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Obtaining appropriately annotated data in sufficient 
quantities for effective deep learning (DL) is costly, te-

dious, time-consuming, and often impractical (1–4). For 
example, annotating 1000 images has been estimated to 
require an entire month of full-time work by two expert ra-
diologists (2). Hence, what is lacking and needed for all of 
radiology artificial intelligence is an automated method to 
obtain and annotate radiologic data, during normal work-
flow, from every clinical study that is performed, with no 
additional work by the radiologists.

To accelerate DL in radiology, a variety of annotation 
software tools have been used for object segmentation, 
such as ITKSnap (5) and 3D Slicer (6–8). More recently, 
dedicated software tools for artificial intelligence–intended 
annotation have emerged, such as MD.ai (9), XNAT (10), 
and ePad (11). However, these tools all require manual an-
notation of lesions by mouse clicking and/or dragging (4), 
which is tedious and time-consuming. Another approach 
being employed to annotate images is crowdsourcing, cur-
rently offered by numerous online services (12–14). How-
ever, this inevitably risks compromising patients’ protected 
health information, despite state-of-the-art de-identifica-
tion software (15–17). Additionally, it generally employs 

nonexpert and/or nonradiologist users, often leading to 
incorrect labeling (18) and requires additional time and ef-
fort by imaging experts to improve quality control (19). 
Additionally, all of this needs to be performed in the re-
search setting, which may slow algorithm development 
because of the busy clinical schedules of most radiologists 
who may participate in the research.

Although radiologists in clinical practice often measure 
lesions, in many cases they do not measure all lesions, let 
alone all structures (ie, muscles, organs), while interpreting 
a scan. However, all radiologists do physically look at the 
specific structures they are analyzing and describing. Eye-
tracking technology allows a computer to know precisely 
where, when, and for how long a radiologist is looking at 
a location within an image. Because eye tracking provides 
this information without impeding the radiologist’s view-
ing of a monitor, it can automatically harness expert-la-
beled imaging data during routine clinical interpretation. 
The vital link to harnessing eye tracking for image labeling 
is to use the other activity that radiologists perform as they 
view images: they dictate what they see, usually just when 
they see it, by using a microphone or dictaphone. The au-
dio input is processed in real time by speech-recognition 
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Purpose: To generate and assess an algorithm combining eye tracking and speech recognition to extract brain lesion location labels au-
tomatically for deep learning (DL).

Materials and Methods: In this retrospective study, 700 two-dimensional brain tumor MRI scans from the Brain Tumor Segmentation 
database were clinically interpreted. For each image, a single radiologist dictated a standard phrase describing the lesion into a micro-
phone, simulating clinical interpretation. Eye-tracking data were recorded simultaneously. Using speech recognition, gaze points cor-
responding to each lesion were obtained. Lesion locations were used to train a keypoint detection convolutional neural network to find 
new lesions. A network was trained to localize lesions for an independent test set of 85 images. The statistical measure to evaluate our 
method was percent accuracy.

Results: Eye tracking with speech recognition was 92% accurate in labeling lesion locations from the training dataset, thereby demon-
strating that fully simulated interpretation can yield reliable tumor location labels. These labels became those that were used to train the 
DL network. The detection network trained on these labels predicted lesion location of a separate testing set with 85% accuracy.

Conclusion: The DL network was able to locate brain tumors on the basis of training data that were labeled automatically from simu-
lated clinical image interpretation.

© RSNA, 2020

Integrating Eye Tracking and Speech Recognition 
Accurately Annotates MR Brain Images for Deep Learning: 
Proof of Principle

Joseph N. Stember, MD, PhD • Haydar Celik, PhD • David Gutman, MD • Nathaniel Swinburne, MD •  
Robert Young, MD • Sarah Eskreis-Winkler, MD • Andrei Holodny, MD • Sachin Jambawalikar, PhD •  
Bradford J. Wood, MD • Peter D. Chang, MD • Elizabeth Krupinski, PhD • Ulas Bagci, PhD

From the Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065 (J.N.S., D.G., N.S., R.Y., S.E.W., A.H.); The National 
Institutes of Health Clinical Center, Bethesda, Md (H.C., B.J.W.); Department of Radiology, Columbia University Medical Center, New York, NY (S.J.); Department of 
Radiology, University of California–Irvine, Irvine, Calif (P.D.C.); Department of Radiology & Imaging Sciences, Emory University, Atlanta, Ga (E.K.); and Center for 
Research in Computer Vision, University of Central Florida, Orlando, Fla (U.B.). Received April 3, 2020; revision requested May 29; revision received July 23; accepted August 
3. Address correspondence to S.J.N. (e-mail: joestember@gmail.com).

