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In recent years, radiology has shifted toward more 
quantitative analysis of imaging to aid medical deci-

sion making. Among the most prominent techniques 
leading this shift is radiomics, which is defined by the 
extraction of quantitative features from a region of in-
terest (ROI) on medical images (1). These quantitative 
descriptors can then be used to build predictive mod-
els for clinical variables, such as molecular markers, 
treatment response, and prognosis (2). This approach 
has the advantage that, in comparison to biopsies, fea-
tures can reflect the full diversity of the ROI and fac-
tors such as tumor heterogeneity can be captured more 

easily and in a noninvasive manner (3,4). However, if 
these models are used for patient stratification with 
potential treatment decisions based on their predicted 
outcomes, the features used must fulfill two criteria: 
repeatability and reproducibility. Repeatability refers 
to “variability of the quantitative image biomarker 
when repeated measurements are acquired on the same 
experimental unit under identical or nearly identical 
conditions” to determine the measurement error (5). 
Reproducibility refers to “variability in the quantitative 
image biomarker measurements associated with using 
the imaging instrument in real-world clinical settings,” 
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Purpose:  To determine the influence of preprocessing on the repeatability and redundancy of radiomics features extracted using a 
popular open-source radiomics software package in a scan-rescan glioblastoma MRI study.

Materials and Methods:  In this study, a secondary analysis of T2-weighted fluid-attenuated inversion recovery (FLAIR) and T1-weighted 
postcontrast images from 48 patients (mean age, 56 years [range, 22–77 years]) diagnosed with glioblastoma were included from two 
prospective studies (ClinicalTrials.gov NCT00662506 [2009–2011] and NCT00756106 [2008–2011]). All patients underwent two 
baseline scans 2–6 days apart using identical imaging protocols on 3-T MRI systems. No treatment occurred between scan and rescan, 
and tumors were essentially unchanged visually. Radiomic features were extracted by using PyRadiomics (https://pyradiomics.readthedocs.
io/) under varying conditions, including normalization strategies and intensity quantization. Subsequently, intraclass correlation coef-
ficients were determined between feature values of the scan and rescan.

Results:  Shape features showed a higher repeatability than intensity (adjusted P , .001) and texture features (adjusted P , .001) for 
both T2-weighted FLAIR and T1-weighted postcontrast images. Normalization improved the overlap between the region of interest 
intensity histograms of scan and rescan (adjusted P , .001 for both T2-weighted FLAIR and T1-weighted postcontrast images), ex-
cept in scans where brain extraction fails. As such, normalization significantly improves the repeatability of intensity features from T2-
weighted FLAIR scans (adjusted P = .003 [z score normalization] and adjusted P = .002 [histogram matching]). The use of a relative 
intensity binning strategy as opposed to default absolute intensity binning reduces correlation between gray-level co-occurrence matrix 
features after normalization.

Conclusion:  Both normalization and intensity quantization have an effect on the level of repeatability and redundancy of features, em-
phasizing the importance of both accurate reporting of methodology in radiomics articles and understanding the limitations of choices 
made in pipeline design.

Supplemental material is available for this article.
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Materials and Methods

Study Population
This is a secondary analysis of prospectively collected data 
from two clinical trials (ClinicalTrials.gov ID NCT00662506 
and NCT00756106) at Massachusetts General Hospital and 
Dana-Farber Cancer Institute (14). All patients underwent the 
same imaging protocol, and both studies were approved by the 
institutional review board. A total of 54 adult patients (mean 
age, 57 years [age range, 22–77 years]; 33 men, 21 women) 
were included in the initial evaluation. Patients received either 
chemoradiation with cediranib (NCT00662506) or standard 
chemoradiation (NCT00756106). In addition to standard eli-
gibility criteria, all patients were required to have a contrast-en-
hancing tumor of at least 1 cm in diameter. Patients underwent 
two pretreatment scans 2–6 days apart (mean, 3.7 days apart). 
Patients for whom both scans were not available were excluded 
from this study, resulting in a cohort size of 48 (mean age, 56 
years [age range, 22–77 years]; 27 men, 21 women). The pa-
tients received no treatment between scan and rescan. None of 
the tumors had clinically significant changes between scans, as 
measured by the change in contrast-enhancing tumor volume 
or fluid-attenuated inversion recovery (FLAIR) hyperintensity.

