GigaScience, 10, 2021, 1-11

(GI A)n doi: 10.1093/gigascience/giaal63
OXFORD - Technical Note
CIEN<.E

TECHNICAL NOTE
Transcriptome annotation in the cloud: complexity,
best practices, and cost

Roberto Vera Alvarez @', Leonardo Marino-Ramirez ©12 and
David Landsman ®1"

1Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine,
NIH, 9000 Rockville Pike, Bethesda, MD 20890, USA and 2Present address: Division of Intramural Research,
National Institute on Minority Health and Health Disparities, NIH, 9000 Rockville Pike, Bethesda, MD 20890,
USA.

*Correspondence address. David Landsman, Computational Biology Branch, National Center for Biotechnology Information, National Library of
Medicine, NIH, 9000 Rockville Pike, Bethesda, MD 20890, USA. E-mail: landsman@ncbi.nlm.nih.gov © http://orcid.org/0000-0002-9819-6675.

Abstract

Background: The NIH Science and Technology Research Infrastructure for Discovery, Experimentation, and Sustainability
(STRIDES) initiative provides NIH-funded researchers cost-effective access to commercial cloud providers, such as Amazon
Web Services (AWS) and Google Cloud Platform (GCP). These cloud providers represent an alternative for the execution of
large computational biology experiments like transcriptome annotation, which is a complex analytical process that
requires the interrogation of multiple biological databases with several advanced computational tools. The core
components of annotation pipelines published since 2012 are BLAST sequence alignments using annotated databases of
both nucleotide or protein sequences almost exclusively with networked on-premises compute systems. Findings: We
compare multiple BLAST sequence alignments using AWS and GCP. We prepared several Jupyter Notebooks with all the
code required to submit computing jobs to the batch system on each cloud provider. We consider the consequence of the
number of query transcripts in input files and the effect on cost and processing time. We tested compute instances with 16,
32, and 64 vCPUs on each cloud provider. Four classes of timing results were collected: the total run time, the time for
transferring the BLAST databases to the instance local solid-state disk drive, the time to execute the CWL script, and the
time for the creation, set-up, and release of an instance. This study aims to establish an estimate of the cost and compute
time needed for the execution of multiple BLAST runs in a cloud environment. Conclusions: We demonstrate that public
cloud providers are a practical alternative for the execution of advanced computational biology experiments at low cost.
Using our cloud recipes, the BLAST alignments required to annotate a transcriptome with ~500,000 transcripts can be
processed in <2 hours with a compute cost of ~$200-$250. In our opinion, for BLAST-based workflows, the choice of cloud
platform is not dependent on the workflow but, rather, on the specific details and requirements of the cloud provider. These
choices include the accessibility for institutional use, the technical knowledge required for effective use of the platform
services, and the availability of open source frameworks such as APIs to deploy the workflow.

Background cess to industry-leading commercial cloud providers. The NIH’s
STRIDES cloud provider partners, at the time of this study, were
Amazon Web Services (AWS; Seattle, WA, USA) and Google Cloud
Platform (GCP; Mountain View, CA, USA). Cloud computing of-
fers an on-demand model where a user can dynamically allo-
cate “unlimited” compute resources and then release them as

The NIH Science and Technology Research Infrastructure for
Discovery, Experimentation, and Sustainability (STRIDES) ini-
tiative [1] permits NIH-supported scientists to explore the
use of cloud environments and provides cost-effective ac-

Received: 2 July 2020; Revised: 13 November 2020; Accepted: 23 December 2020

Published by Oxford University Press on behalf of GigaScience 2021. This work is written by (a) US Government employee(s) and is in the public domain
in the US.

http://www.oxfordjournals.org
http://orcid.org/0000-0002-4108-5982
http://orcid.org/0000-0002-5716-8512
http://orcid.org/0000-0002-9819-6675
mailto:landsman@ncbi.nlm.nih.gov
http://orcid.org/0000-0002-9819-6675
http://orcid.org/0000-0002-9819-6675

soon as the analysis is complete [2]. These services offer a re-
duced cost of compute resources and a friendly user interface
that makes cloud computing accessible for large computational
biology experiments.

As part of the STRIDES initiative, NIH-funded institutions be-
gan to upload and compute data in the cloud. Public biological
databases such as the SRA [3] and computational tools such as
BLAST [4], from the NCBI, were migrated and are available for
public use on AWS and GCP. In addition, NIH-funded researchers
are contributing to the NIH’s STRIDE initiative not only by mi-
grating data analysis workflows to the cloud but also by dissem-
inating information about the suitability of cloud computing for
computational biology experiments.

The annotation of RNA transcripts with functional and bi-
ological processes is an important step in developing an un-
derstanding of the biological complexity of an organism. Anno-
tation is a challenging process that requires the integration of
multiple biological databases and several computational tools
to accurately assign a function to an RNA product. Avail-
able public information on a target organism is the main
limitation of the annotation of non-model organisms. The
NCBI Genome database, for instance, contains 54,049 genome-
sequencing projects by organism [5]. This includes 12,204 eu-
karyotes’ genomes for >1,000 species or strains at different as-
sembly levels (95 complete genomes, 1,872 chromosomes, 7,743
scaffolds, and 2,494 contigs [6]). Although these data include an
important group of organisms, there is a lack of annotation of
several species that have significant public health and economic
importance. Significantly, in the plant kingdom, Viridiplantae,
only 3 complete genomes, 331 chromosomes, 625 scaffolds,
and 394 contigs are annotated. Advances in next-generation se-
quencing technologies and the decrease in the cost of sequenc-
ing a complete transcriptome are driving a new era in which an-
notation will be increasing, important, and productive.

A review of published articles since 2012 [7-15] reveals that
many developed pipelines have a common core component and
use the NCBI BLAST tools [16] to align assembled transcriptomes
against annotated databases of nucleotides or proteins to iden-
tify similarity and infer function. After an assembly, these align-
ments are the initial step to identify close and/or distant ho-
mologous genes, proteins, and functional domains that could
be cross-referenced with other public databases, such as Gene
Ontology [17], to generate new annotations of query sequences.
As the number of transcripts assembled per study increases, the
computing power and storage required to align these transcripts
to the BLAST databases also increases. On-premises computer
infrastructures (including server farms) have been used mainly
for the computation of sequence alignments using BLAST. Many
laboratories, however, are not equipped with the compute power
required for the analysis of increased transcriptome sequenc-
ing results. Although a minimum infrastructure could be easy to
build and maintain, it may be unnecessary and less financially
burdensome with the advent of cloud computing and its use in
computational biology.