Conflicts of interest are listed at the end of this article.

Radiology: Artificial Intelligence 2020; 3(1):e200047 • https://doi.org/10.1148/ryai.2020200047 • Content codes:   

mailto:reprints%40rsna.org?subject=
mailto:joestember@gmail.com


2 radiology-ai.rsna.org n Radiology: Artificial Intelligence Volume 3: Number 1—2021

Integrating Eye Tracking and Speech Recognition for Deep Learning

Extraction of Labels with Eye Tracking and Speech 
Recognition
The 700 BraTS images (sections) were viewed by a single neu-
roradiologist (J.N.S., 2 years of experience), and one of three 
keywords—“tumor,” “mass,” or “lesion”—was spoken into a 
microphone as part of a standard phrase so as to simulate the 
typical process of dictating a report while examining images 
(Fig 1). Standard phrases were of the form “There is a tumor/
lesion/mass in the right/left frontal/parietal/temporal lobe/cer-
ebellum.” The use of standard phrases was meant to embed the 
keywords within a larger description and to make the interpre-
tation of 700 images more fluid.

As in our prior work, we performed the eye-tracking experi-
ments and simulated interpretations using the Fovio Eye Tracker 
remote eye-tracker system (Seeing Machines, Canberra, Austra-
lia) with gaze data collected using the EyeWorks Suite (version 
3.12). Gaze data were acquired at a rate of 60 Hz on a Dell 
Precision T3600 (Windows 7, Intel Xeon central processing unit 
E5-1603 at 2.80 GHz with 128 GB of random access memory). 
Images were presented from a PowerPoint (Microsoft, Red-
mond, Wash) presentation on a 30-inch EIZO liquid crystal dis-
play monitor. Before the experiments, a nine-point calibration 
procedure in EyeWorks Record was required. The Fovio remote 
system was again situated 2 cm beneath the bottom of the view-
ing screen and at a 26° angle with respect to the monitor.

Following calibration, the user completed the task of inter-
preting each 2D image section as a new slide in the PowerPoint 
presentation. A single neuroradiologist (J.N.S.) viewed the im-
ages and dictated for the simulated interpretation. Each lesion 
was interpreted as a new image and lesion. All images were 
used, even those that were clearly degraded or lacking adequate 
brain parenchyma.

A screen-captured Windows Media video–format video file 
with continuous recording of time points was generated. The 
video displayed user gaze position as a function of time overlaid 
on the images, which was essentially a video of the user’s gaze 
during the entire eye-tracking process. The entire experiment 
interpreting the 700 training-set images produced 313 904 gaze 
points. The gaze points were spaced on the order of 10 msec 
apart in time, and the total time of the experiment was roughly 
1 hour 25 minutes. The radiologist was aware that gaze points 
were being recorded on a separate monitor but was unable to 
view that monitor during the experiments.

To convert from internal coordinates of the eye-tracking dis-
play to those of the image matrix, we had to account for moni-
tor’s size and resolution. The monitor used was 1600 3 1598 
pixels, so that the y-coordinate of the gaze data had to be scaled 
as ( )' 240

1598y y= ⋅ , where y is in the screen-captured coordinates 
and y´ is rescaled into the coordinates of the original 2D BraTS 
image sections, which are sized at 240 3 240 pixels. The x-
coordinate scaling is similar, although we had to account for a 
426-pixel offset on the left side of the monitor because of un-
matched aspect ratios of the PowerPoint display and the moni-
tor: ( ) ( )' 240426 1600x x= − ⋅ .

