
SOFTWARE TOOL ARTICLE

 Falco: high-speed FastQC emulation for quality control

of sequencing data [version 2; peer review: 2 approved]

Guilherme de Sena Brandine , Andrew D. Smith
Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, 90089, USA

Corresponding author: Andrew D. Smith (andrewds@usc.edu)
Author roles: de Sena Brandine G: Formal Analysis, Investigation, Methodology, Project Administration, Software, Validation,
Visualization, Writing – Original Draft Preparation; Smith AD: Formal Analysis, Investigation, Methodology, Project Administration,
Software, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: The author(s) declared that no grants were involved in supporting this work.
Copyright: © 2021 de Sena Brandine G and Smith AD. This is an open access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.
How to cite this article: de Sena Brandine G and Smith AD. Falco: high-speed FastQC emulation for quality control of sequencing
data [version 2; peer review: 2 approved] F1000Research 2021, 8:1874 https://doi.org/10.12688/f1000research.21142.2
First published: 07 Nov 2019, 8:1874 https://doi.org/10.12688/f1000research.21142.1

First published: 07 Nov 2019, 8:1874
https://doi.org/10.12688/f1000research.21142.1
Latest published: 27 Jan 2021, 8:1874
https://doi.org/10.12688/f1000research.21142.2

v2

Abstract
Quality control is an essential first step in sequencing data analysis,
and software tools for quality control are deeply entrenched in
standard pipelines at most sequencing centers. Although the
associated computations are straightforward, in many settings
the total computing effort required for quality control is appreciable
and warrants optimization. We present Falco, an emulation of the
popular FastQC tool that runs on average three times faster while
generating equivalent results. Compared to FastQC, Falco also
requires less memory to run and provides more flexible visualization
of HTML reports.

Keywords
FastQC, high-throughput sequencing, quality control

Open Peer Review

Reviewer Status

Invited Reviewers

1 2

version 2

(revision)
27 Jan 2021

report

version 1
07 Nov 2019 report report

R. Henrik Nilsson , University of

Gothenburg, Gothenburg, Sweden

1.

Weihong Qi, Functional Genomics Center

Zurich, Zürich, Switzerland

2.

Any reports and responses or comments on the

article can be found at the end of the article.

Page 1 of 22

F1000Research 2021, 8:1874 Last updated: 28 JAN 2021

https://f1000research.com/articles/8-1874/v2
https://f1000research.com/articles/8-1874/v2
https://orcid.org/0000-0003-0595-1860
mailto:andrewds@usc.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.21142.2
https://doi.org/10.12688/f1000research.21142.1
https://doi.org/10.12688/f1000research.21142.1
https://doi.org/10.12688/f1000research.21142.2
https://f1000research.com/articles/8-1874/v2
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
https://f1000research.com/articles/8-1874/v1
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
https://orcid.org/0000-0002-8052-0107
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.21142.2&domain=pdf&date_stamp=2021-01-27

Introduction
High-throughput sequencing is routinely used to profile copy
number variations in cancers1, assemble genomes of micro-
bial organisms2,3, quantify gene expression4, identify cell
populations from single-cell transcriptomes in a variety of
tissues5, and track epigenetic changes in developing organisms
and diseases6, among numerous other applications. New
sequencing protocols are constantly being introduced7,8, and as
the cost of sequencing per base decreases, sequencing data is
growing in abundance, dataset size, and read length9.

Quality control (QC) is often the first step in high-throughput
sequencing data analysis pipelines. The QC step measures a set
of statistics in a file of sequenced reads to assess if its content
matches the experiment expectations and if the data is suitable
for downstream analysis. Common QC tests include counting
relative frequency of nucleotides in each position of a set of
reads to detect potential deviations from expected frequen-
cies, summarizing the distribution of Phred10 quality scores to

identify base positions with globally low quality (suggesting
degeneration in the sequencing process), and measuring the
frequency of sequencing adapters and contaminants that are
not expected to be biological DNA from the sample.

Data that passes specific QC tests then undergoes downstream
analysis steps, which may include adapter trimming, filtering
contaminants and low-quality reads, and mapping the result-
ing reads to a reference genome or transcriptome. With the
exception of sequence assembly applications, read mapping
should be the most computationally expensive step early in anal-
ysis pipelines. In comparison, the time and computation required
for QC should be negligible. However, the efficiency of map-
ping algorithms has improved substantially over the past decade,
while software for QC has received far less attention. As a
consequence, the computation required for QC is appreci-
able, and can no longer be ignored when considering the total
cost of sequencing.

The most commonly used tool for quality control of sequenc-
ing data is FastQC11, which, since its release, has incorporated
a wide range of QC tests covering multiple use cases. Its analy-
sis reports have become the standard for several QC tools, and
automated analysis pipelines often rely on its result as a cri-
terion to proceed with downstream steps or, alternatively, to
filter, trim, or ultimately discard the data12,13. FastQC reports
ten analysis modules that summarize the content of a sequenc-
ing file (Table 1). An input file may pass or fail the tests run in
each module, and high-quality sequencing data from most
protocols is expected to pass all tests.

In FastQC’s implementation, each module computation
is executed sequentially after an input sequence is read. This
design allows new modules to be incorporated easily, but it
implies that the time required to process each read is the sum
of the processing times for each module. If multiple modules

Table 1. Comparison of analysis modules
provided by fastp and HTQC, two
commonly used QC software tools.

FastQC module fastp HTQC

Per base sequence quality No Yes
Per base N content Yes Yes
Per tile sequence quality No Yes
Per sequence quality scores No Yes
Per sequence GC content No No
Sequence length
distribution

No Yes

Sequence duplication levels Yes No
Overrepresented
sequences

Yes No

Adapter content No No
Kmer content Yes No

      Amendments from Version 1
This article has been updated to address reviewer responses.
Changes to the text were made in all sections. Table 3 and
Table 4 were expanded to include time measurements for FastQC
on long-read samples. No other table or figured was altered from
the first version of the manuscript. The accompanying code for
Falco has also undergone updates for this review. Falco version
0.2.4 was used ion this revised manuscript. The code changes
that relate to the core computations were not altered since
version 0.1.0 (used in the previous version of the manuscript),
and we have verified that the times reported in Table 3 remain
the same in both versions.

The main changes to the manuscript are listed below:

(1) The abstract was changed to highlight the memory
comparison between QC software tools, and no longer mentions
that FastQC does not run on long-read samples.

(2) The “Introduction” section includes more detail about quality
control applications.

(3) The “Implementation choices” subsection under “Methods”
now highlights that Falco does not contain a user interface, and
that Falco was designed for UNIX systems.

(4) The “Methods” section now contains a “system requirements”
subsection that describes the memory and disk requirements to
run Falco.

(5) The subsection “Falco scales for larger nanopore reads”
has been removed, and instead replaced with an additional
paragraph on section “Falco is faster than popular QC tools”,
where the memory usage of each tool in each tested sample is
discussed

(6) Instructions to report bugs and errors is reported in the
“Software availability” section

(7) Formatting corrections were performed across the
manuscript: “Falco” is now written in uppercase, superfulous line
breaks were removed, reference formatting and the usage of the
Oxford comma were standardized, links were separated from
punctiation and two references were added.

Any further responses from the reviewers can be found at
the end of the article

REVISED

Page 2 of 22

F1000Research 2021, 8:1874 Last updated: 28 JAN 2021

compute similar measurements, such as nucleotide content or
Phred quality scores, the same calculation will be performed
multiple times, causing the total analysis run time to increase.

Several QC software tools have been introduced since FastQC,
many focusing on speed improvements, more flexible module
visualization, incorporation of paired-end reads, and filtering
sequences that failed QC tests. Despite proposing different
alternatives to calculate and present QC results, the modules
available in these tools are largely similar to FastQC’s (Table 1).