The use of cloud environments for computational biology ex-
periments is increasing [18-21]. However, little has been pub-
lished estimating cloud costs and implementation best prac-
tices. A recent work published by Ohta at al. [22] presents
a tool named CWL-metrics that collects run time metrics of
Docker containers and workflow metadata to analyze workflow
resource requirements. This study presents a cost estimation for
the execution on the cloud for AWS EC2 instances but does not
mention the cloud batch system for users to submit thousands
of jobs to the cloud.

Modern cloud providers offer “unlimited” compute resources
that can be accessed on-demand. An “instance,” as the virtual
machines are named in the cloud environment, is deployed us-
ing a variety of operating systems such as GNU/Linux or Mi-
crosoft Windows. Users pay only for the time that the instance is
running plus the cost of other resources such as network egress
and/or the size of network storage devices. A workflow can be
deployed on a manually created instance, but this is not cost
efficient because the instance will need to be manually recon-
figured with workflow dependencies. It will also remain active
once the analysis is completed, which wastes resources.

Private genomic cloud providers, e.g., DNAnexus [23], DNAs-
tar [24], Seven Bridges [25], SciDAP (scidap.com), and others,
also offer cloud-based genomics frameworks. These commercial
cloud providers make the execution of computational biology
experiments easier by offering command line and web-based in-
terfaces designed for genomic data analysis.

Most cloud providers offer a batch system that can do the
configuration automatically for users to submit several parallel
jobs. The batch system makes the process of instance creation,
set-up, and termination fully automatic.

Batch processing is a technique for processing data as a sin-
gle large collection of iterative steps instead of individually. It
reduces user interactivity to process submissions by automat-
ing the remaining steps. Modern cloud providers offer a batch
system that can be personalized to process many different work-
flows. Figure 1 shows the components of a generic cloud batch
system. It is composed of a “batch queue” to which users sub-
mit the “tasks.” Each task uses a “job definition” to create a “job”
where all computational resources and the workflow steps are
outlined. Then, an instance is automatically created with the re-
sources requested by the job. Because all the data for the analy-
sis are in the cloud, the instance downloads the input data from
the “cloud storage system” and, after successfully completing
the workflow, uploads the results, releasing all computational
resources.

In this article, we present a comparative study of multiple
BLAST searches and alignments required to annotate transcrip-
tome data. This study aims to establish an estimation of the cost
and time needed for the execution of multiple BLAST searches
on the cloud. Our recommendation on best practices for deploy-
ing computational biology workflows in the cloud is also pre-
sented.

This study focuses only on the many BLAST alignments that are
the most compute-demanding core of a transcriptome annota-
tion process. BLAST alignments require considerable compute
resources, which generate intermediate results that are used to
complete the annotation process. The remaining part of the an-
notation pipeline is excluded from our study because it can be
executed on a workstation and does not require extensive use
of the cloud.

The input for the workflow is a transcriptome in FASTA for-
mat. First, TransDecoder (TransDecoder, RRID:SCR-017647) [26]
is executed to generate all open reading frames (ORFs) from the
input file. Then, BLASTP and RPS-BLAST are executed on the
TransDecoder output files, generating a list of homologous pro-
teins and conserved protein domains (BLASTP uses the BLAST
nr database, and RPS-BLAST uses the NCBI Conserved Domain
Database [CDD] [27]). The transcriptome files are also used as

https://scicrunch.org/resolver/RRID:SCR_017647

Batch Batch System Cloud
Queue Storage
Job 1 Instance 1 PEN——— Quen
) a Result 1
— _—
_Task 2
_ Job 2 Instance 2 PE—— Qusps
_ Job —
[Tesk4) DenfilEEy &8 ¢ Result 2
<@ —
——
_ S
ask 6 Job 3 Instance 3 P A——
C88-> &
Result 3
<@ —

Figure 1: Basic components in a cloud-based batch system.

inputs for BLASTN and RPST-BLASTN, which are executed using
the BLAST nt database and the NCBI CDD database, respectively.
These processes generate a list of homologous genes and a list of
conserved domains (see Fig. 2). The workflow was implemented
using the Common Workflow Language (CWL) [28] and is freely
available at [29].

The workflow uses as input a FASTA file, which we named
“query,” and includes multiple transcripts to be processed. The
number of transcripts to be included in a query is another pa-
rameter that merits analysis. The size of the query affects the
workflow processing time because a complete transcriptome
could comprise thousands to hundreds of thousands of tran-
scripts assembled from a next-generation sequencing experi-
ment [30].

Our analysis is based on the execution of the workflow with
a batch system provided by each cloud platform. This approach
keeps the compute time, and therefore the cost, to a minimum.
It also limits user interaction with the jobs to only the submis-
sion step.

Containerizing a workflow involves bundling it with all its de-
pendencies and configuration files so that it can be executed
across different computing environments. The workflow de-
pendencies in the container use the same version and com-
piled libraries when executed in any computing infrastructure,
which makes the process highly reproducible. In this study,
we use Docker as the container engine. Docker permits the
creation of container images that can be used on a personal
laptop or on a cloud platform. The workflow container image
generated is freely available from the Google Container reg-
istry [31] with name gcr.io/cbb-research-dl/transannot-cloud-
cmp. All files used to generate this image are available
at [32].

CWL [28] is an open standard workflow language used to de-
scribe and implement complex pipelines, which uses inter-

changeable blocks. The resulting product is portable and scal-
able. It can be executed across a variety of hardware environ-
ments as dissimilar as personal laptops or the cloud.