MRI Scans
Scan and rescan images were acquired by using an identical 
imaging protocol and were obtained with the same model of 
3.0-T MRI system (TimTrio; Siemens Medical Solutions, Mal-
vern, Pa) at the same research institution. A total of 40 of 48 
patients underwent both scan and rescan using identical MRI 
scanners. To improve scan-to-scan reproducibility, AutoAlign 
(Siemens) was used to ensure automatic alignment of the slice 
positions in a standard reproducible way for each scan. Further 
analysis was limited to axial T1-weighted postcontrast and ax-
ial T2-weighted FLAIR sequences. Axial T2-weighted FLAIR 
images were acquired with a repetition time of 10 000 msec, an 
echo time of 70 msec, 5-mm section thickness, 1-mm intersec-
tion gap, 0.43-mm in-plane resolution, 23 sections, and a 512 
3 512 matrix. Axial T1-weighted postcontrast images were ob-
tained after the injection of a bolus of 0.1 mmol per kilogram 
of body weight of Magnevist (Bayer Healthcare, Warrendale, 
Pa) with repetition time of 600 msec, an echo time of 12 msec, 
5-mm section thickness, 1-mm intersection gap, 0.43-mm in-
plane resolution, 23 sections, and a 512 3 512 matrix.

Segmentation, Annotation, and Preprocessing
Segmentations of enhancing lesions on T1-weighted postcon-
trast sequences and areas of T2 abnormality on T2-weighted 
FLAIR sequences were performed by expert raters (E.R.G., 
neuro-oncologist with 12 years of experience; M.C.P., neurora-
diologist with 11 years of experience) blinded to patient iden-
tity, order of scans, and patient treatment status. Both scans of 
each patient were annotated by the same rater. After segmenta-
tion, each patient’s T1-weighted postcontrast sequences were 
registered to corresponding T2-weighted FLAIR sequences 
using the BRAINSfit module in 3D Slicer (https://www.slicer.

such as different settings of a software package attempting 
to identify and separate measurement errors from the repro-
ducibility conditions (5).

Both repeatability and reproducibility of radiomic features 
have been described to be sensitive to various factors, such 
as image acquisition, resolution, reconstruction, preprocess-
ing, and the software package used to extract them (6). Most 
published studies have described repeatability on CT (2,6–8). 
In contrast to CT, absolute voxel intensities on MRI do not 
have tissue-specific values, and changing signal intensities can 
leave tissue contrast unaltered (9). Therefore, intensity nor-
malization might be needed to correct for these changes in 
intensity to make features comparable between and within 
patients, especially when scanned under slightly different 
conditions (8).

Relatively few studies have examined the repeatability and 
reproducibility of radiomic features at contrast-enhanced 
MRI (11–13). One potential reason is the challenge with 
test-retest studies that require the use of contrast agents. 
Of the few studies that have examined this topic, very little 
has been reported on the underlying causes for the lack of 
robustness of features. In a recent study on the repeatability 
of radiomic features for small prostate tumors, Schwier et al 
(11) showed that different features extracted with different 
MRI sequences might require different settings to increase 
their repeatability. However, this study only evaluated the 
effect of preprocessing and feature extraction configurations 
on the intraclass correlation coefficient (ICC) for features 
extracted from a small ROI and for a relatively small data-
set of 15 patients. In our study, we build on this previous 
work, examining repeatability and feature redundancy in a 
unique scan-rescan dataset of patients with newly diagnosed 
glioblastoma, with the aim of understanding some of the 
reasons for the lack of repeatability of radiomic features.

Abbreviations
FLAIR = fluid-attenuated inversion recovery, GLCM = gray-level 
co-occurrence matrix, ICC = intraclass correlation coefficient, JSD 
= Jensen-Shannon divergence, ROI = region of interest

Summary
Radiomic feature extraction from MRI can be highly variable, and al-
though preprocessing can improve the repeatability of these features, 
there is a lack of consistency in performance improvement across 
feature types and sequences; identification of repeatable and informa-
tive features should be a prerequisite in radiomics studies.