During simulated interpretations, as gaze data were acquired, 
we simultaneously recorded the entire dictation session by a 

software to generate a report. On the basis of our collective clini-
cal experience, we surmise that in the majority of cases, radiolo-
gists fixate on structures while describing them. By recording the 
time at which a keyword indicating a structure is spoken, we 
can combine voice-dictation and eye-tracking data to produce 
labeled images during clinical imaging interpretation, without 
added input from the radiologist.

Thus, in this study, we sought proof of concept that an algo-
rithm combining eye tracking and speech recognition can ex-
tract lesion location labels automatically for DL.

Materials and Methods

Image Selection and Data Source
This retrospective study did not employ any human partici-
pant data other than the publicly available Brain Tumor Seg-
mentation (BraTS) database (20) and hence did not require 
institutional review board oversight. The study was conducted 
in compliance with the Health Insurance Portability and Ac-
countability Act.

We used the BraTS 2016 public brain tumor database (20), 
which consists of MRI scans of 220 patients with high-grade 
glioma and 54 patients with low-grade glioma. From this data-
base, we examined the skull-stripped T1-weighted postcontrast 
images of high-grade gliomas. We vertically stacked the image 
volumes, for a total of 8003 two-dimensional (2D) sections. 
We then randomly scrambled the image sections. We used the 
first 700 2D sections for the eye-tracking experiment and as our 
training set. These images were written to a Microsoft Power-
Point file, one image for each page, for display during the eye-
tracking experiments. We set aside the next 100 as testing-set 
images. However, 15 were of poor quality or did not contain a 
discernible tumor (eg, in the extreme cranial or caudal aspect of 
the original image volume) and were discarded, leaving a total of 
85 testing-set images.

Abbreviations
BraTS = Brain Tumor Segmentation, CNN = convolutional neural 
network, DL = deep learning, 2D = two-dimensional

Summary
A deep learning (DL) model trained with eye-tracking data com-
bined with speech-recognition data can automatically extract labeled 
data from clinical interpretations for DL, producing a large volume 
of labeled data to accelerate DL in radiology.

Key Points
 n Combining eye tracking and speech recognition, brain tumors 

were localized with 92% accuracy, which represents the accuracy 
in identifying and localizing the lesions in training-set data.

 n A keypoint detection deep learning (DL) model trained with these 
locations achieved 85% accuracy in detecting and locating new le-
sions in a test dataset.

 n Using the proposed method, expert-labeled data for DL can be ex-
tracted automatically from standard-of-care clinical interpretations 
and thus can provide expansive quantities of data for DL without 
additional effort by radiologists.

http://radiology-ai.rsna.org
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Figure 1: Eye-tracking setup. The user is looking at the monitor on the right while 
dictating into a microphone in his right hand. The gaze position appears on the left 
monitor as a small green dot.

the gaze time points closest to those in the speech-recognition 
spreadsheet. We used the Pandas library in Python for spread-
sheet import, manipulation, and export. In this manner, we ob-
tained all of the gaze points between the beginning of speaking 
each keyword and the end of the articulation. We then extracted 
the mean of these gaze positions for each lesion. The approach 
is illustrated for a sample image with a few representative gaze 
points in Figure 2.

More formally, we defined the set of all time points during eye 
tracking and simulated image interpretation, in increments of 0.1 
second, as { } 1

gazeN

t
t

= , where Ngaze is the total number of time points 
during the entire eye tracking simulation. Then the set of gaze 
points p�  during eye tracking and simulated image interpretation 
was given by using { } 1

, gazeN
t t t
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=

=
� . We also defined the set of time 

points at the beginning or end of stating any one of the keywords 
(“tumor,” “mass,” or “lesion”) by using { }, 1
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The speech-recognition software accurately detected the key-
word for 647 out of the 700 lesions (92%). The start and end 
times for the 53 images in which the keyword was not detected 
were entered into the spreadsheet manually. This was done by 
watching the gaze-point screen-captured video recording also 
containing an audio recording. These video and audio files were 
obtained simultaneously with the audio-only waveform audio 
file, with a Windows Media video file of size 209.7 MB. Audio 
from the waveform audio file and not from the Windows Media 
video was used for speech recognition because of sound quality 
and compatibility with the Google speech-recognition software.