Workflow managers are tools that simplify the execution of
workflows in multiple computational environments. Some have
been developed to manage and execute CWL workflows, like Toil
[33], CWL-Airflow [34], Arvados [35], and reana [36]. Others, how-
ever, use their own workflow languages, like Nextflow [37] and
SnakePipes [38]. All provide a unified interface to users to choose
the compute environment to process jobs. Users can configure
the workflow manager to submit jobs to a high-performance
compute cluster or to a cloud provider. Nevertheless, all these
workflow managers use the cloud batch system to submit jobs
for computing in the cloud.

In this study, we aim to estimate the minimum cost of exe-
cuting a transcriptome annotation pipeline in the cloud. We se-
lected CWL because it is the workflow language with many avail-
able workflow managers. Also, CWL provides a reference imple-
mentation runner: cwltool [39] (cwltool, RRID:SCR_015528). This
runner can be executed on the command line inside a GCP or
AWS job definition, minimizing all dependencies for processing
a workflow. We intentionally avoided the use of workflow man-
agers so as to be able to quantify run time for the workflow steps
as precisely as possible.

Fig. 3 shows the scheme of the transcriptome annotation
workflow used in this study.

The GCP offers a batch system specifically designed for life sci-
ences, the Cloud Life Sciences [41]. This system was initially
Google Genomics but has evolved to allow the scientific com-
munity to process biomedical data at scale.

Cloud Life Sciences offers an API implemented for users to
develop their own workflow in JSON format using 3 main at-

https://scicrunch.org/resolver/RRID:SCR_015528

Input

Workflow steps

Output

Homologous
proteins

ORF for all

BLASTP

TransDecoder

Transcriptome

Figure 2: Schema of the transcriptome annotation workflow.

"longest_orfs.pep”

lename

: Workflow Inputs

TransDecoder.LongOrfs

Y

transcripts

Conserved
domains
Homologous
genes

RPS-
BLAST

BLASTN

RPST-
BLASTN

[1000 || plastp-fast” ” TransDecoder.LongOrfs_extract_result || 1000 | : | brast_nr_db || blast_db_dir || evalue || threads || blast_cdd db |[query || blastnt b | : [1000 |
| PN W NSy :

maxJargeLseqsi Bvalue/Aum_threads ~~_query \ max_target_seqs(dbdrr /avalie,” num_thread
] —® RPS-Blast

G\ dbdin\ evalue \num_threads /db_~Guery

RPST-BlastN

max,Wge.,u b
BlastN

: | Transdecoder-output ” BlastP-output || RPS-Blast-output ” RPST-BlastN-output || BlastN-output r,
1

: Workflow Outputs

Figure 3: Transcriptome annotation workflow schema [40].

tributes: actions, environments, and resources. “Actions” are the
list of “commands” to execute using a defined container image.
They also include statements to mount local solid-state drives
(SSDs) or network storage devices, defined in “resources.” “Envi-
ronments” define the environment variables available inside the
container. Finally, “resources” define the instance type and the
local SSD or network storage devices.

The API, using the JSON described in Box 1, automatically
creates instances on-demand, following the requirements de-
fined in the resources section of the job JSON file. GCP also pro-
vides a customized container image where the instance inter-
acts with other GCP products such as Google Storage where data
are stored. In addition, GCP creates the instances using a cus-
tomized Linux operating system that formats and mounts the
instance local disks, making them available for the jobs.

Box 1 shows a brief extract of the pipeline used in GCP. We
show only the main activity where the “command” attribute
defines the command line to execute the CWL workflow. The
“ImageUri” attribute defines the container image used to run the
command—in this case, our previously created Docker image. Fi-
nally, the “mounts” attribute defines the paths in the container
to mount the disks created in the resources attribute.

The “VirtualMachine” attribute defines the resources used to
create the job instance. In this attribute, users can define in-
stance boot disk size, operating system, extra disks, and the ma-
chine type. The complete JSON file is available at [42].

AWS Batch [43] is the batch system provided by AWS. It com-
prises compute environments, job queues, and job definitions.
The “compute environment” defines the computational re-
sources to be used by the batch jobs. It is connected to the Ama-
zon Elastic Container Service (ECS), which is a fully managed
service that creates and manages computer clusters inside the
Amazon cloud environment. The resources defined by the com-
pute environment are used by the ECS to create and set up in-
stances in which the workload is distributed. “Job queues” are
used as an intermediate service to associate submitted jobs with
the compute environments. Last, the jobs use a “job definition,”
in JSON format, which defines specific information for the job,
e.g., container images, commands, number of vCPUs, RAM, en-
vironment variables, and local or remote folder to mount on the
container.

Box 2 shows a brief extract of the job definition JSON script
used in AWS. The “containerProperties” attribute defines the job
properties. “Image” defines the container image, in this case our
Docker image. “Command” defines the command to be executed
inside the container. In the case of AWS, a single command can
be outlined in the job definition; thus, complex pipelines with
multiple steps can be encapsulated in a BASH script. This script
can be stored inside the container image, or the container can
download it at run time. For simplicity, we have included this
script inside the Docker image.

Box 1:
Brief extract of the GCP pipeline definition JSON file

"actions™: [

"commands": [
"Ibin/bash",

-c",

cbb/workflows/Annotation/transcriptome_annotation.cwl

Idata/${SAMPLE}.fa >> /data/pipeline.log 2>&1"
I

"mounts™: [

"disk": "gcloud-shared",
"path": "/data™

"environment": {

"CPUs": "64"
b
"resources": {

"virtualMachine™: {
"bootDiskSizeGb": 60,

"disks": [
{
"name": "gcloud-shared”,
"sizeGb": 600,
"type":"local-ssd"
}

“‘machineType": "n1-standard-64",

"cwltool --no-container --on-error continue --tmpdir-prefix /data/ --tmp-outdir-prefix /data/ --outdir /data/${SAMPLE}
https://raw.githubusercontent.com/ncbi/cloud-transcriptome-annotation/master/bin/cwl-ngs-workflows-

--blast_db_dir /data --threads ${CPUs} --evalue 1e-5 --blast_nt_db nt --blast_nr_db nr --blast_cdd_db split-cdd --fasta

"imageUri": "gcr.io/cbb-research-dl/transannot-cloud-cmp"”,

"bootimage": "projects/cos-cloud/global/images/family/cos-stable",

The AWS Batch system automatically creates all infrastruc-
ture, network components, and compute instances, following
the requirements of the compute environments. The default
configuration of the Amazon Machine Image (AMI) used for the
instances, however, is not configured to use local SSD disks avail-
able on certain machine types. This limits the default options
on the AWS Batch system to certain types of workflows. Work-
flows that use intensive disk IO operations will have improved
performance and efficiency if local SSD disks are used. Thus,
a modified AMI capable of using the instance local disks is re-
quired for our study. We create a customized AMI for our study
that is freely available in the AWS zone us-eastl with ID: ami-
0dac0383cacldc96e. This AMI creates an array with the local SSD

disks in the instance using the Linux utility mdadm. The array is
formatted with XFS filesystem and mounted in a folder named
“/data.”