At the same time, FastQC’s analysis results are already
part of many standard initial analysis pipelines. If a new
QC software tool is incorporated in these pipelines, it is
desirable that its results, and its output formats, remain consistent
with those generated by FastQC.

To address potential speed limitations in FastQC’s imple-
mentation while retaining its behavior, we developed FastQC
Alternative Code (Falco)14, an emulation of the FastQC
software tool. We show that Falco generates the same results
as FastQC across a wide variety of datasets of different read
lengths, sizes, file formats, and library preparation protocols
at significantly shorter running times and using less memory.
While the text outputs are comparable to FastQC, Falco also
provides more flexible interaction with graphical plots in its
HTML report using the same visualization standards set by
FastQC.

Methods
Implementation choices
Falco14 is an Open Source C++ implementation of the
FastQC software tool built for UNIX-based operating systems.
We designed it to faithfully emulate FastQC’s calculations,
results and text reports. The goal of Falco is to minimize
the effort required to replace the command-line behavior of
FastQC in the context of larger automated analysis pipelines.
We use the same set of command-line arguments, configura-
tion file names, and input file formats as FastQC. We also
produce the same plain text format output, and the same report
structure, allowing users to take advantage of improved speed
without adjusting to different program behaviors. Falco is
intended to be used in a command-line environment. Unlike
FastQC, Falco cannot be run through a graphical user
interface.

There are major differences between the implementations of
Falco and FastQC. While FastQC’s code emphasizes modu-
larity, which allows new QC metrics to be added easily and
uniformly, Falco’s design centralizes the function to read
sequences from the input file and collects the minimum data
necessary to subsequently create all modules after file process-
ing. To ensure consistency with FastQC, we wrote each
module’s source code based on FastQC’s implementation,
adapting the portions that relate to sequence processing and
maintaining the postprocessing functions that define how
the collected data is used to generate summaries and
reports.

Operation
Compilation of Falco requires a GNU GCC compiler
version 5.0.0 (July 16, 2015; full support for the C++11
standard) or greater. Once compiled, Falco can be run on
uncompressed files (FASTQ and SAM) without any additional
dependencies. In order to process files in gzip compressed
FASTQ and BAM formats, Falco must be compiled with the
ZLib15 and HTSLib16 libraries, respectively. The full documen-
tation on how to compile, install dependencies, and run the
program is available in the README file in the Falco
repository.

Use cases
Like FastQC, Falco14 can be applied to any file of sequenced
reads in the formats accepted by FastQC. The only required
command-line argument is the path to the input file. Also like
FastQC, a wide range of options can be provided if users only
require a given subset of its analysis modules or outputs. The
letters and symbols used for command-line arguments were
chosen to maintain consistency with FastQC’s options. As
mentioned above, this choice is to facilitate integration with
larger pipelines that already employ FastQC and depend on its
behaviors.

Falco can be run on a FASTQ format file named
example.fq with the following simple command:

$ falco example.fq

This will generate three files:
1. �fastqc_data.txt: The complete numerical values

generated in each module’s individual analysis.

2. �fastqc_report.html: A visual page display of
the text report’s data and plots generated in modules.

3. �summary.txt: A short summary indicating whether
the input file passed or failed each module, and
whether any warnings were raised.

Default configuration files are contained in a Configuration
directory that is included with the program, but Falco
also allows users to manually define the thresholds to
pass or fail each module, the list of adapters to search for
in reads, and the list of contaminants to compare with
overrepresented sequences by using configuration files in the
same format used by FastQC.

System requirements
Falco requires little memory and disk space to run, and there
are no constraints on the minimum or maximum FASTQ input
size or number of reads. Reads are analyzed sequentially, with
one read stored in memory at a time, so the amount of memory
necessary to run depends on the largest read length in a dataset,
but not on the size of the input file. For instance, processing a
short-read sample, with reads of length at most 1000 bases,
requires 100 MB of available RAM, whereas processing a
long-read sample containing at least one read with 1 million
bases require 500 MB of RAM. The total disk space necessary

Page 3 of 22

F1000Research 2021, 8:1874 Last updated: 28 JAN 2021

https://gcc.gnu.org/

to store the three output files generated by Falco is no more
than 1 MB.

Results
Falco matches FastQC’s output
We compared the output of Falco14 to its FastQC counter-
part using 11 datasets (Table 2). The tests consist of Illumina
files originating from a range of different library prepara-
tion protocols for DNA, RNA, and epigenetic experiments, as
well as reads from the nanopore17 technology. For simplicity,
Illumina paired-end datasets were only tested on the first read
end.

FASTQ files available in the Sequence Read Archive (SRA)18
were downloaded using the fastq-dump command from the
SRA toolkit. We used the following flags when running fastq-
dump: -skip-technical, -readids, -read-filter
pass, -dumpbase, -split-3 and -clip. One dataset
was downloaded from the Whole Human Genome Sequencing
Project19.

We directly compared the text summary for each output of
Falco to FastQC’s output summary files, obtaining the same
outputs (pass, warning, or fail) for all tested criteria in all
datasets.

To assess if Falco’s output is consistent with FastQC’s for-
mat, we used the fastqcr20 R package version 0.1.2 and
MultiQC12 version 1.9. Both tools can successfully parse
the text reports generated by Falco for the tested files.
Differences in the fastqc_data.txt files between the
two programs result from choices for numerical precision out-
put, or as a result of Falco calculating certain averages based
on more of the data within each file.

Falco is faster than popular QC tools
Some alternative software tools exist for quality control of
sequencing data, and users may opt for them due to their effi-
ciency in cases where not all FastQC analysis modules are

necessary. Among these, fastp21 has gained popularity for its
speed and versatile set of options for trimming. fastp has dem-
onstrated superior runtime to FastQC even when generating
FASTQ format output files corrected by trimming adapt-
ers and filtering (which requires both input and output).
HTQC22 is another tool that was developed with the intent to
both improve speed performance and incorporate trimming
functions after quality control. The two programs were used as
benchmarks to compare Falco with.

Although most fastp modules are both calculated and dis-
played equivalently to FastQC, one major difference between
these tools is how overrepresented sequences are estimated.
While fastp counts the sequences at every P reads (which
users may specify), FastQC stores the first 100,000 reads
encountered for the first time, and subsequently checks if the
following sequences match any of the stored candidates. This
choice of implementation causes fastp’s runtime to greatly
differ when overrepresentation is enabled. Conversely,
FastQC’s runtime does not seem to be affected by disabling
the overrepresented sequences module. For a comprehen-
sive comparison between programs, we have measured the run
times for our test datasets both with and without the overrep-
resented sequences module enabled. Programs were compared
both in compressed (gzip FASTQ) and uncompressed (plain
FASTQ) file formats.

Files used to assess Falco’s output comparison to FastQC
(Table 2) were also used for speed and memory comparison.
Tests were executed in an Intel Xeon CPU E5-2640 v3 2.60GHz
processor with a CentOS Linux 7 operating system. All file
I/O was done using local disk to reduce variability in execu-
tion runtime. Both fastp and FastQC were instructed to run
using a single thread.