Key Points
	n Intensity and texture (gray-level co-occurrence matrix) features 

from MRI show low repeatability on a scan-rescan dataset of 
patients with glioblastoma using the default settings for feature 
extraction.

	n Normalization can improve the overlap between the region of in-
terest intensity histograms of scan and rescan.

	n Intensity quantization settings must be chosen carefully; lower 
numbers of quantization bins result in higher correlation between 
texture features, indicating higher redundancy.

http://radiology-ai.rsna.org
https://www.slicer.org/
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R statistical software (version 3.5.2; R Foundation for Statistical 
Computing) “IRR” package (version 0.84). Features were then 
grouped into shape (describing size and shape), intensity, and 
texture features, as proposed by Kalpathy-Cramer et al (21) and 
following the image biomarker standardization initiative classes 
for feature groups for further analysis (22). To determine asso-
ciation between features, we calculated the pairwise Spearman 
correlation coefficient between features for all patients (one scan) 
and took the absolute value to reflect the strength of the correla-
tion. For comparison of the ROI intensity distributions between 
scan and rescan, we chose the maximum range of voxel values of 
both images and divided it into 100 bins. These bins were then 
used to derive the intensity histograms for both visits. We used 
these histograms to calculate the Jensen-Shannon divergence 
(JSD) between visits. On the basis of the Kullback-Leibler di-
vergence, the JSD has the advantage of being both symmetric 
and an unbiased measure of the similarity between two prob-
ability distributions (23). Statistical significance between feature 
groups was assessed using a Kruskal-Wallis test followed by post 
hoc pairwise Dunn multiple-comparisons tests with Bonferroni 
correction to determine the relationship between the individual 
means. Analysis of statistical differences between normalization 
approaches was performed with the paired Wilcoxon test with 
respect to the chosen baseline (no normalization) and Bonferroni 
correction for multiple comparisons. The significance threshold 
for adjusted P values was .05. Statistical analysis was performed 
using R statistical software (version 3.5.2).

Results

Repeatability of Feature Extraction from Unnormalized MRI
First, we examined the repeatability of shape, intensity, and 
texture features using the PyRadiomics default settings (no 
normalization, intensity quantization with constant bin width 
set to 10). Figure 1 shows the distribution of the ICC scores for 
each feature group for both sequences. The ICC is computed 
based on the full study population. For both sequences, purely 
segmentation-dependent features in the shape group are highly 
repeatable between the scan and rescan, with a median ICC of 
0.98 (range, 0.88–0.99) for T2-weighted FLAIR images and 
0.96 (range, 0.78–0.98) for T1-weighted postcontrast images. 
Features in the intensity and texture feature groups, which de-
pend on voxel intensity values, show low ICCs and high vari-
ability in the ICCs within the groups for both sequences, with 
median ICC values for T2-weighted FLAIR and T1-weighted 
postcontrast images of 0.60 (range, 0.38–0.84) and 0.71 
(range, 0.36–0.83), respectively, for intensity, and 0.68 (range, 
0.10–0.94) and 0.78 (range, 0.48–0.86), respectively, for tex-
ture features. We observed differences in the ICC distribution 
for T2-weighted FLAIR and T1-weighted postcontrast images, 
respectively, between shape and intensity (P , .001 and , 
.001, adjusted for three comparisons) and shape and texture 
features (P , .001 and , .001, adjusted for three compari-
sons) on the pairwise Dunn test. Accordingly, we assessed how 
the repeatability of features in the intensity and texture groups 
that are calculated based on voxel intensities can be improved.

org/) (15,16). The N4 bias-correction algorithm was applied to 
all images using the Nipype (Neuroimaging in Python: Pipe-
lines and Interfaces) Python package (version 1.1.7; http:nipy.
org/nipype) (17). Whole-brain extraction was performed on 
T1-weighted postcontrast images using the ROBEX (RObust 
Brain EXtraction, https://www.nitrc.org/projects/robex) system 
(18), and the resulting brain mask was applied to T2-weighted 
FLAIR images.