To improve the default AWS Batch options, Amazon offers a
Virtual Private Cloud (VPC) that provides an extra layer of iso-
lation for the resources used by the AWS Batch system. This
VPC logically isolates all resources used in a defined virtual net-
work, improving the security. It is customizable for each com-
pute problem.

The templates used in our study to create all the com-
ponents of the AWS Batch system are available at [44]. All
resources are created in the Jupyter notebook in “02-AWS-
Batch.”

Box 2:
Brief extract of the AWS job definition JSON file

{

"containerProperties™: {
"vcpus": 64,
"memory": 131072,
"command": [
"lusr/envs/transannot/bin/aws-pipeline.sh"

1,

"volumes": [

{
"host": {
"sourcePath": "/data"
}

}
1,

"environment": [

name": "data"

"name": "CPUs",
"value": "32"
}
1

"mountPoints": |

"containerPath": "/data",
"sourceVolume": "data"

"image": "gcr.io/cbb-research-dl/transannot-cloud-cmp",

Bioinformatics best practices for pipeline execution require the
containerization of each tool included in the analysis. Projects
such as Bioconda [45] and Biocontainers [46] provide standard
containerized images for thousands of bioinformatics tools.
However, the batch system for both tested cloud providers re-
quires that all tools used in the workflow be included in a single
container. Each action in the cloud job definition is associated
with a single Docker image that is used to execute the action
task. Docker-in-Docker, the process to execute Docker contain-
ers inside another Docker container, is not permitted in either
GCP or AWS. This limitation constrains users to containerize all
tools involved in a workflow into a single Docker image. Hence,
knowledge of how to create Docker images is a requirement for
the migration of workflows to the cloud.

Both GCP and AWS offer access to transitory instances, which
are spare compute capacity at a reduced cost. These instances
are called “SPOT” in AWS and “Preemptible” in GCP. The tran-
sitory instances at reduced cost results from the fact that the
cloud provider might terminate the instance at any time. Pre-
emptible prices are fixed in GCP but not in AWS. The cost of the

SPOT instances has a minimum but can be increased to the nor-
mal EC2 price if the demand for resources increases.

Transitory instances for workflow execution require extra
processing steps to identify terminated jobs for resubmission.
This is a reasonable option to reduce the cost of the analysis
but requires a flexible timeframe to complete all analyses. Users
need to be aware of this caveat.

Jupyter notebooks are an open source web application frame-
work for the creation and sharing of documents that contain live
code (Jupyter Notebook, RRID:SCR_018315) [47]. They are a stan-
dard way to share scientific code for ease of reproducibility and
reuse [48]. The implementation of our study was fully developed
in Jupyter notebooks. Readers can reproduce our results and fig-
ures using the notebooks that are available at the project GitHub
repository. The notebooks create all cloud resources and sub-
mit the jobs to the batch systems. They also retrieve the job logs
in JSON format and create the figures automatically from those
logs. Each notebook includes a description about its purpose and
is named using a numeric prefix to highlight the execution order.

The notebooks implemented in this study are designed to be
executed on a local laptop or a workstation. Both interact asyn-

https://scicrunch.org/resolver/RRID:SCR_018315

Table 1: Machine types with resources in each cloud

Instance Local
Machine type vCPUs Memory (GB) SSD (GB)
AWS
m5d 16 64 2 x 300
32 128 2 x 600
64 256 4 x 600
m5dn 16 64 2 x 300
32 128 2 x 600
64 256 4 x 600
GCP
nl 16 60 24 x 375
32 120 24 x 375
64 240 24 x 375
n2 16 64 24 x 375
32 128 24 x 375
64 256 24 x 375

Network bandwidth Cost
(Gbit/s) Region Last used date (USD/hour)

<10 us-east-1 12 Nov 2020 0.904
10 us-east-1 12 Nov 2020 1.808
20 us-east-1 12 Nov 2020 3.616
<25 us-east-1 12 Nov 2020 1.088
25 us-east-1 12 Nov 2020 2.176
75 us-east-1 12 Nov 2020 4.352
32 us-eastl-c 30 Oct 2020 0.861
32 us-eastl-c 30 Oct 2020 1.393
32 us-eastl-c 30 Oct 2020 2.475
32 us-eastl-c 30 Oct 2020 0.951
32 us-eastl-c 30 Oct 2020 1.572
32 us-eastl-c 30 Oct 2020 2.816

Prices and instance type may change in the future as is common practice among cloud providers.

chronously with the cloud providers using the command line
APIs provided. In the case of GCP, we used the Google Cloud SDK
[49]. For AWS, we used the AWS Command Line Interface [50]. In
these notebooks, the workflow input files are created, these are
uploaded to each cloud provider storage space, the cloud batch
systems are configured, the jobs are submitted, and the results
are retrieved. The notebooks interact with the cloud batch sys-
tem to process jobs and retrieve results and logs stored in the
results/PRJNA320545 folder.