FastQC version 0.11.8 was run with default parameters and
the configuration limits, adapters and contaminants provided
with the software. fastp version 0.20.0 was run with the -
A, -G, -Q and -L flags to disable adapter trimming, poly-G

Table 2. Datasets used for comparison with FastQC’s output and run time speed
benchmarking between QC tools.

test accession reference file size (FASTQ) reads length (bp) protocol
1 SRR10124060 unpublished 7.3GB 25,172,255 130 RNA-Seq
2 SRR10143153 unpublished 11.0GB 15,949,900 150 miRNA-Seq
3 SRR3897196 23 4.2GB 15,570,348 100 BS-Seq
4 SRR9624732 24 1.6GB 18,807,797 150 ChIP-Seq
5 SRR1853178 25 130.0GB 510,210,716 60 Drop-Seq
6 SRR6387347 26 20.0GB 305,434,830 100 10x genomics
7 SRR6954584 5 56.0GB 152,853,013 150 Microwell-Seq
8 SRR891268 27 46.0GB 192,904,649 50 ATAC-Seq
9 SRR9878537 unpublished 38.0MB 3,284 64,000 Nanopore
10 wgs-FAB49164 19 8.4GB 746,333 180,000 Nanopore
11 SRR6059706 unpublished 1.4GB 892,313 150,000 Nanopore

Page 4 of 22

F1000Research 2021, 8:1874 Last updated: 28 JAN 2021

https://www.ncbi.nlm.nih.gov/sra
https://cran.r-project.org/web/packages/fastqcr/index.html
https://multiqc.info/

trimming, quality filtering and length filtering, thus requir-
ing the program to only perform QC tests without generating a
new FASTQ file. When testing for overrepresented sequences,
we set the -p flag to enable this module, and set the
frequency of counts to the program’s default value of P = 20.
We ran the ht-stat program on the tested files using
the -S flag for single-ended reads. HTQC was not tested on
gzip FASTQ files as this file format is not accepted by the
program. We used the GNU time command to measure the
total running times for each program, using the total elapsed
wall time as measurement. The benchmarking results (Table 3
and Table 4) show that Falco performs faster than fastp
and FastQC in all datasets, with an average 3 times faster
runtime than FastQC, both with the overrepresented sequences

module on and off. Despite HTQC failing to process most
test datasets due to unaccepted header formats, the two tests
that ran to completion demonstrate that Falco’s analysis
times are also significantly smaller in comparison.

The memory required to run Falco differs between short-read
samples (tests 1-8; Table 2) and long-read samples (tests 9-11).
All programs demonstrated similar behavior in memory usage,
with all short-read samples having similar memory require-
ments, and test 10 requiring the most memory (as it contains the
longest read). The total memory usage was also measured by
GNU time command. For Falco, short-read samples required
92 MB of RAM, whereas long-read samples used at most
342 MB of RAM. In short-read samples, FastQC and fastp

Table 4. Real run times for Falco, fastp and FastQC on gzip compressed FASTQ
format.

test Falco fastp FastQC Falco fastp FastQC

overrep
off

overrep
off

overrep
off

overrep
on

overrep
on

overrep on

1 1m19s 2m19s 3m49s 1m25s 6m23s 3m50s
2 45s 1m31s 2m21s 51s 5m23s 2m24s
3 33s 1m10s 1m35s 35s 2m26s 1m36s
4 1m01s 2m06s 3m01s 1m03s 3m59s 3m00s
5 16m05s 42m40s 44m57s 18m17s 53m09s 44m59s
6 12m26s 23m18s 26m39s 12m29s 47m32s 26m38s
7 8m40s 17m34s 22m31s 8m34s 44m41s 22m31s
8 7m08s 14m37s 16m06s 6m31s 18m19s 16m11s
9 2s 1s 7s 1s 27s 7s
10 2m23s 2m32s 4m01s 2m34s 5m22s 4m09s
11 22s 31s 48s 23s 1m14s 51s

Table 3. Real run times for Falco, fastp and FastQC on uncompressed FASTQ format,
with the overrepresented sequences module on and off. Asterisks (*) indicate tests in which
tools did not run to completion.

test Falco fastp FastQC Falco fastp FastQC HTQC

overrep
off

overrep
off

overrep
off

overrep
on

overrep on overrep
on

1 48s 1m54s 3m30s 55s 5m57s 3m23s 12m09s
2 36s 1m20s 2m08s 37s 4m32s 2m10s *
3 27s 1m04s 1m25s 30s 2m16s 1m24s *
4 44s 1m48s 2m40s 51s 3m37s 2m38s *
5 15m49s 35m14s 41m27s 15m58s 44m30s 37m43s *
6 7m59s 18m42s 22m59s 8m33s 42m50s 22m53s 134m42s
7 6m05 13m50s 19m42s 6m49s 41m55s 19m52s *
8 5m12s 11m47s 13m59s 5m20s 15m25s 14m08s *
9 1s 1s 6s 1s 0m26s 6s *
10 1m37s 1m50s 3m11s 1m32s 4m37s 3m16s *
11 13s 24s 43s 13s 1m07s 46s *

Page 5 of 22

F1000Research 2021, 8:1874 Last updated: 28 JAN 2021

used 319 MB and 568 MB of RAM, respectively. In long-read
samples, FastQC and fastp used at most 4.88 GB and
1.28 GB of RAM, respectively. This comparison suggests
that Falco’s memory requirement is also the lowest across
all tests.

Falco allows dynamic visualization of results
Despite FastQC’s clarity in its HTML reports, graphs are
displayed as static images and have limited visualization flex-
ibility, such as tile heatmaps not displaying raw deviations
from average Phred scores in base positions, or raw values in
line plots not being visible. We have opted to display Falco’s
analysis results using the Plotly JavaScript library28, which

allows interactive changes of axis labels, hovering on data
points to visualize raw values, and screenshots from spe-
cific positions on the plot (Figure 1). This choice of presen-
tation provides greater options to explore and interpret QC
results while maintaining the visualization standards set by
FastQC.

Conclusions
Falco14 is a faster alternative to calculate the wide range of
QC metrics reported by FastQC. It is entirely based on emulat-
ing the analysis modules FastQC provides while running faster
than popular QC tools and generating dynamic visual summa-
ries of analysis results. Falco’s text output provide�s the same

Figure 1. Sample HTML report for test 8 (accession SRR891268). Layout and plots are based on FastQC’s HTML report.

Page 6 of 22

F1000Research 2021, 8:1874 Last updated: 28 JAN 2021

References

1.	 Alkan C, Kidd JM, Marques-Bonet T, et al.: Personalized copy number and
segmental duplication maps using next-generation sequencing. Nature
Genetics. 2009; 41(10): 1061–1068.
PubMed Abstract | Publisher Full Text | Free Full Text

2.	 Loman NJ, Quick J, Simpson JT: A complete bacterial genome assembled de
novo using only nanopore sequencing data. Nature Methods. 2015; 12(8):
733–738.
PubMed Abstract | Publisher Full Text

3.	 Masella AP, Bartram AK, Truszkowski JM, et al.: PANDAseq: paired-end
assembler for illumina sequences. BMC Bioinformatics. 2012; 13(1): 31.
PubMed Abstract | Publisher Full Text | Free Full Text

4.	 Ozsolak F, Milos PM: RNA sequencing: advances, challenges and
opportunities. Nature Reviews Genetics. 2011; 12(2): 87–98.
PubMed Abstract | Publisher Full Text | Free Full Text

5.	 Han X, Wang R, Zhou Y, et al.: Mapping the mouse cell atlas by Microwell-Seq.
Cell. 2018; 172(5): 1091–1107.e17.
PubMed Abstract | Publisher Full Text

6.	 Buenrostro JD, Wu B, Chang HY, et al.: ATAC-seq: A method for assaying
chromatin accessibility genome-wide. Current Protocols in Molecular Biology.
2015; 109(1): 21.29.1–9.
PubMed Abstract | Publisher Full Text | Free Full Text

7.	 Datlinger P, Rendeiro AF, Schmidl C, et al.: Pooled CRISPR screening with
single-cell transcriptome readout. Nature Methods. 2017; 14(3): 297–301.
PubMed Abstract | Publisher Full Text | Free Full Text

8.	 Spanjaard B, Hu B, Mitic N, et al.: Simultaneous lineage tracing and cell-
type identification using CRISPR–Cas9-induced genetic scars. Nature
Biotechnology. 2018; 36(5): 469–473.
PubMed Abstract | Publisher Full Text | Free Full Text

9.	 Svensson V, Vento-Tormo R, Teichmann SA: Exponential scaling of single-cell
RNA-seq in the past decade. Nature Protocols. 2018; 13(4): 599–604.
PubMed Abstract | Publisher Full Text