Normalization of input images was performed as part of the 
feature extraction (built-in z score normalization) or by using a 
histogram-matching technique as a separate step before feature 
extraction. The built-in normalization normalizes each input 
volume such that the mean of the voxel intensity distribution 
is centered at zero with unit variance (z score normalization). 
Histogram matching of the non-ROI region is a common 
normalization technique in radiomics (19). In our study, we 
implemented histogram matching using the method described 
by Nyúl and Udupa (20), in which a piecewise linear transfor-
mation is applied such that the histogram of a source image is 
matched to that of a chosen reference image. A randomly chosen 
patient was used as reference to which the histograms of all other 
patients were matched.

In addition to the aforementioned manual masks, we de-
rived union masks of both visits by registering the rescan to 
the scan and taking the union of both masks separately for 
the enhancing tumor ROI on T1-weighted postcontrast im-
ages and total tumor ROI on T2-weighted FLAIR images. For 
feature extraction, these masks were then registered back to the 
nonregistered images.

Radiomics Software
Radiomics features were extracted using the PyRadiomics 
open-source Python package (version 2.1.0; https://pyradiomics.
readthedocs.io/) (7). Features for the scan and rescan were ex-
tracted separately from both T1-weighted postcontrast and 
T2-weighted FLAIR images. Whenever indicated, the package 
default image normalization was applied to brain-extracted im-
ages as part of the feature extraction process (z score normaliza-
tion), and all features defined as default by PyRadiomics were 
extracted from three-dimensional tumor volumes. We limited 
our analysis of texture features to features derived from gray-
level co-occurrence matrices (GLCMs) and excluded the fol-
lowing features from further analysis: compactness1, compact-
ness2, and spherical disproportion are perfectly correlated with 
sphericity; and homogeneity1 and homogeneity2 are directly 
correlated with inverse difference moment. For each experi-
mental setting and sequence (T1-weighted postcontrast and 
T2-weighted FLAIR) we extracted 13 shape, 17 intensity, and 
23 texture features.

Statistical Analysis
For each feature extracted from both T1-weighted postcontrast 
and T2-weighted FLAIR sequences, we calculated the ICC be-
tween the feature value extracted from the scan and rescan over 
the sample of 48 patients. We used a two-way model of the ICC 
(unit, single; type, consistency; 95% CI) as implemented in the 

https://www.slicer.org/
https://nipype.readthedocs.io/en/latest/
https://nipype.readthedocs.io/en/latest/
https://www.nitric.org/projects/robex
https://pyradiomics.readthedocs.io/
https://pyradiomics.readthedocs.io/
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C, shows the ROI intensity histograms for both scans before 
normalization (column 1) and the change in overlap between 
the histograms owing to normalization (columns 2 and 3). Fig-
ure 2, A, illustrates the effect of normalization techniques for a 
representative case.

In some cases, normalization caused an increase in JSD be-
tween scan and rescan instead of the expected decrease. Failure 
cases were defined as cases for which normalization resulted in 
an increase in JSD for both T1-weighted postcontrast and T2-
weighted FLAIR sequences (this analysis was constrained to z 
score normalization). Six of 48 patients’ scans were identified 
as failure cases. Visual assessment of these cases revealed that 
for all of them, the brain extraction step was not performed 
properly. We identified two patterns: (a) either too aggressive 
or (b) total or partial failed brain extraction (leaving either the 
full skull or parts of the skull behind). The latter mode of fail-
ure is illustrated in Figure 2, C and D, with representative axial 
slices of T2-weighted FLAIR and T1-weighted postcontrast 
scan and rescan (Fig 2, D), illustrating the brain extraction fail-
ure patterns.

We therefore additionally examined the JSD distributions of 
images that were normalized without previous brain extraction. 
As shown in Figure 3, the JSD values of the scan and rescan 
ROI intensity histograms of images normalized without previ-
ous brain extraction were not significantly different from brain-
extracted and normalized images.

