
A Domain Enriched Deep Learning Approach to Classify 
Atherosclerosis using Intravascular Ultrasound Imaging

Max L. Olender [Member, IEEE],
Department of Mechanical Engineering and the Institute for Medical Engineering and Science, 
Massachusetts Institute of Technology, Cambridge, MA 02139 USA

Lambros S. Athanasiou [Member, IEEE],
Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, 
MA 02139 USA; Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical 
School, Boston, MA 02115 USA

Lampros K. Michalis,
Faculty of Medicine, School of Health Sciences, University of Ioannina and the 2nd Department of 
Cardiology, University Hospital of Ioannina, Ioannina, 45500 Greece.

Dimitris I. Fotiadis [Fellow, IEEE],
Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science 
and Engineering, University of Ioannina, Ioannina, 45110 Greece; Department of Biomedical 
Research, Institute of Molecular Biology and Biotechnology - FORTH, Ioannina, 45110 Greece.

Elazer R. Edelman
Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, 
MA 02139 USA; Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical 
School, Boston, MA 02115 USA

Abstract

Intravascular ultrasound (IVUS) imaging is widely used for diagnostic imaging in interventional 

cardiology. The detection and quantification of atherosclerosis from acquired images is typically 

performed manually by medical experts or by virtual histology IVUS (VH-IVUS) software. VH-

IVUS analyzes backscattered radio frequency (RF) signals to provide a color-coded tissue map, 

and is the method of choice for assessing atherosclerotic plaque in situ. However, a significant 

amount of tissue cannot be analyzed in reasonable time because the method can be applied just 

once per cardiac cycle. Furthermore, only hardware and software compatible with RF signal 

acquisition and processing may be used. We present an image-based tissue characterization 

method that can be applied to entire acquisition sequences post hoc for the assessment of diseased 

vessels. The pixel-based method utilizes domain knowledge of arterial pathology and physiology, 

and leverages technological advances of convolutional neural networks to segment diseased vessel 

walls into the same tissue classes as virtual histology using only grayscale IVUS images. The 

method was trained and tested on patches extracted from VH-IVUS images acquired from several 

patients, and achieved overall accuracy of 93.5% for all segmented tissue. Imposing physically-
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relevant spatial constraints driven by domain knowledge was key to achieving such strong 

performance. This enriched approach offers capabilities akin to VH-IVUS without the constraints 

of RF signals or limited once-per-cycle analysis, offering superior potential information 

acquisition speed, reduced hardware and software requirements, and more widespread 

applicability. Such an approach may well yield promise for future clinical and research 

applications.
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I. Introduction

Atherosclerosis is an inflammatory disease which scleroses and obstructs flow through 

arterial blood vessels [1], [2]. Atherosclerotic plaques composed of lipids, inflammatory 

cells, and calcium deposits form in the vessel wall and ultimately impinge on the lumen, 

reducing distal perfusion. Tissue insufficiency that follows causes diseases that are the 

leading cause of morbidity and mortality globally [3].

A primary step in diagnosing and treating atherosclerosis is imaging the arterial vessel wall. 

Though several techniques can visualize the lumen border and roughly ascertain the 

constitution of the arterial wall, intravascular imaging is the current method of choice in 

interventional cardiology [4]-[6]. Intravascular ultrasound (IVUS) is an invasive technique 

which provides two-dimensional (2D) tomographic views of the coronary lumen and vessel 

wall, allowing comprehensive visualization of any plaque. Generated images can provide 

reliable geometric measurements and estimates of plaque composition [7]. A well-trained 

expert can manually determine the dimensions of the lumen and media-adventitia border. 

Together these delineate the limits of the arterial wall and primary region of interest (ROI), 

as well as four different plaque constituent types: dense calcium (DC), necrotic core (NC), 

fibrotic tissue (FT), and fibro-fatty tissue (FFT) [8], [9]. DC is composed of compact 

calcium crystals, while NC consists of high levels of lipids with many necrotic cells. While 

both FT and FFT include collagen fibers, the former is mainly bundles of fibers [10], and the 

latter loosely packed fibers with lipid accumulations [11]. Due to their varying composition, 

each plaque type has unique echoreflectivity characteristics and consequently differentiable 

appearance within an IVUS image.