In this study, we present an analysis of the complexity, cost,
and best practices for executing the core components of a tran-
scriptome annotation workflow in the cloud. For our exper-
iments, we used the 2 cloud provider partners of the NIH’s
STRIDES Initiative: GCP and AWS. For each cloud provider, sim-
ilar compute instances were tested using 16, 32, and 64 vC-
PUs. The machine types and their resources are described in
Table 1. We used the transcriptome assembled from a pub-
lic BioProject with ID PRJNA320545 for the organism Opuntia
streptacantha (prickly pear cactus). The transcriptome includes
474,563 transcripts generated with Trinity [51] and is available
in data/PRJNA320545/transcriptome.fasta.gz. The transcriptome
length distribution and statistical metrics are available in the 01—
Data Partitioning notebook.

From the O. streptacantha pool of transcripts, we analyzed
3 sizes of query files: 2,000, 6,000, and 10,000 transcripts in
each input query file. Two experiments were executed. First 20
FASTA files (input files for the workflow) for each query size
were randomly created (see notebook “O1-Data Partitioning”).
Each of these files was submitted independently as a job to
the batch system on each cloud provider. For the second ex-
periment, 120,000 transcripts were randomly selected and then
partitioned in files with 2,000, 6,000, and 10,000 transcripts to
analyze the relationship between query size, run time, and
cost.

Jobs were submitted to each cloud platform using the note-
books “02-Google Cloud Platform” and “02-AWS-Batch.” In
each notebook, the input files created for each experiment
were copied to the respective cloud storage system, followed
by job submissions for each configuration of machine type/
CPU.

Four times were collected from the jobs:

1. the total run time

2. the time to transfer the BLAST databases to the instance lo-
cal SSD disk

3. the time executing the CWL workflow

4. the time for creation, set-up, and release of the instance

Figure 4 shows the collected times for the 10,000-query size.
Figure 4a shows the total run time for each input file (each con-
taining 10,000 transcripts) for a total of 200,000 transcripts pro-
cessed for each cloud provider, machine type, and the number
of vCPUs.

In addition, each box in Fig. 4a shows the total cost for the 20
files using normal and transitory instances (top) and the cost of
processing 1 transcript (bottom). Figure 4b—-d shows the remain-
ing 3 times collected from the jobs.

The total running times for the 10,000-query sized files are
similar for the same number of vCPUs notwithstanding the
cloud provider. Furthermore, this example shows how the run-
ning time can be reduced by more than half by increasing the
number of vCPUs. Unfortunately, this time reduction does not
decrease the total cost of the project because the price per hour
for machines with more vCPUs increases as well.

The AWS platform is more efficient than the GCP during in-
stance creation, set-up, and release (see Fig. 4b). This step is only
0.1% of the total cost despite the Docker image used in the study
being hosted in the Google Container Registry. The GCP cost for
this stage goes from 1.5% to 4.5% on bigger machines. The dif-
ferences are due to the Amazon ECS, which allocates new jobs
on existing instances as soon as the instance gets free without
releasing them, whereas GCP creates, sets up, and releases an
instance for each job.

Transferring the BLAST databases from each cloud storage
(S3 in AWS and Cloud Storage in GCP) bucket (Fig. 4c; current
size is 342 GB) to the instance local SSD disk is a crucial step in
reducing the cost of the analysis. Initially, we tested the default
parameters in both cloud providers, which use network storage
devices taking an average of 1 hour, which is ~30% of the total
cost of the analysis and takes more time than the CWL workflow
execution. After customizing both batch systems to use the in-
stance local SSD disks, the time was reduced to a range of 4-11%
of the total cost in the 10,000-query size.

8 | Transcriptome annotation in the cloud
a)
$99.05 Input File
400 $18.41 e 1
» 2
L] e 3
4
—s e 5
” 87.96 E“E’ ¢
$$17:32 $ 105.59) $93.75 ° 7
o $19.99 0.0005¢ $18.53 8
ﬁ — o= e 9
300 . 10
Y . 0.0005¢ o 12
o—ooa 3 e 13
- ¢ 0.0005¢ i
s e 15
2 16
s $ 84.0 ® 17
; $19.3 84.04 18
E 200 7‘.7 $$20 1 e 19
= .
— ¢ 20
$84.07 $101.2 ;o804 —
. $15.02 $14.84 000 $98.95
== =3 0.0004 $25.59
4 0.0005 ¢ f $99.14
0.0004¢ 0002¢ $1163 $11576 —=P—— $26.51
$22.32 $17.42 00005 =7=
100 ¢ il g ¢ = (=
e b — Lo 0.0005¢
o
—olo—
50
0.00%6¢
AWS AWS GCP GCP AWS AWS GCP GCP AWS AWS GCP GCP
M5D M5DN N1 N2 M5D M5DN N1 N2 M5D M5DN N1 N2
16 16 16 16 32 32 32 32 64 64 64 64
(b) Instance creation, setup and release (C) Transfering BLAST database to instance d) CWL workflow execution time
1% 2% 4% 94%
3?’ 16 *)
4% 350
E ; '0 Eg
* Ej 2% 3% ; 96%
° o ° = & 096"/ .
a4 P DI Wl 4% 10% w01 @ Sg - 92%
S * e
- 7% b
i < » H:
b 3 i EQJ hd 9% e » 4
) | ° it - Y 2501 7 @
3 » - 4% [_jg
— 12 (=
g R :
]
3
£ 7% 200
= o =
< &) 91%
£ ¢ 9% T 1%
2 PS =
10 ==
g = 1m0 95%95% ¥
e ¥
S 87%
100 93%90%'?}387%
2 o 5% S €=
[}
0% 0% 0% 0% 0% 5% 7% 5 <€
0% o o o ® @ -
- R . "("[?‘j '%'
o @ Ly Lelca . 9 .
AWS AWS GCP GCP AWS AWS GCP GCP AWS AWS GCP GCP AWS AWS GCP GCP AWS AWS GCP GCP AWS AWS GCP GCP AWS AWS GCP GCP AWS AWS GCP GCP AWS AWS GCP GCP
M5DM5DN N1 N2 M5DMSDN N1 N2 MSDMSDN N1 N2 M5DM5SDN N1 N2 M5DMSDN N1 N2 M5DMSDN N1 N2 M5DM5SDN N1 N2 M5SDMSDN N1 N2 MS5DMSDN N1 N2
16 16 16 16 32 32 32 32 64 64 64 64 16 16 16 16 32 32 32 32 64 64 64 64 16 16 16 16 32 32 32 32 64 64 64 64

Cloud Provider/Machine Type/vCPUs

Figure 4: Time and cost for the 10,000 query size files. (a) Total time for each input file for each configuration (cloud provider/machine type/vCPUs). The total cost
of processing the 20 input files (200,000 transcripts in total) is at the top of each box using normal and transitory instances. The cost of processing 1 transcript is at
the bottom of each box. (b) Time and percent of the total cost for instance creation, set-up, and release. (c) Time and percent of the cost for transferring the BLAST
databases to the instance from the cloud storage bucket (S3 in AWS and Cloud Storage in GCP). (d) Time and percent of the cost for the CWL workflow execution. Input
files in all plots can be identified by the coloring especified in the top plot legend.