10.	 Ewing B, Hillier L, Wendl MC, et al.: Base-calling of automated sequencer
traces using Phred. Genome Res. 1998; 8(3): 175–185.
PubMed Abstract | Publisher Full Text

11.	 Andrews S: FastQC: a quality control tool for high throughput sequence
data. 2010.
Reference Source

12.	 Ewels P, Magnusson M, Lundin S, et al.: MultiQC: summarize analysis results
for multiple tools and samples in a single report. Bioinformatics. 2016;
32(19): 3047–3048.
Publisher Full Text

13.	 Brown J, Pirrung M, McCue LA: FQC Dashboard: integrates FastQC results
into a web-based, interactive, and extensible FASTQ quality control tool.
Bioinformatics. 2017; 33(19): 3137–3139.
PubMed Abstract | Publisher Full Text | Free Full Text

14.	 De Sena Brandine G, Smith A: smithlabcode/falco: 0.2.4 - 2019/10/28. 2019.
http://www.doi.org/10.5281/zenodo.4429381

15.	 Deutsch P, Gailly JL: Zlib compressed data format specification version 3.3.
1996.
Publisher Full Text

16.	 Li H, Handsaker B, Wysoker A, et al.: The Sequence Alignment/Map format
and SAMtools. Bioinformatics. 2009; 25(16): 2078–2079.
PubMed Abstract | Publisher Full Text | Free Full Text

17.	 Jain M, Olsen HE, Paten B, et al.: The Oxford Nanopore MinION: delivery of
nanopore sequencing to the genomics community. Genome Biology. 2016;
17(1): 239.
PubMed Abstract | Publisher Full Text | Free Full Text

18.	 Leinonen R., Sugawara H., Shumway M, et al.: The sequence read archive.
Nucleic Acids Res. 2010; 39(Database issue): D19–D21.
PubMed Abstract | Publisher Full Text | Free Full Text

19.	 Jain M, Koren S, Miga KH, et al.: Nanopore sequencing and assembly of a
human genome with ultra-long reads. Nature Biotechnology. 2018; 36(4):
338–345.
PubMed Abstract | Publisher Full Text | Free Full Text

20.	 Kassambara A: fastqcr: Quality control of sequencing data. R package
version 0.1.2. 2019.
Reference Source

21.	 Chen S, Zhou Y, Chen Y, et al.: fastp: an ultra-fast all-in-one FASTQ
preprocessor. Bioinformatics. 2018; 34(17): i884–i890.
Publisher Full Text

22.	 Yang X, Liu D, Liu F, et al.: HTQC: a fast quality control toolkit for Illumina
sequencing data. BMC Bioinformatics. 2013; 14(1): 33.
PubMed Abstract | Publisher Full Text | Free Full Text

23.	 Decato BE, Lopez-Tello J, Sferruzzi-Perri AN, et al.: DNA methylation
divergence and tissue specialization in the developing mouse placenta.
Molecular Biology and Evolution. 2017; 34(7): 1702–1712.
PubMed Abstract | Publisher Full Text | Free Full Text

24.	 Yang J, Zhang L, Jiang Z, et al.: TCF12 promotes the tumorigenesis and
metastasis of hepatocellular carcinoma via upregulation of CXCR4
expression. Theranostics. 2019; 9(20): 5810–5827.
PubMed Abstract | Publisher Full Text | Free Full Text

25.	 Macosko EZ, Basu A, Satija R, et al.: Highly parallel genome-wide expression
profiling of individual cells using nanoliter droplets. Cell. 2015; 161(5):
1202–1214.
PubMed Abstract | Publisher Full Text | Free Full Text

26.	 Nusse YM, Savage AK, Marangoni P, et al.: Parasitic helminths induce fetal-like
reversion in the intestinal stem cell niche. Nature. 2018; 559(7712): 109–113.
PubMed Abstract | Publisher Full Text | Free Full Text

27.	 Buenrostro JD, Giresi PG, Zaba LC, et al.: Transposition of native chromatin for
fast and sensitive epigenomic profiling of open chromatin, DNA-binding
proteins and nucleosome position. Nature Methods. 2013; 10(12): 1213–1221.
PubMed Abstract | Publisher Full Text | Free Full Text

28.	 Sievert C, Parmer C, Hocking T, et al.: plotly: Create interactive web graphics
via ‘plotly. js’. 2017.
Reference Source

information generated by FastQC, so tools that parse this
file for custom visualization and downstream analysis can
seamlessly incorporate Falco into their pipeline.

Data availability
Datasets used to compare Falco and FastQC are shown in
Table 2. Guidance for how to accept accession wgs-FAB49164
is available from the Benchmark directory of the Falco
GitHub page.

Software availability
Source code for Falco available at: https://github.
com/smithlabcode/falco.

Users may report errors, bugs, installation problems, and
improvement suggestions in the same page provided to
download the source code under the “issues” section.

The scripts used to download files and reproduce the bench-
marking steps described are also available in the same repository
within the “benchmark” directory.

Archived source code at time of publication: http://doi.
org/10.5281/zenodo.442938114.

License: GNU General Public License version 3.0.

Page 7 of 22

F1000Research 2021, 8:1874 Last updated: 28 JAN 2021

http://www.ncbi.nlm.nih.gov/pubmed/19718026
http://dx.doi.org/10.1038/ng.437
http://www.ncbi.nlm.nih.gov/pmc/articles/2875196
http://www.ncbi.nlm.nih.gov/pubmed/26076426
http://dx.doi.org/10.1038/nmeth.3444
http://www.ncbi.nlm.nih.gov/pubmed/22333067
http://dx.doi.org/10.1186/1471-2105-13-31
http://www.ncbi.nlm.nih.gov/pmc/articles/3471323
http://www.ncbi.nlm.nih.gov/pubmed/21191423
http://dx.doi.org/10.1038/nrg2934
http://www.ncbi.nlm.nih.gov/pmc/articles/3031867
http://www.ncbi.nlm.nih.gov/pubmed/29474909
http://dx.doi.org/10.1016/j.cell.2018.02.001
http://www.ncbi.nlm.nih.gov/pubmed/25559105
http://dx.doi.org/10.1002/0471142727.mb2129s109
http://www.ncbi.nlm.nih.gov/pmc/articles/4374986
http://www.ncbi.nlm.nih.gov/pubmed/28099430
http://dx.doi.org/10.1038/nmeth.4177
http://www.ncbi.nlm.nih.gov/pmc/articles/5334791
http://www.ncbi.nlm.nih.gov/pubmed/29644996
http://dx.doi.org/10.1038/nbt.4124
http://www.ncbi.nlm.nih.gov/pmc/articles/5942543
http://www.ncbi.nlm.nih.gov/pubmed/29494575
http://dx.doi.org/10.1038/nprot.2017.149
http://www.ncbi.nlm.nih.gov/pubmed/9521921
http://dx.doi.org/10.1101/gr.8.3.175
https://www.scirp.org/reference/referencespapers.aspx?referenceid=2781642
http://dx.doi.org/10.1093/bioinformatics/btw354
http://www.ncbi.nlm.nih.gov/pubmed/28605449
http://dx.doi.org/10.1093/bioinformatics/btx373
http://www.ncbi.nlm.nih.gov/pmc/articles/5870778
http://www.doi.org/10.5281/zenodo.4429381
http://dx.doi.org/10.17487/RFC1950
http://www.ncbi.nlm.nih.gov/pubmed/19505943
http://dx.doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pmc/articles/2723002
http://www.ncbi.nlm.nih.gov/pubmed/27887629
http://dx.doi.org/10.1186/s13059-016-1103-0
http://www.ncbi.nlm.nih.gov/pmc/articles/5124260
http://www.ncbi.nlm.nih.gov/pubmed/21062823
http://dx.doi.org/10.1093/nar/gkq1019
http://www.ncbi.nlm.nih.gov/pmc/articles/3013647
http://www.ncbi.nlm.nih.gov/pubmed/29431738
http://dx.doi.org/10.1038/nbt.4060
http://www.ncbi.nlm.nih.gov/pmc/articles/5889714
https://CRAN.R-project.org/package=fastqcr
http://dx.doi.org/10.1093/bioinformatics/bty560
http://www.ncbi.nlm.nih.gov/pubmed/23363224
http://dx.doi.org/10.1186/1471-2105-14-33
http://www.ncbi.nlm.nih.gov/pmc/articles/3571943
http://www.ncbi.nlm.nih.gov/pubmed/28379409
http://dx.doi.org/10.1093/molbev/msx112
http://www.ncbi.nlm.nih.gov/pmc/articles/6440273
http://www.ncbi.nlm.nih.gov/pubmed/31534521
http://dx.doi.org/10.7150/thno.34973
http://www.ncbi.nlm.nih.gov/pmc/articles/6735379
http://www.ncbi.nlm.nih.gov/pubmed/26000488
http://dx.doi.org/10.1016/j.cell.2015.05.002
http://www.ncbi.nlm.nih.gov/pmc/articles/4481139
http://www.ncbi.nlm.nih.gov/pubmed/29950724
http://dx.doi.org/10.1038/s41586-018-0257-1
http://www.ncbi.nlm.nih.gov/pmc/articles/6042247
http://www.ncbi.nlm.nih.gov/pubmed/24097267
http://dx.doi.org/10.1038/nmeth.2688
http://www.ncbi.nlm.nih.gov/pmc/articles/3959825
https://plot.ly
https://github.com/smithlabcode/falco/tree/master/benchmark
https://github.com/smithlabcode/falco/tree/master/benchmark
https://github.com/smithlabcode/falco
https://github.com/smithlabcode/falco
http://doi.org/10.5281/zenodo.4429381
http://doi.org/10.5281/zenodo.4429381
https://github.com/smithlabcode/falco/blob/master/LICENSE

