Skip to main content
. 2021 Jan 15;11:624137. doi: 10.3389/fpsyg.2020.624137

Table 5.

LOSO RMSE scores for each of the classifiers. The results for the best-performing models for each feature type are red.

Features Dim. Red. (n_comp) LR DT 1NN SVM GradBoost
LIWC None 10.067 5.766 5.626 6.083 4.014
LDA (23) 8.928 8.738 5.224 6.195 7.654
PCA (20) 4.436 5.383 5.364 6.057 4.640
BERT None 5.111 5.984 4.953 6.111 5.407
LDA (23) 5.111 6.571 5.805 6.275 6.701
PCA (2) 6.304 5.628 5.851 6.187 6.034
BERT + LIWC None 9.475 4.956 4.752 5.919 4.050
LDA (23) 8.515 8.038 5.285 6.821 7.234
PCA (20) 4.574 5.228 5.680 5.165 4.509
BERT + CLAN None 4.810 6.265 4.728 6.009 4.100
LDA (23) 4.810 5.700 4.988 6.173 5.447
PCA (20) 3.991 5.459 4.842 5.254 3.969
BERT + LIWC + CLAN None 13.877 5.533 4.420 5.846 4.190
LDA (23) 5.243 5.398 5.482 6.477 5.031
PCA (20) 3.774 5.701 5.023 4.966 4.201
word vectors None 5.294 5.467 5.204 6.146 5.684
LDA (23) 5.294 5.158 4.967 5.936 5.228
PCA (2) 6.359 6.061 5.958 6.148 6.241
PCA (70) 5.419 5.561 4.981 6.177 5.516
i-vectors (VoxCeleb) None 6.323 6.477 6.612 6.444 6.461
LDA (23) 6.323 6.366 6.384 6.279 6.443
PCA (2) 6.576 6.431 6.361 6.290 6.421
PCA (10) 6.412 6.507 6.524 6.265 6.264
i-vectors (Pitt) None 6.545 6.850 6.239 6.281 6.513
LDA (23) 6.545 6.524 6.307 6.244 6.499
PCA (2) 6.624 6.606 6.484 6.323 6.598
PCA (20) 6.523 6.575 6.577 6.207 6.511
i-vectors (VoxCeleb + Pitt) None 6.298 6.363 6.545 6.243 6.445
LDA (23) 6.298 6.399 6.110 6.231 6.459
PCA (20) 6.502 6.558 6.655 6.256 6.475
x-vectors (VoxCeleb) None 6.424 6.400 6.208 6.400 6.369
LDA (23) 6.424 6.478 6.493 6.162 6.413
PCA (2) 6.618 6.767 6.531 6.381 6.634
PCA (40) 6.246 6.320 6.517 6.329 6.378
x-vectors (Pitt) None 6.310 6.534 6.445 6.405 6.504
LDA (23) 6.310 6.073 6.403 6.245 6.318
PCA (40) 6.471 6.456 6.181 6.369 6.474
x-vectors (VoxCeleb + Pitt) None 6.385 6.268 6.394 6.401 6.386
LDA (23) 6.385 6.379 6.230 6.170 6.442
PCA (40) 6.296 6.433 6.411 6.288 6.467