As expected, the CWL workflow execution time is the most
time-consuming part of the job (Fig. 4d). All configurations show
similar times for executing the CWL workflow. The GCP N1 ma-
chine type spent more time on the CWL workflow than the other

machine types in all configurations because the GCP N1 is the

Google first-generation machine type with slower vCPUs.
Figure 5 shows the time and cost of processing 120,000

transcripts using second-generation 64-vCPU instances on each

Alvarezetal. | 9

(a) (b)

Emm Normal

& B Transitory L 120

100

80 1
r 80

Total Time (Minutes)
k4
-
Cost (US Dollars)

r 60
60

40
40 -
d
N 20
.'
204 |
| 2000 6000 106°°| . 2000 6000 10600l 2000 6000 10000 2000 6000 10000,
acp AWS GCP + Preemptible AWS + SPOT
Number of transcripts per query Number of transcripts per query
Figure 5: Left (a): Total processing time for 120,000 transcripts using different query sizes. Right (b): Total cost using normal compared to transitory instances.
cloud provider. Reducing the number of transcripts per input file 1. For reproducibility, write the pipeline using a workflow lan-
reduces the total run time but will also increase the cost of the guage.
analysis because more instances will be used. BLAST databases We recommend CWL because the resulting product is
are transferred to more instances, spending, on average, 10 min- portable and scalable, and it can be executed across a va-
utes for each instance. For example, our experiment with the riety of computational environments as dissimilar as per-
10,000-query size processes all transcripts in ~105 minutes with sonal laptops or the cloud. As mentioned above, CWL is the
a total cost of 59.37 USD using 12 instances (GCP, N2, 64 vCPUs). workflow language with many workflow managers available
Processing the same number of transcripts with a query size of and they can be directly executed in a container using the
2,000 costs 122.36 USD with all transcripts processed in 43 min- cwltool runner.
utes using 60 instances (GCP, N2, 64 vCPUs). 2. Containerize the CWL workflow with Docker.
We have determined that a transcriptome with ~500,000 Use Conda/Bioconda to install all Bioinformatics tools in the
transcripts can be processed in <2 hours with a compute cost container image.
ranging from 200 to 250 USD using normal instances. For transi- 3. Use Jupyter Notebooks for coding and documenting each
tory instances (SPOT in AWS and preemptible in GCP) the total step during experiments.
cost could be reduced to 50 USD for the complete analysis. How- 4. Use the cloud provider batch system for deploying jobs.
ever, the processing of all transcripts requires a flexible time- 5. Cloud computing behaves differently than local worksta-
frame owing to the availability of the transitory instances and tions or on-premise clusters.
the number of terminated jobs that require resubmission. In our Users should define and execute small tests with their data
opinion, these are reasonable costs that make the transcriptome and workflow before submitting large jobs. Testing different
annotation process in the cloud accessible to any genomic lab- cloud services and configurations could help to reduce the
oratory without access to an on-premise computational infras- run time and cost for the whole analysis.
tructure. 6. Use the instance local disks for computing instead of the

default network devices.
7. Use transitory instances to reduce the cost only if
Our recommendations for best practices using public cloud there are no timeframe restrictions for completing the
providers for computational biology experiments are as follows: analysis.

Best practices

Despite differences in the configuration and set-up of batch sys-
tems between GCP and AWS, the cost and processing time are
similar for the type of workflow we designed for our experi-
ment. In our opinion, for BLAST-based workflows, the choice of a
cloud platform is not dependent on the workflow but, rather, on
the specific details of the cloud provider. These specific details
are related to the accessibility of each cloud platform for insti-
tutional use, the technical knowledge of the specific platform
services, and/or the availability of open source frameworks to
deploy the workflows on a specific cloud provider.

We found that GCP is easier to use because it only requires
a JSON file for batch processing whereas AWS needs a complete
set-up of all batch system components. GCP is more suitable for
daily data analysis work in research laboratories. On the other
hand, AWS, once properly configured, is more efficient in terms
of machine creation, set-up, and release. The ECS can reuse in-
stances, reducing the cost for large data analysis projects. AWS
is more suitable for large data analysis groups to establish a set
of queues and compute environments for multiple pipelines.

Project name: Cloud comparison for Transcript-Annotation data
analysis pipeline
Project home page: https://github.com/ncbi/cloud-transcriptom
e-annotation
Operating system(s): Linux and MacOS
Programming languages: Python, BASH
Other requirements: Conda/Bioconda, Jupyter Notebook
CWL workflow: https://github.com/ncbi/cloud-transcriptome-
annotation/blob/master/bin/cwl-ngs-workflows-cbb/workflo
ws/Annotation/transcriptome_annotation.cwl
CWL Viewer: https://w3id.org/cwl/view/git/0d8650062673c8af2c
1139c557afc4c3d6alb53c/bin/cwl-ngs-workflows-cbb/workflo
ws/Annotation/transcriptome_annotation.cwl

RRID: RRID:SCR_019268

Snapshots of the GitHub archive are available in the GigaScience
GigaDB repository [52].

