Skip to main content
. 2021 Jan 15;11:624137. doi: 10.3389/fpsyg.2020.624137

Table 3.

LOSO accuracies for each of the classifiers. The best-performing models for each feature type are red.

Features Dim. Red. (n_comp) LDA DT 1NN SVM RF
LIWC None 0.741 0.593 0.620 0.833 0.778
LDA (1) 0.741 0.750 0.750 0.731 0.750
PCA (20) 0.778 0.620 0.704 0.787 0.759
BERT None 0.713 0.676 0.787 0.796 0.769
LDA (1) 0.713 0.657 0.667 0.713 0.657
PCA (2) 0.630 0.648 0.602 0.546 0.694
PCA (20) 0.750 0.713 0.722 0.769 0.796
BERT + LIWC None 0.750 0.657 0.667 0.824 0.806
LDA (1) 0.750 0.731 0.731 0.741 0.731
PCA (20) 0.824 0.620 0.657 0.824 0.796
BERT + CLAN None 0.778 0.657 0.759 0.824 0.750
LDA (1) 0.778 0.769 0.769 0.787 0.769
PCA (20) 0.824 0.630 0.657 0.898 0.778
BERT + LIWC + CLAN None 0.593 0.731 0.713 0.815 0.806
LDA (1) 0.593 0.611 0.611 0.593 0.611
PCA (20) 0.833 0.731 0.713 0.815 0.787
word vectors None 0.759 0.731 0.694 0.259 0.694
LDA (1) 0.759 0.741 0.731 0.759 0.759
PCA (2) 0.676 0.620 0.565 0.259 0.620
PCA (70) 0.796 0.648 0.759 0.796 0.787
i-vectors (VoxCeleb) None 0.574 0.423 0.454 0.574 0.500
LDA (1) 0.574 0.500 0.500 0.574 0.500
PCA (2) 0.491 0.500 0.602 0.519 0.491
PCA (10) 0.528 0.556 0.546 0.491 0.528
i-vectors (Pitt) None 0.528 0.491 0.500 0.509 0.593
LDA (1) 0.528 0.537 0.537 0.537 0.537
PCA (2) 0.463 0.500 0.528 0.343 0.546
PCA (20) 0.565 0.537 0.528 0.565 0.565
i-vectors (VoxCeleb + Pitt) None 0.528 0.509 0.500 0.528 0.556
LDA (1) 0.528 0.519 0.519 0.528 0.519
PCA (20) 0.519 0.528 0.574 0.472 0.620
x-vectors (VoxCeleb) None 0.583 0.620 0.509 0.546 0.574
LDA (1) 0.583 0.593 0.593 0.583 0.593
PCA (2) 0.472 0.537 0.491 0.454 0.491
PCA (40) 0.639 0.583 0.528 0.639 0.583
x-vectors (Pitt) None 0.546 0.546 0.472 0.528 0.481
LDA (1) 0.546 0.500 0.500 0.537 0.500
PCA (40) 0.537 0.481 0.435 0.528 0.491
x-vectors (VoxCeleb + Pitt) None 0.639 0.602 0.519 0.620 0.509
LDA (1) 0.639 0.509 0.509 0.630 0.509
PCA (40) 0.657 0.574 0.546 0.593 0.593