Influence of voxel intensity quantization on feature correla-
tion.—In a manner similar to how intensity features describe 
the distribution of intensity values in the ROI, GLCM features 
describe the GLCM. For computation of the GLCM, intensity 
values first need to be quantized into discrete intensity ranges. 
This quantization step can be performed using either a defined 
bin width (absolute binning) or a preset number of bins (rela-
tive binning) adapted to the range of intensity values in the 

Effect of Normalization on the Intensity Distribution and 
Intensity Quantization on Within-Scan Feature Correlation

Influence of normalization on the ROI intensity distribution.—
Intensity features describe the distribution of voxel intensity 
values in the segmented region. GLCM features are computed 
on the basis of the GLCM, which represents the relationships 
of the voxel intensities of neighboring voxels in the ROI. Before 
we studied the repeatability of intensity and GLCM features, 
we first assessed the effect of normalization on the ROI inten-
sity histogram of both the scan and the rescan and voxel inten-
sity quantization on the correlation between GLCM features.

The voxel values for MRI are not normalized, and there are 
no tissue-specific intensity ranges, so features based on voxel in-
tensities showed great variability in ICC between scan and res-
can. Therefore, we first studied the effect of normalization on the 
intensity distribution of the segmented tumor region (ROI in-
tensity histogram) by comparing the voxel intensity histograms 
between scan and rescan before turning to the repeatability of 
intensity features. We used (a) the built-in normalization (z score 
normalization over all voxels in the input volume) and (b) his-
togram matching to a reference case. The overlap between histo-
grams was measured by the JSD between the ROI intensity his-
togram of the scan and rescan and the effect of normalization as 
change in JSD before and after normalization for all 48 patients.

For our study population, both normalization techniques 
(z score and histogram normalization of brain-extracted im-
ages) significantly improved the similarity between the histo-
grams, as measured by JSD on T2-weighted FLAIR and T1-
weighted postcontrast images (paired Wilcoxon test against 
the not-normalized baseline without comparisons between the 
normalized groups, adjusted P values for two comparisons, z 
score and histogram matching, respectively, of P , .001 and 
P , .001 on T2-weighted FLAIR images and P = .002 and P 
= .03 on T1-weighted postcontrast images). Figure 2, A and 

Figure 1:  Distribution of intraclass correlation coefficient (ICC) values per feature group under default feature extraction settings. Each boxplot rep-
resents the distribution of one radiomics feature group (shape, intensity, texture) between scan and rescan for the cohort of 48 patients. A, T2-weighted 
fluid-attenuated inversion recovery (T2W-FLAIR). B, T1-weighted (T1W) postcontrast. Features were extracted from nonnormalized images using the 
PyRadiomics default settings (no normalization, constant bin width for intensity quantization).

http://radiology-ai.rsna.org
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on T2-weighted FLAIR images. On the basis of these results, 
for data reported in the following sections, we did not use the 
constant bin width setting; rather, we explicitly set the number 
of intensity value bins for intensity quantization to 256.

Influence of Normalization on the Repeatability of Intensity 
and Texture Features
As described previously, the application of z score normaliza-
tion and histogram matching improved the overlap between the 
ROI intensity histograms of the scan and rescan. Furthermore, 
the previous results highlight the importance of an appropriate 
binning strategy. Building on these results, we examined the 
influence of the normalization on the repeatability of inten-
sity and texture features between scan and rescan using relative 
binning with 256 bins for intensity quantization for features 
extracted from not normalized, z score normalized, and his-
togram-matched scans. For comparison, we also included the 
ICC data computed on features extracted using z score nor-
malization in combination with the default absolute intensity 
quantization setting (constant bin width, 10). The effect of the 