Convolutional Neural Network
We trained a keypoint detection convolutional neural network 
(CNN) on the 700 (x, y) positions. Our network used four 
convolution-rectified linear unit-pooling layers followed by 
two fully connected dense layers, with a two node–dense layer 
for the output (x, y) network predictions, which were then 
scaled by a sigmoid activation function. The algorithm archi-
tecture was adapted from notebooks used by contestants in the 
2018 Kaggle Facial Keypoints Detection Competition (21). 
Some of the major differences were that whereas the facial key-
point detection task required identifying 15 facial landmarks, 
we only sought to detect one corresponding to a point within 
the lesion; hence, we used the two node–dense layer. Addition-
ally, the level of detail in the competition’s images exceeded 
that of our BraTS images, so it was appropriate to use fewer 
layers and filters for our application.

Backpropagation employed the Adam optimizer with a learn-
ing rate of 0.001, the loss function being the mean average error. 
Of the 700 images and eye-tracking point labels, 630 were used 
for training, and the remaining 70 were used for validation. We 
trained the CNN with a batch size of 20 for 50 epochs. All train-
ing was performed in the Google Colab environment with their 
tensor processing unit, Python 3.7 (https://www.python.org/), and 

microphone as a waveform audio file with a size 907.2 MB. 
Then we simulated clinical speech-recognition software–style 
voice interpretation. To do so, we employed the Google Cloud 
Speech-to-Text Application Programming Interface, which 
allowed us to generate a spreadsheet file specifying the image 
number, keyword spoken for that image, and beginning and end 
time for the keyword. It also generated a text file containing the 
full dictation, which contained 7673 words, or roughly 11 words 
per image.

More specifically, the waveform audio file was uploaded 
into the Google Cloud Platform, and then the key for the 
corresponding account and location of the file in the Google 
Cloud “bucket” was specified in a Google Colab Python file. 
Beginning and end times for keywords were obtained using the 
“start_time” and “end_time” attributes in the Google Python 
module “speech_v1.” Then the corresponding timestamps were 
matched to the times in the gaze-point spreadsheet by selecting 

Figure 2: Example gaze plot. Initial points viewed are shown as yellow 
squares. The gaze position corresponding to the beginning of speaking the 
keyword is the green dot, and that for the end of the word is the blue dot. 
We take the average point (red dot) as the extracted label.

http://radiology-ai.rsna.org
https://www.python.org/
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method for data extraction for DL in radiology. Whereas natu-
ral language processing (which analyzes the reports) and the 
images themselves are available in general to be studied with 
DL, information about where the radiologist looked during  
the review of the scans and when they looked there is typically 
lost. Our approach recaptures that information.

To the best of our knowledge, this is the first demonstration 
that automated lesion annotation for DL is possible by extract-
ing the data directly from clinical image interpretations without 
added input from or effort by the radiologist. The lesion annota-
tion can be performed in a nonobtrusive fashion that neither 
distracts from nor hinders patient care. Although the current 
work focuses on primary glial neoplasms, a notable future ap-
plication of interest is brain metastases. Researchers have already 
used CNNs to detect and segment brain metastases (22–24). 
Initial success has been achieved in applying these models to ra-
diation-therapy planning (25). However, all methods rely on the 
tedious and time-consuming process of hand annotation. The 
proposed method has potential to generate large volumes of data 
that could be collected from routine clinical work and used for 
artificial intelligence purposes.

In previous works using eye tracking for DL (20,26,27), eye 
tracking has been shown to accurately locate and segment le-
sions. Specifically, in Stember et al (27), the radiologist focused 
on lesion borders in 356 meningioma contrast-enhanced MR 
images. Then, training a U-Net CNN architecture using the re-
sulting eye tracking–generated masks, the trained network was 
compared with that obtained by training on the corresponding 
hand-annotated masks. The average overlap between the two 
sets of masks, measured using the Dice similarity coefficient, 
was 85%. The CNNs trained on eye-tracking and hand-an-
notation masks were statistically equivalent to each other. The 
present work goes further than this previous work, making the 
approach clinically feasible (ie, ecologically valid). Our findings 
suggest that with fully simulated clinical interpretations, we can 
produce accurate lesion position labels using eye tracking and 
speech recognition. These data could then be leveraged to track 
lesions over time to aid in the reporting and clinical follow-up of 
brain metastases and to allow for the training of highly accurate 
and robust DL networks. The networks could in clinical practice 
detect and localize lesions, serving as a second reader to decrease 
false-negative results, particularly for small or subtle lesions.