Open Peer Review
Current Peer Review Status:

Version 2

Reviewer Report 28 January 2021

https://doi.org/10.5256/f1000research.46637.r78323

© 2021 Nilsson R. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

R. Henrik Nilsson
Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden

I am happy with the revised manuscript*. It packs quite some punch.

But I attach some few discretionary, cosmetic suggestions in the below.

Methods:

”is Open Source” – shouldn’t this be ”is open source” here? Not a proper noun and not a
capitonym, after all?

○

“calculations, results and text reports.” > “calculations, results, and text reports.”○

Results:

“configuration limits, adapters and contaminants” > “configuration limits, adapters, and
contaminants”.

○

“trimming, quality filtering and length filtering” > “trimming, quality filtering, and length
filtering”.

○

“Real run times for Falco, fastp and FastQC” > ““Real run times for Falco, fastp, and FastQC””.○

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Metabarcoding ; molecular ecology ; systematics ; mycology

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Version 1

Page 8 of 22

F1000Research 2021, 8:1874 Last updated: 28 JAN 2021

https://doi.org/10.5256/f1000research.46637.r78323
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-8052-0107

Reviewer Report 30 October 2020

https://doi.org/10.5256/f1000research.23273.r72941

© 2020 Qi W. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Weihong Qi
Functional Genomics Center Zurich, Zürich, Switzerland

The authors developed falco, an emulation of the popular FastQC tool, which is faster and can
handle very long Nanopore reads. It is a useful development, especially for core facilities and
research labs that produce high volumes of sequencing data regularly, where generating read QC
reports in a timely fashion is indeed helpful. I only have a few questions and one minor comment:

Main questions:

The implementation session could be expanded with more details. From my understanding,
the major improvement was identified duplicated analysis in FastQC analysis modules, and
implemented a single analysis workflow that was sufficient to generate the same
modularized results. But it is not clear to me which changes make falco to handle long ONT
reads successfully, while the original FastQC failed.

1.

The original FastQC is portable (Unix. Mac and Windows). It also has a GUI version for less
experienced users. These features are not important for experienced users and automated
workflows where analyzing large amounts of data in a short time is the focus. But they can
be important for other type of end users. The authors should at least point out these
differences.

2.

In results, run times of multiple QC tools analyzing different datasets were compared, how
about the RAM usages?

3.

Minor comment:
The sentence “While FastQC is capable of making summaries for protocols such as 45427 PacBio28,
which generate sequences with around 10,000 bases per read ” should be updated to "While
FastQC is capable of making summaries for protocols such as 45427 PacBio28, which generate
sequences with around 10,000-20,000 bases per read".

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?

Page 9 of 22

F1000Research 2021, 8:1874 Last updated: 28 JAN 2021

https://doi.org/10.5256/f1000research.23273.r72941
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://f1000research.com/my/referee/report/72941#ref-27
https://f1000research.com/my/referee/report/72941#ref-28
https://f1000research.com/my/referee/report/72941#ref-27
https://f1000research.com/my/referee/report/72941#ref-28

Yes

Is sufficient information provided to allow interpretation of the expected output datasets
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Genome informatics.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Author Response 09 Jan 2021
Guilherme de Sena Brandine, University of Southern California, Los Angeles, USA

The reviewer has raised some important questions about points not addressed by the
manuscript. We provide our responses below, and highlight changes made to the
manuscript to address the reviewer’s comments.

The authors developed falco, an emulation of the popular FastQC tool, which is faster and can
handle very long Nanopore reads. It is a useful development, especially for core facilities and
research labs that produce high volumes of sequencing data regularly, where generating read
QC reports in a timely fashion is indeed helpful. I only have a few questions and one minor
comment:

Main questions:

1) The implementation session could be expanded with more details. From my understanding, the
major improvement was identified duplicated analysis in FastQC analysis modules, and
implemented a single analysis workflow that was sufficient to generate the same modularized
results. But it is not clear to me which changes make falco to handle long ONT reads successfully,
while the original FastQC failed.

We really appreciate the reviewer highlighting the missing details regarding FastQC’s
behavior. Upon trying to address this comment, we have further explored the FastQC code
to understand why it failed for long reads, and we have learned that the perl script that
wraps the FastQC call imposes a maximum memory limit of 250 MB per thread, which we
were not aware of at the time we wrote the manuscript, and was prohibitive for the long
read samples we have selected. Changing this configuration internally allowed us to run
FastQC in the samples that we were previously unable to, thus allowing us to report a more
comprehensive comparison of both time and memory for every test we have gathered. For

Page 10 of 22

F1000Research 2021, 8:1874 Last updated: 28 JAN 2021

this reason, we have removed the section named “Falco scales for larger nanopore reads”,
instead replacing it with a paragraph at the end of the subsection named “Falco is faster
than popular QC tools”, where the memory usage of each mapper is discussed. We have
also filled Tables 3 and 4 with the results of running FastQC in the three long-read samples
in our tests under the same hardware settings used for other tests.

2) The original FastQC is portable (Unix. Mac and Windows). It also has a GUI version for less
experienced users. These features are not important for experienced users and automated
workflows where analyzing large amounts of data in a short time is the focus. But they can be
important for other type of end users. The authors should at least point out these differences.

We thank the reviewer for this observation. We have made modifications to the first
paragraph of the “implementation choices” subsection under “methods” to clarify that falco
was designed for UNIX systems and does not include a graphical user interface.

3) In results, run times of multiple QC tools analyzing different datasets were compared, how
about the RAM usages?

We appreciate the observation about RAM comparison. We have added two paragraphs in
the manuscript that address memory requirement in more detail. A “system requirement”
subsection under “methods” was added to emphasize that falco requires about 100 MB for
short read samples and under 1 GB for samples with read lengths of at most 1 million. As
stated in question (1), we also reported the RAM usage for the software tools compared in
the tests, both for short-read and long-read tests in the section “Falco is faster than popular
QC tools”.