ROI. Assuming the user has normalized the intensities, using 
the default intensity quantization settings as implemented in 
PyRadiomics (constant bin width set to 10) results in nonsen-
sical binning for the computation of the GLCM (ie, all voxel 
intensities are placed into only two bins, as this choice of bin 
width is too coarse for the existing range of voxel values fol-
lowing normalization). Texture features calculated based on 
this GLCM do not capture the true variability in image in-
tensity that is present within the images. This setting results 
in extremely high correlations between texture features (mean 
Spearman correlation coefficient for all features, 0.95) on T1-
weighted postcontrast images. By explicitly specifying the 
number of bins (relative binning) rather than a fixed bin width, 
the aforementioned effect can be avoided. With increasing 
numbers of bins and quantization levels, the overall correlation 
between texture features decreases (mean Spearman correlation 
coefficient for all GLCM features, 0.52 [five bins], 0.47 [64 
bins], and 0.43 [256 bins]; T1-weighted postcontrast imag-
ing), without an adverse effect on the repeatability of these fea-
tures (Fig E1 [supplement]). The same effect can be observed 

Figure 2:  Effect of normalization on the region of interest (ROI) intensity histograms. Intensity histograms of the ROI segmentations from the scan (blue) and rescan (orange) 
of representative cases on both T2-weighted fluid-attenuated inversion recovery (T2W-FLAIR) and T1-weighted (T1W) postcontrast sequences of, A, a representative case 
and, C, a failure case. The first column shows ROI intensity histograms without preprocessing; the second column, after brain extraction and normalization via histogram match-
ing; and the third column, after brain extraction and z score normalization. The overlap between the histograms is quantified by Jensen-Shannon divergence (JSD). B, D, Axial 
sections from the T2-weighted FLAIR and T1-weighted postcontrast scan and rescan after brain extraction of the corresponding cases, A, C, respectively.
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choice of the normalization technique on the ICC between 
both scans for intensity and texture features is presented in Fig-
ure 4 (top row, intensity; bottom row, texture features). The 
ICCs of single features are shown in Figure E2 (supplement) 
for intensity and Figure E3 (supplement) for texture.

Intensity Features
While both normalization techniques lead to an improved 
overlap between the ROI intensity histograms of scan and res-
can for both T2-weighted FLAIR and T1-weighted postcon-
trast sequences, the effect of normalization on the repeatability 
of intensity features varies between the sequences (Fig 4, A and 
B). On T2-weighted FLAIR images (Fig 4, A), both z score 
normalization and histogram matching improved the repeat-
ability of intensity features with respect to the not-normalized 
baseline (relative binning with 256 bins; paired Wilcoxon 
test against the not-normalized baseline without comparisons 
between the normalized groups; adjusted P values for three 
comparisons, P = .003 [z score normalization] and P = .002 
[histogram matching]). On T1-weighted postcontrast images, 
however, neither z score normalization nor histogram match-
ing resulted in a significant effect on the ICC of intensity fea-
tures between scan and rescan (Fig 4, B).

Texture Features
As in the case of intensity features, normalization techniques 
have a different effect on both sequences. For T2-weighted 
FLAIR images, z score normalization did not change the ICC 
distribution of texture features compared with no normaliza-
tion (relative intensity quantization, 256 bins), whereas histo-
gram matching improved the repeatability (paired Wilcoxon 
test against the not-normalized baseline without comparisons 
between the normalized groups; adjusted P = .003 for three 
comparisons) (Fig 4, C). For T1-weighted postcontrast images, 

neither of the normalization techniques improved the repeat-
ability of GLCM features (Fig 4, D). The ICC distribution of 
texture features extracted from z score normalized scans using 
the default bin width setting is presented in the fourth column 
in Figure 4, C and D. The coarse intensity quantization, ef-
fectively reducing the total number of bins to two for the ma-
jority of images, decreases the repeatability of GLCM features 
significantly on both sequences (paired Wilcoxon test, adjusted 
P , .001 for both T2-weighted FLAIR and T1-weighted 
postcontrast).

Independence of Features Extraction Repeatability of the 
ROI
To exclude all segmentation-dependent factors that might 
influence the repeatability of radiomic intensity and texture 
features, we extracted features using the union of the ROI of 
both scan and rescan. However, this approach did not pro-
duce higher ICC values for intensity and texture features (both 
from T2-weighted FLAIR and T1-weighted postcontrast im-
ages) than using manual masks separately defined for scan and 
rescan (one-sided analysis of variance). The ICC distributions 
are illustrated in Figure 5. This finding suggests that the low 
repeatability of intensity and texture features in our study is 
driven by differences in voxel intensities within the ROI be-
tween scan and rescan as opposed to intrarater variability in 
segmentations.