Of importance for many DL applications is not merely 
locating lesions but also incorporating information about le-
sion shapes and sizes. Importantly, full lesion segmentation 
and characterization provides areas and volumes. Because we 
found that simulated image interpretation tends to provide 
points within lesions but does not actually contour shapes, 
this approach does not label images for DL segmentation tasks 
directly. However, lesion localization is widely recognized as 
the critical first step in bounding-box and contour prediction. 
Hence, we anticipate that the approach outlined here can form 
the foundation for transfer learning that achieves bounding-
box localization by using, for instance, a faster regional CNN 
or YOLO (You Only Look Once) algorithm followed by seg-
mentation by a U-Net–based architecture. Future work will 
incorporate these extensions.

TensorFlow 2.0 (https://www.tensorflow.org/). The training time 
was roughly 42 minutes.

Statistical Analysis
The simple metric of percent accuracy was calculated in Py-
thon 3.7. For accuracy of lesion localization in the training 
and testing sets, the denominators were the respective set sizes, 
700 and 85. Percent accuracy was the percentage of images for 
which the predicted keypoint was within the bounding box 
of the user-annotated lesion mask. Bounding boxes were com-
puted from the hand-annotated masks, which were traced in 
MATLAB version 2016a (MathWorks, Natick, Mass). Then, 
in Python, a short function was used to calculate the minimum 
and maximum x and y values of the masks, which formed the 
edges of the bounding boxes.

Regarding accuracy, if a calculated (eye tracking 1 speech 
recognition) or predicted (CNN) (x, y) coordinate lay within the 
bounding box, then it was counted as a true-positive result. If 
it fell outside of the bounding box, then it was counted as a 
false-negative result. Then, noting that all calculations or predic-
tions produced a candidate (x, y) value and thus that there were 
no true-negative or false-positive results, we calculated accuracy 
according to the following: accuracy = true-positive result/(true-
positive result 1 false-negative result) = true-positive result/700 
for the training set (calculated by eye tracking 1 speech recog-
nition) or true-positive result/85 for the testing-set predictions. 
Thus, the metric was used both for accuracy of training-set lesion 
localization by eye tracking plus speech recognition and accuracy 
of testing-set lesion predictions by the CNN.

Results

Lesion Localization with Eye Tracking and Speech 
Recognition
Gaze points were 92% (644 of 700) accurate, where accuracy 
was defined as being within the bounding box of the hand-
annotated lesion mask, which was our reference standard (Fig 
3). This accuracy represents the accuracy of eye tracking and 
speech recognition in identifying and localizing the lesions in 
training-set data. The other missed 8% of images consisted of 
near-misses, in which the gaze point was almost within the 
bounding box, or image sections that were either degraded or 
outside of the full three-dimensional context or did not mani-
fest the lesion clearly.

Lesion Prediction with Trained CNN
The trained CNN was able to predict the location of new le-
sions on test images with 85% (72 of 85) accuracy.

Discussion
In this study, we demonstrate proof of concept that an algo-
rithm combining eye tracking and speech recognition can 
extract lesion location labels automatically for DL with 92% 
accuracy; the DL network trained from automatically labeled 
data was 85% accurate for predicting the location of new le-
sions on a test dataset. The proposed algorithm provides a 

http://radiology-ai.rsna.org
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lesions and autopopulating reports. Although it is difficult to 
imagine research projects centered around detecting such le-
sions, an approach such as ours would allow for the training of 
these networks because radiologists often dictate or describe such 
lesions in clinical reports.

