLN samples without any mutation detected were not shown. f Predictive models to distinguish LC from BLN based
on mutations detected. SUMAF (blue): the sum of AFs. Weighted_SUMAF (red): the weighted sum of AFs. The AUC of SUMAF model is 0.67 with

55.9% sensitivity and 76.9% specificity. The AUC of weighted_SUMAF model is 0.68 with 59.5% sensitivity and 71.8% specificity

procedure to enable subsequent removal of PCR dupli-
cates and error-correction based on consensus gener-
ation. A set of stringent thresholds were then applied to
identify the most reliable somatic variants (See Methods
for details). In total, 193 and 46 mutations were detected
in 75 (68%) LC patients and 33 (42%) BLN plasma
cfDNA, respectively (Supplementary Fig. 2 and 3).

Since some variants might derive from clonal
hematopoiesis (CH) and confound the mutational analysis
[4], genomic DNA (gDNA) of white blood cell (WBC)
from cfDNA mutation-positive participants was also se-
quenced. Non-synonymous variants were detected in
WBC of 73 (97%) LC patients and 33 (100%) BLN patients
respectively (Supplementary Fig. 4 and 5). Among WBC-
shared cfDNA variants, the most frequently mutated
genes included TP53, CBL, APOB, and CSMD3 for LC
plasma, and CBL, CSMD3, and STAT3 for BLN plasma
(Supplementary Fig. 6). Moreover, allele frequencies (AFs)
of variants shared by ¢fDNA and matched WBC samples
were highly correlated (Fig. 1b), suggesting that these mu-
tations indeed originated from WBC and should be re-
moved for downstream analysis [5]. The percentages of

cfDNA variants matching corresponding WBC sample
were 20.7% (40 out of 193) for LC ¢fDNA and 39.1% (18
out of 46) for BLN cfDNA, suggesting that a significant
portion of cfDNA variants was derived from CH, espe-
cially in BLN plasma (p = 8.89E-03, chi-squared test). Not-
ably, a number of these mutations were hotspot mutations
of cancer driver genes (Supplementary Fig. 7), suggesting
that CH variants may significantly confound cfDNA ana-
lysis if not analyzed in parallel.

After filtering for variants potentially derived from
CH, 153 variants remained in 67 (out of 111, 60.36%)
LC cfDNA samples (Fig. 1c and Supplementary Table 3),
with AFs ranging from 0.03 to 6.00% (median was
0.13%, Fig. 1d and Supplementary Fig. 8). TP53 was the
most commonly mutated gene in LC plasma (mutated in
23% of LC cfDNA samples) followed by EGFR (8%),
PTPN11 (8%), APC (7%), APOB (7%), KMT2C (5%), and
KMT2D (5%) (Fig. 1c and Supplementary Fig. 9 and 10).
Smoking is an important risk factor for lung cancer. We
observed that within LC patients, smokers appeared to
carry a higher mutation burden in plasma cfDNA than
never-smokers (Supplementary Fig. 11). 28 mutations
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Table 1 Clinicopathological characteristics of the patients enrolled in this study
LC (N =128) BLN (N =94) p-value
Number Percentage Number Percentage
Gender Female 53 41% 48 51% 0.15
Male 75 59% 46 49% (chi-squared test)
Age Median * SD (Range) 63.00 + 11.58 (30-86) 55.00 + 10.49 (18-79) 1.00E-05
(Student’s t-test)
Nodule Size (cm) Median * SD (Range) 2.00+1.35 (0.20-6.50)  1.25+1.14 (0.35-5.75)  1.22E-03

Histology

LUAD
LUSC

(Student’s t-test)

LCC
SCLC
Inflammatory Lesion
Granulomatous Inflammation
Atypical Adenomatous Hyperplasia
Atypical Hyperplasia
Others

Stage 0

Smoking History Current-Smoker
Ex-Smoker
Non-smokers
Unknown

Smoking Levels (pack-years) Median + SD (Range)