Minor comment:
The sentence “While FastQC is capable of making summaries for protocols such as 45427 PacBio
28, which generate sequences with around 10,000 bases per read ” should be updated to "While
FastQC is capable of making summaries for protocols such as 45427 PacBio28, which generate
sequences with around 10,000-20,000 bases per read".

We thank the reviewer for the observation. The section containing this sentence was
removed given the shift in the focus of the manuscript to memory comparison, as
addressed in questions (1) and (3).

Competing Interests: No competing interests were disclosed.

Reviewer Report 07 July 2020

https://doi.org/10.5256/f1000research.23273.r66327

Page 11 of 22

F1000Research 2021, 8:1874 Last updated: 28 JAN 2021

https://f1000research.com/my/referee/report/72941#ref-27
https://f1000research.com/my/referee/report/72941#ref-28
https://f1000research.com/my/referee/report/72941#ref-27
https://f1000research.com/my/referee/report/72941#ref-28
https://doi.org/10.5256/f1000research.23273.r66327

© 2020 Nilsson R. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

R. Henrik Nilsson
Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden

The authors present a welcome addition to the flora of FastQC-style read processing packages.
The fact that it is a drop-in replacement for FastQC is particularly nice.

The manuscript is a bit too short in my opinion. I miss some background information and some
performance-related data. If the authors want to address a wide audience, they should probably
work a bit more on the installation instructions and documentation too. The authors should
probably also consider defining who their target audience is.

Introduction:

As a discretionary comment: the authors sometimes, but not always, use the Oxford comma
(see example below). I wonder if this is something that should be streamlined. “sequencing
data is growing in abundance, dataset size and read length9.” vs. “…adapter trimming,
filtering contaminants and low-quality reads, and mapping reads to a reference genome or
transcriptome.”

○

“as a safety criteria” should probably be “as a safety criterion”.○

Methods:

Good thinking behind the “We designed falco13 to faithfully…” paragraph. Nobody would
be helped by yet another set of new file formats. A drop-in replacement is the way to go, if
you ask me. And that is indeed what the authors deliver.

○

I must make the observation, though, that the name “falco” may not be available (?):
https://www.falcoseed.com/ca/article/cibus-registers-new-falco-brand-79k-canola-hybrid/
(some other more or less commercial uses of “Falco” can be found on
https://en.wikipedia.org/wiki/Falco). I’m not sure how North American
trademark/proprietary laws operate, but I suggest that the authors consult with the lawyers
of their university. Better safe than sorry, right. (I consulted with our lawyers at one point,
and they had me change the name of a software package we were working on at the time.)

○

Two unintended line breaks:

“uniformly,
falco’s design centralizes”

○

Results:

Please cite the Sequence Read Archive formally; see Kodama et al. (20121).

○

I like the reproducible nature of the “Results” section.

○

Page 12 of 22

F1000Research 2021, 8:1874 Last updated: 28 JAN 2021

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-8052-0107
https://www.falcoseed.com/ca/article/cibus-registers-new-falco-brand-79k-canola-hybrid/
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#rep-ref-66327-1

Two superfluous line breaks:

“gzip
compressed files.”

○

Conclusions:

Both “Falco” and “falco” are used in the manuscript. You’d think that the name would be
fixed as either “Falco” or “falco”.

○

Software availability:

Why not use the term “open source” at least once in the manuscript?○

Miscellaneous questions and observations:

Out of curiosity: how does falco compare to Liu et al. (20192)?

○

I’ve seen one software tool for quality-score-based trimming of sequences that actually
reads the entire query file into memory, and then started to process it. This works less well
as data files continues to grow, obviously. Is it worth pointing out that falco does not do
this? What is, in fact, the maximum file size allowed by falco? Or is this dictated solely by the
operating system?

○

You can produce some pretty funny behavior in some other tools for sequence
QC/trimming by feeding them a file with a single FastQC entry in it, speaking of nothing. Is
there, then, a minimum file size or number of query sequences for falco?

○

Unless I’m mistaken, there are no fastq files available on
https://github.com/smithlabcode/falco. I think the authors should make one or two
available, so that it will be smooth and easy for the reader to try the software out. “The
scripts used to download files and reproduce the bench-marking steps described are
also available in the same repository within the “benchmark” directory.” comes across as
somewhat indirect to me.

○

What, exactly, are the hardware and software requirements for falco? This may be worth
pointing out. Between the lines I read “any computer you can install the GNU GCC compiler
on” – but not all readers will probably read it this way. Instead you’ll get the question: “Does
it run on Windows 10?”.

○

Also, how much memory is needed to run falco? And how much memory is used up by falco
when it processes a large file?

○

Between the lines (“Programs were instructed to run using a single thread.”), I take it that
falco can use multiple threads. Is that correct? And if so, why not point it out more explicitly?
And out of curiosity: when you run falco on 4 cores, do you see a 4x speedup? Or is the
bottleneck something else (disk IO?) than raw computational power? How does it scale with
the number of cores, in other words?

○

Suppose my dataset is 10 Gb, and that I have 15 Gb left of free disk space. Do I dare to run ○

Page 13 of 22

F1000Research 2021, 8:1874 Last updated: 28 JAN 2021

jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#rep-ref-66327-2
https://github.com/smithlabcode/falco

falco on that dataset? How large is the output compared to the input? In a “minimum” (no
extra features) as well as “maximum” (all extra features) mode?

Suppose a user finds a bug, or wants to put forward a feature request. How can the user do
that? Should this be mentioned in the manuscript?

○

The first question I always get from users of my software tools is: “where can I download
the Windows binaries?”. Is it, actually, not a good idea to be explicit about the fact that this
is a command-line tool that you compile on your own computer? Would probably save the
authors some time to be upfront with this.

○

The list of references comes across as somewhat untidy. Some examples follow below. The
authors should probably go through all references to make sure they comply with journal
specifications.

○

() Journal names are sometimes abbreviated, sometimes not. Ref 2 is abbreviated, whereas
ref 3 should be abbreviated “BMC Bioinform.”

○

() Article titles: should verbs and key nouns in article titles have a leading uppercase letter,
as in, e.g., ref 5, or should they not, as in ref 1?

○

() Should page ranges be written out in full (ref 23, “1202–1214.”) or should they be
abbreviated (ref 25, “1213–8.”)?

○

Are the installation instructions a bit too thin? I’d say yes, at least if the intention of the authors is
to address a diverse audience and not just readers with Linux-style experience. To simulate a less
experienced user, I used my son’s MacBook Pro and tried to install falco on it following the
manual:

“Upon downloading, inflating and moving to the source
directory, installation can be done through the following commands:
…
$./configure CXXFLAGS="-O3 -Wall"
$ make all
$ make install”

So I did:

$ cd src
$./configure CXXFLAGS="-O3 -Wall"
-bash: ./configure: No such file or directory

And then

conda install -c bioconda falco
-bash: conda: command not found

And that was it. No further clues or assistance to be found in the instructions.

Page 14 of 22

F1000Research 2021, 8:1874 Last updated: 28 JAN 2021

If the authors are happy with this behavior, then they should make it clear in the manuscript that
falco is not for everyone, but rather only for those with significant Linux-style experience.

“Source code for falco available at: https://github.com/smithlabcode/falco.” – the trailing “.” should
be removed, I’d say. The link won’t work for users who copy-and-paste it into their browser. The
same thing goes for

“Archived source code at time of publication: http://doi.org/10.5281/zenodo.352093313.” where
both the reference and the “.” cause problems.