Discussion
In this study, we analyzed the influence of normalization (in-
cluding voxel intensity quantization) on the repeatability of 
radiomic feature extraction from brain MRI (T2-weighted 
FLAIR and T1-weighted postcontrast sequences) using the 
open-source software package PyRadiomics for feature ex-
traction. The high repeatability of shape features, which are 

Figure 3:  Jensen-Shannon divergence (JSD) distributions with and without brain extraction. Distribution of the JSD between the region of interest 
intensity histograms of the scan and rescan for the entire cohort using T2-weighted fluid-attenuated inversion recovery (T2W-FLAIR) (left) and T1-
weighted (T1W) postcontrast (right) for not-normalized, z score–normalized, and histogram-matched images, each with (blue) and without (orange) 
brain extraction performed before normalization. For each normalization approach (no normalization, z score normalization, histogram-matched), the 
absence of brain extraction before normalization did not have a significant effect on the JSD.

http://radiology-ai.rsna.org
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computed exclusively based on the provided manual segmen-
tations (Fig 1) indicates that the segmentations are very con-
sistent between scan and rescan. While it has been reported 
that features are susceptible to variations in manual segmen-
tations (24), we excluded this as a major driver for the low 
repeatability of intensity and texture features in this study 
based on the high consistency of the segmentations. Further-
more, using the same mask to extract radiomic features from 
the scan and rescan to eliminate segmentation effects did not 
result in an improvement in the ICC between visits. This 
serves as additional support to the idea that image acquisi-
tion and patient-related factors have a greater influence on 
the lack of radiomic feature repeatability than intrarater vari-
ability in segmentation between scan and rescan. As such, we 

investigated whether the repeatability of intensity and texture 
features can be improved by application of the appropriate 
normalization technique in combination with an adaptation 
of the intensity quantization strategy.

The dependency of intensity values in MRI on scanner 
properties, image acquisition, and image processing requires 
standardization of the image intensity to enable a comparison 
of features across patients (10). Accordingly, there are many ap-
proaches to normalization of medical imaging, particularly for 
normalization of brain MRI (25). We chose two of the most 
widely used normalization techniques in radiomics pipelines, 
which are z score normalization (built into PyRadiomics) and 
histogram matching to a reference case (26). The optimal in-
tensity normalization technique is expected to result in a good 

Figure 4:  Distribution of intensity and texture intraclass correlation coefficient (ICC) values under different conditions. ICC for, A, B, intensity and, 
C, D, texture features extracted from T2-weighted fluid-attenuated inversion recovery (T2W FLAIR) (left) and T1-weighted (T1W) postcontrast (right) 
using either z score normalization (z-score) or histogram matching (hist-m.) compared with features extracted from not-normalized (no norm) images. 
Significant differences in the feature group mean ICC between feature extraction strategies (paired Wilcoxon test) are indicated with brackets.



8� radiology-ai.rsna.org  n  Radiology: Artificial Intelligence Volume 3: Number 1—2021

Radiomics Repeatability Pitfalls in a Scan-Rescan MRI Study of Glioblastoma

overlap between the intensity histograms of scan and rescan. 
Both normalization techniques significantly improved over-
lap between the ROI intensity histograms of scan and rescan. 
However, we could identify cases in which, because of either too 
aggressive or insufficient brain extraction, normalization efforts 
had an adverse effect (Fig 2, C and D). This is consistent with a 
previous study, which showed that most commonly used brain 
extraction algorithms can fail in the presence of disease (27), 
thereby introducing another factor that can harm standardiza-
tion and intensity normalization efforts.