97 76%
23 18%
3 2%
5 4%
31 33%
12 13%
10 11%
10 11%
31 33%
2 2%
54 42%
29 23%
17 13%
19 15%
7 5%
29 23% 15 16% 0.02
27 16% 8 9% (chi-squared test)
77 60% 70 74%
1 1% 1 1%
37.50 +27.96 (2-120) 20.00 + 15.02 (5-60) 0.01

(Student’s t-test)

Smoking Levels: Among Ever-smokers only. LUAD lung adenocarcinoma, LUSC lung squamous cell carcinoma, LCC large cell carcinoma, SCLC small cell

lung carcinoma

remained in 23 (out of 78, 29.49%) BLN cfDNA samples
(Fig. 1e and Supplementary Table 4), although the frac-
tion of positive samples was much less, compared to LC
plasma (29.49% vs. 60.36%, p=2.87E-05, chi-squared
test). These mutations had AFs ranging from 0.05 to
1.91% (Fig. 1d). The most frequently mutated genes in
BLN plasma were KRAS (5%), CSMD3 (4%), APC (3%),
ATM (3%), KMT2D (3%), and TP53 (3%) (Fig. 1e), repre-
senting a distinct mutational spectrum from LC cfDNA.
Notably, 39.3% (11 out of 28) of these were COSMIC
hotspot mutations (Supplementary Table 4). These re-
sults revealed that, in contrast to common belief, plasma
cfDNA from BLN patients also carried genomic se-
quence alterations including mutations in cancer driver
genes, albeit less frequently. These alterations could have
arisen from somatic clonal expansions in normal tissues
[6]. Also, it was noted that some of the benign lesions
included in our study were regarded as premalignant

lung lesions, such as atypical adenomatous hyperplasia
(AAH, 11% of BLN cases in our study). Previous study
showed that AAH indeed harbored cancer driver muta-
tions, such as those in gene KRAS, BRAF, APC, KMT2D,
and TP53, and these mutations could be readily detected
in matched plasma cfDNA [7]. Taken together, these re-
sults highlight the potential challenges for differentiating
malignant versus benign plasma based on the cfDNA
mutation spectrum.

Classification models based on somatic mutations to
distinguish LC from BLN

Next, we investigated whether LC plasma cfDNA had a
stronger mutational burden than that of BLN patients.
To quantify the c¢fDNA mutational burden, we con-
structed a mutation score for each cfDNA sample as ei-
ther a simple summation of the allele fractions of all
variants identified (SUMAF), or a weighted sum of the
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allele fractions, weighting more on TCGA hotspot can-
cer driver mutations and COSMIC hotspot mutations
(weighted SUMAF, or wSUMAF; see Methods for de-
tails). Both scoring methods produced modest classifica-
tion accuracy for distinguishing LC from BLN plasma:
the wSUMAF model generated an area under curve
(AUC) value of 0.68 with a sensitivity of 59.5% and a
specificity of 71.8% (Fig. 1f and Supplementary Fig. 12)
and the SUMAF model had a similar performance.
These results showed that the classification models built
on mutation score alone had limited classification cap-
ability for differentiating LC and BLN plasma, contradic-
ting some earlier studies which suggested that
mutational status could be used to diagnose LC from
BLN with high specificity and modest sensitivity [8], a
conclusion that may have suffered from potential bias
caused by limited sample sizes used. Our work obtained
from a larger sample size (128 LC and 94 BLN plasma)
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suggested that genomic sequence alterations in cancer
driver genes carried by BLN cfDNA might be more
prevalent than previously thought, therefore limiting the
utility of mutation-based diagnostic assays. A multi-
analyte approach is more likely to improve the detection
of cancer signal.