AMI: Amazon Machine Images (AMI); API: application program
interface; AWS: Amazon Web Services; BLAST: Basic Local Align-
ment Search Tool; CDD: Conserved Domain Database; CPU: cen-
tral processing unit; CWL: Common Workflow Language; ECS:
Elastic Container Service; GCP: Google Cloud Platform; JSON:
JavaScript Object Notation; NCBI: National Center for Biotech-
nology Information; NIH: National Institutes of Health; ORF:
open reading frame; RAM: random access memory; SRA: Se-
quence Read Archive; SSD: solid-state drive; STRIDES: Science
and Technology Research Infrastructure for Discovery, Experi-
mentation, and Sustainability; VPC: Virtual Private Cloud.

The authors declare that they have no competing interests.

This work was supported by the Intramural Research Program
of the National Library of Medicine, National Center for Biotech-
nology Information, at the National Institutes of Health.

All authors contributed to the design of the annotation work-
flow and the manuscript preparation. R.V.A. designed, imple-
mented, and executed all cloud environments, configurations,
and experiments. All authors read and approved all versions of
the manuscript.

We thank NCBI BLAST Group: Christiam Camacho, Vadim Za-
lunin, Greg Boratyn, Ryan Connor, and Tom Madden for their
support with BLAST; and NCBI Cloud and System Group: Al Gra-
eff, Brian Koser, Andrew Arensburger, Brad Plecs, Ron Patterson,
and Dima Beloslyudtsev for their support with the cloud plat-
forms.

1. NIH STRIDES Initiative. https://cloud.cit.nih.gov/.Accessed
19 January, 2021

2. Langmead B, Nellore A. Cloud computing for genomic data
analysis and collaboration. Nat Rev Genet 2018;19(4):208-19.

3. SRAin the Cloud. https://www.ncbi.nlm.nih.gov/sra/docs/sr
a-cloud/. Accessed 19 January, 2021

4. Official NCBI BLAST+ Docker Image Documentation. https://
github.com/ncbi/blast_plus_docs. Accessed 19 January, 2021

5. Sayers EW, Agarwala R, Bolton EE, et al. Database resources
of the National Center for Biotechnology Information. Nu-
cleic Acids Res 2020;48(D1):D9-D16.

6. Genome information by organism https://www.ncbi.nlm.nih
.gov/genome/browse/#!/eukaryotes/. Accessed 30 June 2020.

7. Al-Qurainy F, Alshameri A, Gaafar A-R, et al. Compre-
hensive Stress-based de novo transcriptome assembly and
annotation of guar (Cyamopsis tetragonoloba (L.) Taub.):
an important industrial and forage crop. Int J Genomics
2019;2019:7295859.

8. Chabikwa TG, Barbier FF, Tanurdzic M, et al. De novo tran-
scriptome assembly and annotation for gene discovery in av-
ocado, macadamia and mango. Sci Data 2020;7(1):9.

9. Ji P, Liu G, Xu J, et al. Characterization of common
carp transcriptome: sequencing, de novo assembly, an-
notation and comparative genomics. PLoS One 2012;7(4):
e35152.

10. Torre S, Tattini M, Brunetti C, et al. RNA-seq analysis of
Quercus pubescens leaves: de novo transcriptome assembly,
annotation and functional markers development. PLoS One
2014;9(11):e112487.

11. Carruthers M, Yurchenko AA, Augley JJ, et al. De novo tran-
scriptome assembly, annotation and comparison of four eco-
logical and evolutionary model salmonid fish species. BMC
Genomics 2018;19(1):32.

12. Haas BJ, Papanicolaou A, Yassour M, et al. De novo tran-
script sequence reconstruction from RNA-seq using the Trin-
ity platform for reference generation and analysis. Nat Pro-
toc 2013;8(8):1494-512.

https://github.com/ncbi/cloud-transcriptome-annotation
https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/bin/cwl-ngs-workflows-cbb/workflows/Annotation/transcriptome_annotation.cwl
https://w3id.org/cwl/view/git/0d8650062673c8af2c1139c557afc4c3d6a1b53c/bin/cwl-ngs-workflows-cbb/workflows/Annotation/transcriptome_annotation.cwl
https://scicrunch.org/resolver/RRID:
https://cloud.cit.nih.gov/
https://www.ncbi.nlm.nih.gov/sra/docs/sra-cloud/
https://github.com/ncbi/blast_plus_docs
https://www.ncbi.nlm.nih.gov/genome/browse/#!/eukaryotes/

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.
25.

26.

27.

28.

29.

30.

31.

32.

Bryant DM, Johnson K, DiTommaso T, et al. A tissue-mapped
axolotl de novo transcriptome enables identification of limb
regeneration factors. Cell Rep 2017;18(3):762-76.

Vera Alvarez R, Medeiros Vidal N, Garzén-Martinez GA, et al.
Workflow and web application for annotating NCBI Bio-
Project transcriptome data. Database (Oxford) 2017;2017,
doi:10.1093/database/bax008.

Gamez RM, Rodriguez F, Vidal NM, et al. Banana (Musa acumi-
nata) transcriptome profiling in response to rhizobacteria:
Bacillus amyloliquefaciens Bs006 and Pseudomonas fluorescens
Ps006. BMC Genomics 2019;20(1):378.

Altschul SF, Gish W, Miller W, et al. Basic Local Alignment
Search Tool.] Mol Biol 1990;215(3):403-10.

Ashburner M, Ball CA, Blake JAThe Gene Ontology Consor-
tium, et al., The Gene Ontology Consortium Gene ontology:
tool for the unification of biology.. Nat Genet 2000;25(1):25-9.
Peters K, Bradbury J, Bergmann S, et al. PhenoMeNal: pro-
cessing and analysis of metabolomics data in the cloud. Gi-
gascience 2019;8(2), doi:10.1093/gigascience/giy149.

Belyeu JR, Nicholas TJ, Pedersen BS, et al. SV-plaudit:
A cloud-based framework for manually curating thou-
sands of structural variants. Gigascience 2018;7(7),
doi:10.1093/gigascience/giy064.

Kiar G, Gorgolewski KJ, Kleissas D, et al. Science in the cloud
(SIC): a use case in MRI connectomics. Gigascience 2017;6(5),
doi:10.1093/gigascience/gix013.

Hiltemann S, Mei H, de Hollander M, et al. CGtag: complete
genomics toolkit and annotation in a cloud-based Galaxy. Gi-
gascience 2014;3(1), doi:10.1186/2047-217X-3-1.