For cohort-level analysis, we recommend manual auditing 
of the results of automatic brain extraction to ensure that brain 
extraction did not fail. Manual correction of sporadic failures 
might not be needed for cohort-level analyses. However, the 
analysis of individual scans (eg, for treatment stratification) 
might require manual checks of every scan to ensure appro-
priate brain extraction. If necessary, manual correction of the 
automatic brain extraction must be performed to ensure that 
the analysis is not impaired by flawed brain extraction and its 
downstream effects. We could not detect a significant differ-
ence in the JSD of normalized cases with and without brain 
extraction (Fig 3), but we did not examine downstream effects 
on feature repeatability.

Both normalization techniques show better repeatability for 
T2-weighted FLAIR images than for T1-weighted postcon-
trast images. One reason for this is that the repeatability of T1-
weighted postcontrast scans can be complicated by variations in 
contrast application and the timing of image acquisition after 
injection, notwithstanding the controlled research conditions 
under which the scans used in this study were acquired. The 
normalization approaches used in our study do not account for 
these differences, as they are based on the intensity distribution 
of the full input volume, including the contrast-enhancing re-
gion. These findings are consistent with those in He et al (28), 

which showed that variability introduced by contrast enhance-
ment can negatively affect the diagnostic performance of ra-
diomics models on CT.

Additionally, the parameters for feature extraction, especially 
the choice of voxel intensity quantization, can have marked ef-
fects not just on the repeatability of radiomic feature extraction 
but also on the correlation between features (12,13). Features 
that are calculated based on binned or quantized values (eg, 
GLCM features) are sensitive to the choice of this setting. This is 
reflected in the poor ICC for texture features using a bin width 
of 10 on z score normalized images (Fig 4, C and D). Given the 
lack of standardized intensity ranges in MRI, relative binning is 
a more a reasonable choice, as it results in improved repeatability. 

Importantly, the effects of intensity quantization require 
additional examination of the correlation between features. 
Increasing the number of histogram bins after brain extrac-
tion and normalization results in a decrease of the correlation 
between GLCM features within one scan, while having no ad-
verse effect on feature repeatability (data not shown). Highly 
redundant features may have a negative effect on downstream 
predictive pipelines.

There were some limitations to our study. First, we lim-
ited the examination of texture features to GLCM features 
because of the popularity of these descriptors with respect 
to other texture features. Future studies will need to thor-
oughly examine other classes of texture features (eg, Laws 
energy, Gabor) (29,30). Second, features were extracted 
from two-dimensional axial sequences, and differences in 
slice placement can have an additional influence on the re-
peatability of radiomic feature extraction. Moreover, most 
researchers use radiomics features for some task (eg, survival 
analysis, disease diagnosis) to be solved via some machine 
learning model (eg, random forest, support vector machine 
classifier). In this study, we only tested for the repeatability 

Figure 5:  Distribution of intensity and texture intraclass correlation coefficient (ICC) values depending on the region of interest (ROI) definition. 
ICC for intensity and texture features extracted from, A, T2-weighted fluid-attenuated inversion recovery (T2W FLAIR) and, B, T1-weighted (T1W) 
postcontrast using manual ROI masks separately outlined for scan and rescan (blue) or the union of both masks to extract features from the scan as well 
as rescan (orange). There is no statistically significant difference (paired Wilcoxon test) in the ICC distributions between the ROI definitions.
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of features. We did not test whether trained machine learn-
ing models using these radiomic descriptors are repeatable. 
Last, our findings and, therefore, our recommendations, 
may only be valid for radiomic features extracted from 
newly diagnosed and untreated glioblastoma as this was the 
use case in our study.

In summary, our findings that the optimal setting for feature 
extraction may vary from feature group to group (and maybe 
even within the separate groups) are consistent with results pre-
sented by Schwier et al (11) on the repeatability of radiomic fea-
ture extraction from MRI on a dataset of small prostate tumors. 
The extraction of repeatable intensity and GLCM radiomic fea-
tures from MRI requires robust standardized preprocessing and 
careful selection of feature extraction settings. On the basis of 
our results, we recommend using a normalization strategy (es-
pecially for unenhanced sequences) and using relative binning 
strategies to account for varying intensity ranges within images. 
Furthermore, we recommend checking the within-scan cor-
relations between features during feature selection and using a 
higher number of bins to avoid feature redundancy.
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