Classification of LC and BLN plasma based on ¢fDNA
methylation data

To identify LC-specific epigenetic changes, we per-
formed whole-genome bisulfite sequencing (WGBS) on
25 pairs of LC tissue and normal tissue adjacent to the
tumor (NAT) (Fig. 2a). Three hundred fifteen differen-
tially methylated regions (DMRs) were identified, includ-
ing 293 hype-methylated DMRs and 22 hypo-methylated
DMRs (Fig. 2b; see Methods for details). There were a
lot more hyper DMRs than hypo DMRs, consistent with
the belief that genomic regulatory regions such as
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promoters of potential tumor suppressor genes undergo
remarkable hypermethylation in tumorigenesis [9]. Gene
ontology (GO) annotations revealed that the 293 hyper
DMRs were significantly enriched for genes encoding
DNA-binding domains and homeobox domains, as well
as genes involved in the developmental and transcrip-
tional regulation process (Fig. 2c). These genes are likely
to be potential tumor suppressor genes, and many of
which haven’t been implicated as such previously (such
as SEC31B, ZNF274, and NXPHI). Unsupervised hier-
archical clustering using the regional methylation ratio
of the identified DMRs perfectly separated LC tissues
and NAT with the exception of a single LC sample,
highlighting the pronounced epigenetic dysregulation of
LC cells (Fig. 2b).

We next performed a comprehensive analysis of 5-mC
methylation profile of cfDNA for 111 LC patients and 87
BLN patients using targeted bisulfite sequencing, cover-
ing 5.6 million CpG sites (Supplementary Table 1).
Compared to BLN plasma, increased methylation levels
were observed in LC plasma cfDNA for hypermethylated
DMRs identified from tissue sequencing, as expected
(Supplementary Fig. 13). The DMR methylation levels of
cfDNA appeared to be lower in smokers than never-
smokers, in both the LC and BLN group (Supplementary
Fig. 14). To test the diagonostic value of methylation
markers, we first built a random forest model with 6-
fold cross-validation (CV) that classified LC from BLN
plasma based on hyper DMRs, which achieved an AUC
of 0.71 (Supplementary Fig. 15). A feature selection
process was then carried out to minimize the number of
DMR markers while maintaining the performance. By
selecting features with the highest feature importance in
each fold of the CV, a model consisting of 47 DMRs was
obtained, achieving a similar performance with an AUC
of 0.71 while reducing the feature size by 84.0%, and still
outperforming models based on mutation status alone
(Supplementary Fig. 16). These results indicated that
LC-specific methylation changes carried by plasma
cfDNA could be effective biomarkers for diagnosing lung
cancers versus benign lesions. Here, the difference in
model performance comparing to previous study on
methylation markers could be attributed to the different
study populations and cfDNA analysis methods. The
smaller cohort size in the previous study may have also
caused over-fitting and/or over-estimation of the model
performance.

Multi-omics analysis to differentiate LC from BLN plasma

Next, we attempted to integrate multi-omics features of
the cfDNA to further improve the diagnostic power of
our classification model among samples with complete
measurements (Supplementary Table 1). Indeed, among
91 LC and 71 BLN cfDNA samples that underwent both
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genetic and epigenetic profiling, we found that models
that combined 59 most informative DMRs and the wSU-
MAF mutation score achieved a CV-AUC of 0.77 with a
sensitivity of 76.1% and a specificity of 59.2%, compared
to an AUC of 0.68 achieved by mutation score alone
(DeLong p-value< 0.01) and an AUC of 0.74 achieved by
methylation features alone (DeLong p-value =0.85)
(Supplementary Fig. 17).