References
1. Kodama Y, Shumway M, Leinonen R, International Nucleotide Sequence Database Collaboration:
The Sequence Read Archive: explosive growth of sequencing data.Nucleic Acids Res. 2012; 40
(Database issue): D54-6 PubMed Abstract | Publisher Full Text
2. Liu X, Yan Z, Wu C, Yang Y, et al.: FastProNGS: fast preprocessing of next-generation sequencing
reads.BMC Bioinformatics. 2019; 20 (1): 345 PubMed Abstract | Publisher Full Text

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Partly

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Metabarcoding ; molecular ecology ; systematics ; mycology

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Author Response 09 Jan 2021

Page 15 of 22

F1000Research 2021, 8:1874 Last updated: 28 JAN 2021

https://github.com/smithlabcode/falco
http://www.ncbi.nlm.nih.gov/pubmed/22009675
https://doi.org/10.1093/nar/gkr854
http://www.ncbi.nlm.nih.gov/pubmed/31208325
https://doi.org/10.1186/s12859-019-2936-9

Guilherme de Sena Brandine, University of Southern California, Los Angeles, USA

The reviewer has presented a thorough feedback to the description of the Falco software
tool, as well as its implementation, description and documentation. We truly appreciate the
very helpful comments, and provide our responses to improvement suggestions below.
Comments were divided and numbered to allow us to refer to them in other places in our
response if certain modifications to the manuscript pertain to multiple comments.

(1) The authors present a welcome addition to the flora of FastQC-style read processing packages.
The fact that it is a drop-in replacement for FastQC is particularly nice.

The manuscript is a bit too short in my opinion. I miss some background information and some
performance-related data. If the authors want to address a wide audience, they should probably
work a bit more on the installation instructions and documentation too. The authors should
probably also consider defining who their target audience is.

We appreciate the comments on the introduction. We have expanded on the target
audience on further comments (we address these in more detail on comment 16). We also
fully agree that more background information can be provided. We expanded the second
paragraph of the “introduction” section to add a brief description of some common quality
control tests applied to most next-generation sequencing datasets.

(2) As a discretionary comment: the authors sometimes, but not always, use the Oxford comma
(see example below). I wonder if this is something that should be streamlined. “sequencing data
is growing in abundance, dataset size and read length9.” vs.
“…adapter trimming, filtering contaminants and low-quality reads, and mapping reads to a
reference genome or transcriptome.”

We thank the reviewer for this observation. We have revised the manuscript and ensured
that the Oxford comma is adopted across the entire manuscript.

(3) “as a safety criteria” should probably be “as a safety criterion”.

We fully agree with the reviewer. This correction was made on the manuscript.

(4) Good thinking behind the “We designed falco13 to faithfully…” paragraph. Nobody would be
helped by yet another set of new file formats. A drop-in replacement is the way to go, if you ask
me. And that is indeed what the authors deliver.

We appreciate the comments, thank you!

(5) I must make the observation, though, that the name “falco” may not be available (?):
https://www.falcoseed.com/ca/article/cibus-registers-new-falco-brand-79k-canola-hybrid/ (some
other more or less commercial uses of “Falco” can be found on
https://en.wikipedia.org/wiki/Falco). I’m not sure how North American trademark/proprietary
laws operate, but I suggest that the authors consult with the lawyers of their university. Better
safe than sorry, right. (I consulted with our lawyers at one point, and they had me change the

Page 16 of 22

F1000Research 2021, 8:1874 Last updated: 28 JAN 2021

https://www.falcoseed.com/ca/article/cibus-registers-new-falco-brand-79k-canola-hybrid/

name of a software package we were working on at the time.)

We really appreciate the reviewer raising the possible legal issue that may arise from the
program name. We have researched the matter and believe that the software name should
not raise legal issues, both due to the program not having any commercial or profitable
goals and the name “Falco” being a common proper noun in many Latin languages.

(6) Two unintended line breaks: “uniformly, falco’s design centralizes”

We thank the reviewer for this observation. This line was removed from the manuscript.

(7) Please cite the Sequence Read Archive formally; see Kodama et al. (20121).

We followed the reviewer’s suggestion and added the appropriate citation when referring to
the Sequence Read Archive. We also corrected the meaning of the acronym from
"Sequencing Read Archive", as it was previously written.

(8) I like the reproducible nature of the “Results” section.

We appreciate the comment, thank you!

(9) Two superfluous line breaks: “gzip compressed files.”

We have removed the line break from the manuscript.

(10) Both “Falco” and “falco” are used in the manuscript. You’d think that the name would be fixed
as either “Falco” or “falco”.

We thank the reviewer for this observation. The notation used in the manuscript used
“Falco” at the start of sentences and “falco” everywhere else, to resemble the name of the
binary program used in the command-line interface. We have modified the manuscript to
use “Falco” everywhere except in the “use cases” section, where an example command-line
call for the program is shown.

(11) Why not use the term “open source” at least once in the manuscript?

We thank the reviewer for this observation. To address this, we started the “Implementation
choices” subsections with the following sentence: Falco is an Open Source C++ implementation
of the FastQC software tool built for UNIX-based operating systems.

(12) Out of curiosity: how does falco compare to Liu et al. (20192)?

We have downloaded the software from the URL provided in the manuscript
(github.com/megagenomics/fastprongs) and performed comparisons on identical hardware
to what was used in the manuscript. We tested on two datasets: Dataset 1 consisted of 76
million 150 base reads from arabidopsis (SRR12075121 in SRA), and dataset 2 contained 139
million 100 base reads from chicken (SRR5015166 in SRA). On dataset 1, Falco ran in 9:40

Page 17 of 22

F1000Research 2021, 8:1874 Last updated: 28 JAN 2021

https://f1000research.com/articles/8-1874/v1#rep-ref-66327-1
https://f1000research.com/articles/8-1874/v1#rep-ref-66327-2

and FastProNGS ran in 5:16 with 3 threads (the default program configuration) and 10:42 on
a single thread. On dataset 2, Falco ran in 14:30 and FastProNGS ran in 7:55 with 3 threads
and 16:13 with a single thread. We noticed that FastProNGS only reports the following
modules in their output: Basic statistics, adapter content, per base sequence quality, per
base sequence content and sequence length distribution. We also tried to run Falco by
enabling only these modules. Under these settings Falco ran in 4:35 for dataset 1 and 7:12
for dataset 2. In all tests, Falco ran with 92 MB of RAM, whereas FastProNGS used 1.26 GB.
In a long-read dataset (test 12 in the manuscript), FastProNGS did not run successfully
unless we configured it to only consider the first 200 bases of each read, in which case
FastProNGS ran in 2 seconds, but only reported summaries for the first 200 bases of all
reads. Falco ran in 12 seconds for this dataset.

A very meaningful conclusion of this comparison is the potential advantage of
multithreading in QC, as evidenced by the steep decrease in processing time from
FastProNGS when multithreading is enabled. We noticed, upon inspecting its source code,
that this performance improvement can be explained by FastProNGS reading multiple reads
in batch and allowing a new set of reads to be loaded while the previous batch of reads is
processed. In contrast, Falco loads and processes each read sequentially, which reduces
RAM usage but makes multithreading difficult in its current implementation. The
performance of FastProNGS suggests that switching to a “batch processing” paradigm may
have significant speed advantages when multiple cores are used and enough RAM is
available to load reads in batch, and this is something we will incorporate in future versions
of Falco, especially in order to address (18). We thank the reviewer for bringing this tool to
our attention.

(13) I’ve seen one software tool for quality-score-based trimming of sequences that actually reads
the entire query file into memory, and then started to process it. This works less well as data files
continues to grow, obviously. Is it worth pointing out that falco does not do this? What is, in fact,
the maximum file size allowed by falco? Or is this dictated solely by the operating system?

Both disk and memory requirements will depend on the length of the largest read in the
dataset, as Falco processes the input FASTQ one read at a time. To address the
computational requirements necessary to run Falco in more detail in the manuscript, we
created an additional subsection named “system requirements” under the “Methods”
section, where the computational resources (memory and disk) required to run Falco
successfully are discussed. Furthermore, we have added a paragraph in the “results” section
summarizing the memory and disk usage for the tests used for comparison across
programs.