Ohta T, Tanjo T, Ogasawara O. Accumulating computa-
tional resource usage of genomic data analysis workflow to
optimize cloud computing instance selection. Gigascience
2019;8(4), doi:10.1093/gigascience/giz052.

DNAnexus. www.dnanexus.com. Accessed 19 January, 2021.
DNASTAR. www.dnastar.com. Accessed 19 January, 2021.
SevenBridges. www.sevenbridges.com. Accessed 19 January,
2021.

Haas B, Papanicolaou A. TransDecoder (Find Coding Regions
Within Transcripts). https://github.com/TransDecoder/Tran
sDecoder/wiki. Accessed 7 December 2020.

Yang M, Derbyshire MK, Yamashita RA, et al. NCBI’s con-
served domain database and tools for protein domain anal-
ysis. Curr Protoc Bioinformatics 2020;69(1):e90.

Peter A, Crusoe MR, Tijani¢ N, et al. Common Workflow Lan-
guage, v1.0. 2016. https://www.commonwl.org/. Accessed 7
December 2020.

NCBI cloud transcriptome annotation https://github.com/n
cbi/cloud-transcriptome-annotation/blob/master/bin/cwl
-ngs-workflows-cbb/workflows/Annotation/transcriptom
e_annotation.cwl. Accessed 19 January, 2021

Pertea M. The human transcriptome: an unfinished story.
Genes (Basel) 2012;3(3):344-60.

Container Registry. https://cloud.google.com/container-reg
istry. Accessed 19 January, 2021.

NCBI cloud transcriptome annotation https://github.com/n
cbi/cloud-transcriptome-annotation/tree/master/config/g
cp/docker. Accessed 19 January, 2021.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Vivian], Rao AA, Nothaft FA, et al. Toil enables reproducible,
open source, big biomedical data analyses. Nat Biotechnol
2017;35(4):314-6.

Kotliar M, Kartashov AV, Barski
a lightweight pipeline manager
mon Workflow Language.

doi:10.1093/gigascience/giz084.
Arvados. https://arvados.org/. Accessed 19 January, 2021.

Reana Reproducible research data analysis platform. http://
reanahub.io/. Accessed 19 January, 2021.

Di Tommaso P, Chatzou M, Floden EW, et al. Nextflow en-
ables reproducible computational workflows. Nat Biotechnol
2017;35(4):316-9.

Bhardwaj V, Heyne S, Sikora K et al. snakePipes: facilitating
flexible, scalable and integrative epigenomic analysis. Bioin-
formatics 2019;35:4757.
Common-workflow-language/cwltool https://github.com/c
ommon-workflow-language/cwltool. Accessed 19 January,
2021.

Workflow:transcriptome_annotation. https://view.commo
nwl.org/workflows/github.com/ncbi/cloud-transcriptome-a
nnotation/blob/master/bin/cwl-ngs-workflows-cbb/workflo
ws/Annotation/transcriptome_annotation.cwl. Accessed 19
January, 2021.

Cloud Life Sciences. https://cloud.google.com/life-sciences.
Accessed 19 January, 2021

NCBI cloud-transcriptome-annotation ~ GCP. https:
//github.com/ncbi/cloud-transcriptome-annotation/blo
b/master/config/gcp/pipeline.json. Accessed 19 January,
2021

AWS Batch. https://aws.amazon.com/batch/. Accessed 19
January, 2021.

NCBI cloud-transcriptome-annotation =~ AWS. https:
//github.com/ncbi/cloud-transcriptome-annotation/tre
e/master/config/aws. Accessed 19 January, 2021.

Griining B, Dale R, Sjodin A, et al. Bioconda: sustainable and
comprehensive software distribution for the life sciences.
Nat Methods 2018;15(7):475-6.

da Veiga Leprevost F, Griining BA, Alves Aflitos S, et al.
BioContainers: an open-source and community-driven
framework for software standardization. Bioinformatics
2017;33(16):2580-2.

Shen H. Interactive notebooks: sharing the code. Nature
2014;515(7525):151-2.

Perkel JM. Why Jupyter is data scientists’ computational
notebook of choice. Nature 2018;563(7729):145-6.

Cloud SDK. https://cloud.google.com/sdkAccessed 19 Jan-
uary, 2021.

AWS Command Line Interface. https://aws.amazon.com/cli
/Accessed 19 January, 2021.

Grabherr MG, Haas BJ, Yassour M, et al. Full-length tran-
scriptome assembly from RNA-Seq data without a reference
genome. Nat Biotechnol 2011;29(7):644-52.

Vera-Alvarez R, Marino-Ramirez L, Landsman D. Supporting
data for “Transcriptome annotation in the cloud: complexity,
best practices and cost.” GigaScience Database 2020, http://
dx.doi.org/10.5524/100847.

A. CWL-Airflow:
supporting Com-
Gigascience 2019;8(7),

http://www.dnanexus.com
http://www.dnastar.com
http://www.sevenbridges.com
https://github.com/TransDecoder/TransDecoder/wiki
https://www.commonwl.org/
https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/bin/cwl-ngs-workflows-cbb/workflows/Annotation/transcriptome_annotation.cwl
https://cloud.google.com/container-registry
https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/bin/cwl-ngs-workflows-cbb/workflows/Annotation/transcriptome_annotation.cwl
https://github.com/ncbi/cloud-transcriptome-annotation/tree/master/config/gcp/docker
https://arvados.org/
http://reanahub.io/
https://github.com/common-workflow-language/cwltool
https://view.commonwl.org/workflows/github.com/ncbi/cloud-transcriptome-annotation/blob/master/bin/cwl-ngs-workflows-cbb/workflows/Annotation/transcriptome_annotation.cwl
https://cloud.google.com/life-sciences
https://github.com/ncbi/cloud-transcriptome-annotation/blob/master/config/gcp/pipeline.json
https://aws.amazon.com/batch/
https://github.com/ncbi/cloud-transcriptome-annotation/tree/master/config/aws
https://cloud.google.com/sdk
https://aws.amazon.com/cli/
http://dx.doi.org/10.5524/100847