We then tried to incorporate serum protein markers
into the classification model. Among 5 serum markers
measured, including CEA, CYFRA21-1, NSE, CA19-9,
and CA125, only CEA level appeared to be significantly
higher in LC patients than BLN patients (p = 0.04, Stu-
dent’s t-test), producing a modest classification AUC of
0.66 (Supplementary Fig. 18 and 19). The multi-omics
predictive models based on the combination of wSU-
MAF mutation score, regional methylation ratio of 54
selected DMRs, and the serum CEA level achieved an
AUC of 0.78, with 76.9% sensitivity and 58.3% specificity
(Fig. 2d) on the set of samples with complete measure-
ments of all three types of analytes (74 LC and 60 BLN).
This result showed a further improvement in diagnostic
accuracy compared to the models without CEA in the
same set of samples (AUC =0.74, DeLong p-value =
0.02) (Fig. 2e). To our knowledge, this is the first proof-
of-concept study to demonstrate that genetic, epigenetic,
and proteomic analytes could be combined to improve
the performance of liquid biopsy-based diagnostic assay
for LC. Here, the mediocre performance of the final
multi-omics model could be attributed to the fact that a
large proportion of the LC cases (n =85, 66%) included
in the study were stage 0 or stage I and the majority of
the cases (n=97, 75%) were lung adenocarcinoma
(LUAD) which were previously suggested to release less
ctDNA into the bloodstream compared to lung squa-
mous cell carcinoma (LUSC) (n =23, 18% in this study).
A recent study which used methylation-based ctDNA
markers for non-invasive detection of multiple cancer
types also found low sensitivies for early-stage lung can-
cers [9]; another recent study which integrated multiple
genomic features to develop a ctDNA-based assay for
LC detection also reported modest performance for
stage I and II lung cancers (the Lung-CLiP model;
AUC =0.69-0.71) [5], corroborating our findings. Care
needs to be taken when apply the findings presented in
this study to cohort with different clinicopathological
characteristics, and additional study with larger sample
size would be necessary to validate current findings.

cfDNA mutation burden and methylation status as
prognostic factors for LC

We first tested whether mutational status (WSUMATF, <0
vs. > 0) was associated with LC overall survival (OS). We
found that a higher mutation burden was associated with
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a significantly worse OS (Fig. 2f). This association was
also significant among stage I patients (Supplementary
Fig. 20). Next, we attempted to identify potential
methylation-based prognostic biomarkers (Fig. 2g) and
to incorporate these markers into the prediction model
for prognostic stratification of the LC patients. Previ-
ously, multiple methylation-based prognostic classifiers
had been reported for lung cancer, however, the re-
ported markers were mostly inconsistent. The inconsist-
ency could be explained by limited sample sizes,
variations in study design, as well as different detection
methods used. We first obtained corresponding coefti-
cients for candidate features using penalized Cox regres-
sion among training set and incorporated these features
into the model (Supplementary Fig. 21). The
methylation-based prognostic score (MPS) was then cal-
culated for each individual as a weighted sum of the
methylation level of 12 selected DMRs (Supplementary
Table 5) multipliedby their corresponding coefficients.
The MPS was then combined with the mutation score as
the bi-omics prognosis score. Patients with a high muta-
tional burden and a high MPS were categorized as the
high prognosis score group, which had a significantly
worse OS than the low prognosis score group in the
testing set (Fig. 2h). Finally, to avoid information loss
due to categorization, we modeled both mutation score
and MPS continuously in two multivariate Cox propor-
tional hazard models on wSUMAF only, as well as in
combination with MPS. We found the latter model
achieved a higher AUC (Likelihood ratio test p-value =
0.27, Supplementary Fig. 22), although the difference be-
tween the two models was not statistically significant,
which may be attributed to the limited number of sam-
ples included in the tesing set (n =38). Taken together,
these results suggest that integrated genomic features
have the potential to be used as better prognostic bio-
markers for LC [10].

Conclusion

In summary, we performed comprehensive genetic and
epigenetic profiling of cfDNA from lung cancer patients
and individuals bearing benign lung lesions. We found
that the combination of genetic and epigenetic features
of cfDNA along with serum protein marker CEA showed
the best classification capability to differentiate the ma-
lignant vs. benign cases. Also, an integrated model that
combined cfDNA mutational status and methylation-
based prognostic markers has potential to improve pre-
diction for lung cancer survival. As blood sample is rela-
tively easily to collect for detection in distinct clinical
scenarios than imagings, our results highlight the possi-
bility of multi-analyte blood based assay for non-invasive
lung cancer diagnosis and prognosis.
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