(14) You can produce some pretty funny behavior in some other tools for sequence QC/trimming
by feeding them a file with a single FastQC entry in it, speaking of nothing. Is there, then, a
minimum file size or number of query sequences for falco?

There are no minimum or maximum file sizes required by Falco. We have tested (although
not disclosed in the manuscript) that Falco successfully runs on empty files and single-read
files. We thank the reviewer for having raised this issue, and have addressed that there are
no constraints in file size or number of reads in the “system requirements” section stated in

Page 18 of 22

F1000Research 2021, 8:1874 Last updated: 28 JAN 2021

(13).

(15) Unless I’m mistaken, there are no fastq files available on
https://github.com/smithlabcode/falco. I think the authors should make one or two available, so
that it will be smooth and easy for the reader to try the software out. “The scripts used to
download files and reproduce the benchmarking steps described are also available in the same
repository within the “benchmark” directory.” comes across as somewhat indirect to me.

We thank the reviewer for this observation. While we cannot provide the full FASTQ files
used to perform our comparisons in the GitHub repository, we do agree that the
documentation of our tests can be made simpler for users who wish to test the program.
We made modifications in our repository to simplify both testing in an example file and
testing in the FASTQ files used in the manuscript for comparison. Specifically, we added (1)
direct links to the SRA files under the “benchmark” directory and (2) an “example.fq” file,
consisting of a FASTQ file of 1000 reads, which is used as input for the example commands
provided in the README.

(16) What, exactly, are the hardware and software requirements for falco? This may be worth
pointing out. Between the lines I read “any computer you can install the GNU GCC compiler on” –
but not all readers will probably read it this way. Instead, you’ll get the question: “Does it run on
Windows 10?”.

We agree that constraints should be disclosed in more detail, and that the limited support
for usage of Falco on Windows should be more explicit. We have rephrased the first
paragraph in the “implementation choices”. The last sentences disclose more explicitly that
Falco, by design, is a UNIX-centric program made to be run on a command line and that,
unlike FastQC, it cannot be run in a graphical user interface.

(17) Also, how much memory is needed to run falco? And how much memory is used up by falco
when it processes a large file?

Falco requires under 1 GB of memory for any short or long read file generated by the
current sequencing technologies. More memory will be required when technologies expand
read lengths to the order of millions or billions of bases per read. We have added a
discussion of disk and memory requirements under the “systems requirement” section, and
also discussed the memory usage of the programs compared in the manuscript under the
section “Falco is faster than popular QC tools”.

(18) Between the lines (“Programs were instructed to run using a single thread.”), I take it that
falco can use multiple threads. Is that correct? And if so, why not point it out more explicitly? And
out of curiosity: when you run falco on 4 cores, do you see a 4x speedup? Or is the bottleneck
something else (disk IO?) than raw computational power? How does it scale with the number of
cores, in other words?

Falco, like FastQC currently does not use multiple threads to process a single file, and no
significant speed difference was observed when running fastp with multiple threads, which
is why we focused our comparison on single-thread across the software tools. Despite QC

Page 19 of 22

F1000Research 2021, 8:1874 Last updated: 28 JAN 2021

https://github.com/smithlabcode/falco

computations being fast relative to IO, our comparison with FastProNGS described in (12)
suggests that multithreading can lead to speed improvements if reading and processing are
done in parallel, and we certainly plan on exploring this paradigm in the next release of
Falco. We have also rephrased the third paragraph of the subsection “Falco is faster than
popular QC tools” to say “Both fastp and fastqc were instructed to run on a single thread” to
avoid ambiguities regarding Falco’s multithread option.

(19) Suppose my dataset is 10 Gb, and that I have 15 Gb left of free disk space. Do I dare to run
falco on that dataset? How large is the output compared to the input? In a “minimum” (no extra
features) as well as “maximum” (all extra features) mode?

We have addressed the disk requirement on the “system requirements” section disclosed in
(13) and (14), specifically adding the sentence “The total disk space required to store the
three output files generated by Falco is under 1 MB”. Like FastQC, Falco’s output is a set of
reports whose size scales with the maximum read length of the input but are never under 1
MB in total. We fully agree that the fact that disk space is not crucial to run Falco should be
made more explicit.

(20) Suppose a user finds a bug, or wants to put forward a feature request. How can the user do
that? Should this be mentioned in the manuscript?

We thank the reviewer for this observation. All issues and bug reports can be done through
our GitHub page, the same one provided for the source code. To make this clearer for
users, we have added a sentence at the “software availability” section, stating that errors,
installation problems and bugs can be reported in the “Issues” section in the same URL
provided to download the source code.

(21) The first question I always get from users of my software tools is: “where can I download the
Windows binaries?”. Is it, actually, not a good idea to be explicit about the fact that this is a
command-line tool that you compile on your own computer? Would probably save the authors
some time to be upfront with this.

We fully agree with the reviewer, and have added the statements of a more specific target
audience as discussed in (16).

(22) The list of references comes across as somewhat untidy. Some examples follow below. The
authors should probably go through all references to make sure they comply with journal
specifications.
 Journal names are sometimes abbreviated, sometimes not. Ref 2 is abbreviated, whereas ref 3
should be abbreviated “BMC Bioinform.”
Article titles: should verbs and key nouns in article titles have a leading uppercase letter, as in,
e.g., ref 5, or should they not, as in ref 1?
Should page ranges be written out in full (ref 23, “1202–1214.”) or should they be abbreviated (ref
25, “1213–8.”)?

We really appreciate the keen observations on the reference standards. We have reviewed
our citations and standardized journals to their non-abbreviated names, uppercase letters

Page 20 of 22

F1000Research 2021, 8:1874 Last updated: 28 JAN 2021

only in leading words, and pages written in full.

(26) Are the installation instructions a bit too thin? I’d say yes, at least if the intention of the
authors is to address a diverse audience and not just readers with Linux-style experience. To
simulate a less experienced user, I used my son’s MacBook Pro and tried to install falco on it
following the manual:

“Upon downloading, inflating and moving to the source
directory, installation can be done through the following commands:
…
$./configure CXXFLAGS="-O3 -Wall"
$ make all
$ make install”

So I did:

$ cd src
$./configure CXXFLAGS="-O3 -Wall"
-bash: ./configure: No such file or directory

And then

conda install -c bioconda falco
-bash: conda: command not found

And that was it. No further clues or assistance to be found in the instructions.

If the authors are happy with this behavior, then they should make it clear in the manuscript that
falco is not for everyone, but rather only for those with significant Linux-style experience.

We really appreciate the reviewer bringing up this observation about our documentation.
We agree that the wording of “moving to the source directory” was misleading and may
cause users to try to run the commands on the “src” directory. We have updated our
README with clearer command line instructions that show the user how to clone the
repository or download a release file, as well as which directory to move to in order to run
the commands. We are striving to make the documentation as clear and simple as possible,
and truly appreciate these suggestions on how these can be improved.

(27) “Source code for falco available at: https://github.com/smithlabcode/falco.” – the trailing “.”
should be removed, I’d say. The link won’t work for users who copy-and-paste it into their
browser. The same thing goes for
“Archived source code at time of publication: http://doi.org/10.5281/zenodo.352093313.” where
both the reference and the “.” cause problems.

We appreciate this observation and the potential problems punctuation near links may
cause. We have ensured that the trailing dots and citations are clearly separated from the
links and that they will not cause problems when copying URLs directly from the

Page 21 of 22

F1000Research 2021, 8:1874 Last updated: 28 JAN 2021

https://github.com/smithlabcode/falco

manuscript.

Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias•

You can publish traditional articles, null/negative results, case reports, data notes and more•

The peer review process is transparent and collaborative•

Your article is indexed in PubMed after passing peer review•

Dedicated customer support at every stage•

For pre-submission enquiries, contact research@f1000.com

Page 22 of 22

F1000Research 2021, 8:1874 Last updated: 28 JAN 2021

mailto:research@f1000.com