This study had several limitations. First, we only analyzed 
individual 2D image sections, as opposed to fully three-dimen-
sional image series, to help expedite this proof-of-concept study. 
Using only 2D images could potentially increase the accuracy of 
the resulting networks because there are substantial correlations 
between instances of lesions across multiple sections, increas-
ing the likelihood that radiologists will fixate on lesions directly. 
Second, all images were of single glial neoplasms. More general 
applications to lesion prediction would ideally be able to detect 
varying numbers and types of lesions. This is particularly true 
in disease states, such as brain metastases, in which a variable 
number of lesions are typically present. We will seek to address 
this by generalizing our CNN to have a recurrent “one-to-many” 

Our voice-dictation software relied on saving the speech files, 
uploading them onto the Google Cloud Server, and then run-
ning our script using the Google Speech-to-Text Application 
Programming Interface to extract the time durations of stat-
ing the keywords. One ultimate goal is nearly real-time inter-
pretation of speech integrated into the clinical workflow with 
established voice-dictation systems such as Nuance PowerScribe 
or M-Modal. Real-time interpretation would be an important 
part of actual deployment into clinical workflow for prospec-
tive research and then retrospective querying of eye-tracking 
and speech data to train CNNs to detect lesions or structures 
of interest.

Additionally, we note that normal or normal-variant struc-
tures or lesions (such as benign developmental venous anomalies 
or prominent perivascular spaces) are typically not studied in DL 
research because of their relatively prosaic clinical implications. 
However, DL networks to detect such structures still have the 
potential to expedite image interpretations by detecting such 

Figure 3: Example test-set images from the Brain Tumor Segmentation database with convolutional neural network–predicted 
lesion location in red and bounding box of the hand-annotated mask (ground truth) in blue.

http://radiology-ai.rsna.org
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architecture that takes a fixed image size as the input but can 
output a variable number of location predictions depending on 
the number of lesions present.

Third, only a single neuroradiologist (J.N.S.) participated to 
generate the eye-tracking and report data, as well as the hand-
annotated masks. Additionally, this radiologist was also aware 
that eye-tracking data were being acquired during simulated in-
terpretation; thus, the Hawthorne effect of this knowledge alter-
ing the gaze pattern and/or interpretation may be relevant. We 
will address this in future work by employing multiple radiology 
readers in more realistic clinical simulations.

A fourth limitation was that the speech-recognition program 
missed the keyword for 7.6% (53 of 700) of image interpreta-
tions. The Google Cloud Speech-to-Text Application Program-
ming Interface is a general-purpose voice-recognition program 
and is not tailored for the lexicon of radiology. It does not un-
dergo further specific training for a particular user’s voice and 
speech style, as do clinical-grade software packages. As such, 
speech-recognition tools for clinical practice would presumably 
have a lower miss rate. Nevertheless, no dictation system is per-
fect, and lesion keyword calls would invariably be missed in any 
implementation. In this work, we manually added these missed 
images back in. However, to be seamless, future implementation 
would need to leave such missed cases excluded from the train-
ing set. This would reduce the number of tagged images, but if 
the numbers were large enough, it would presumably be less of a 
hindrance. For example, let us even assume a miss rate of 10%, 
higher than ours of 7.6%. Extracting 10 000 clinical lesion inter-
pretations, that would still leave 9000 labeled lesions for CNN 
training. Another limitation was that clinical integration will 
have to allow for additional computing power that is employed 
in parallel with that required for standard image viewing on pic-
ture archiving and communication system workstations. This 
would be needed, notably, for processing and recording gaze data 
into gaze maps. Last, it should be noted that with current eye-
tracking systems, users need to maintain fairly constrained posi-
tions with respect to the display sensors to obtain consistently 
reliable data. In true clinical practice, radiologists move around 
considerably, which results in some degree of eye-tracking data 
loss as calibration is lost.

Future work will include incorporating the approach into the 
clinical workflow to obtain prospectively labeled image data to 
train networks from a wide variety of modalities, body parts, and 
lesion types. Recognizing the limitations of our study, we would 
plan to integrate more image types (including three-dimensional 
MRI volumes) and more readers. Additionally, we would antici-
pate that radiologists would be aware that their eye movements 
within the viewing monitor will be recorded, but being in a 
nonresearch setting, they may behave differently. This awareness 
influence will need to be addressed in future studies.

In conclusion, we have demonstrated how eye tracking and 
speech recognition can be used to extract labeled image data for 
DL. Although applied here in this proof-of-principle study to 
brain lesions, the approach is very general and could be adapted to 
extract any structure of interest in any imaging modality. The pro-
posed algorithm has potential to yield high quantities of labeled 
image data “for free” from standard-of-care clinical interpretations.
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