Manual ROI and tissue detection has been used since the introduction of IVUS. However, 

acquisition sequences can contain several thousand individual frames (images) [7], so 

manual processing is time-consuming and laborious. It is also subject to high inter- and 

intra-observer variability [12]. Moreover, discrimination of FT from FFT is limited, since the 

two plaques share similar characteristics. These limitations led to the development of 

automated ROI detection algorithms [13]-[18] and methods to segment tissue within the 

arterial wall [4].

Numerous plaque characterization methods using IVUS images have been reported in the 

literature. The majority of these methods is based on machine learning approaches. The first 
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methodology was presented by Zhang et al. [19], who automatically extracted image texture 

features and classified pixels using a learned piecewise linear discrimination function. Since 

then, many have followed, using different feature sets and classification algorithms [20], 

[21]. Such methods follow the same general pattern: grayscale images are used as input and 

pixels are classified by a machine learning algorithm according to the pixels’ intensities and 

imaging characteristics (e.g. acoustic shadows) or a supplementary set of extracted texture 

and geometric features. The gold standard for those methods was human expert manual 

annotations, which limited the amount of available data and suffered from inter- and intra-

observer variability; subsequent implementation of the methods in clinical practice was 

hindered in part because validation and training relied upon such manual annotations. 

Therefore, Taki et al. [22], [23] – followed by others [24]-[26] – proposed similar machine 

learning approaches trained and validated using the results of a commercially available 

software: virtual histology (VH) IVUS [11].

VH-IVUS was introduced to surmount the limitations of manual labeling of diseased vessels 

[11]. VH-IVUS offers a color-coded plaque characterization map, often overlaid on the 

corresponding grayscale image (Fig. 1). By processing the frequency spectrum of 

backscattered radiofrequency (RF) signal [27], rather than just the reflected signal 

amplitude, a more detailed assessment of the plaque can be generated with high accuracy 

confirmed through histology validation [8], [11], [28]-[30]. VH-IVUS can classify plaque 

into its four subtypes [11], and treats the non-pathological tissue and media – the concentric 

layer separating the disease-prone intima from the outer adventitia layer – as a separate 

combined class (M). The technology is the current gold standard for in vivo and in situ 
examination of coronary arteries [8], [11]. Although VH-IVUS provides relatively accurate 

plaque characterization, its main disadvantage is the fact that it requires acquisition of RF 

signal and proprietary software to process this signal. As a consequence, the plaque 

composition of grayscale IVUS frames acquired without the full RF signal (or without the 

proprietary software) cannot be characterized by this technique. Moreover, the RF signal is 

available only in the ECG-gated R-peak IVUS frames [31] – ~1 of every 30 frames – 

resulting in significant information loss and large segments of uncharacterized vessel. Thus, 

methods able to characterize the plaque in a similar manner as VH-IVUS using grayscale 

methods remain attractive and highly relevant.

Recent developments in deep learning and convolution neural networks (CNN) have made 

possible characterization tools in different imaging modalities which outperform methods 

deploying traditional machine learning or image processing [32]. Indeed, none of the 

existing IVUS plaque characterization methods, which require explicit feature set design, 

selection, and extraction through pre-processing, have achieved overall label assignment 

accuracy >90% [4] (Table III). To date, however, deep learning has been applied to IVUS 

only for delineating inner and outer boundaries of the arterial wall (i.e. ROI) [17], [18] and 

to select frames containing calcification [33]; no method has applied CNNs to grayscale 

IVUS imaging data to improve plaque characterization and generate information akin to 

VH-IVUS.

We present a novel CNN-based domain enriched method that classifies arterial tissue imaged 

through IVUS. The method detects the ROI using recently developed software [34], and then 
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subdivides the ROI into pathological and non-pathological tissue based upon basic spatial 

and geometric constraints informed by physiology. Pathological areas of the ROI are 

partitioned into patches and fed through a CNN architecture. Corresponding VH-IVUS 

images serve as the comparative control. The proposed method offers several meaningful 

benefits stemming from its independence from the RF signal data, which increases the 

clinical utility and research applicability of the method. In particular, the method can be 

applied to grayscale IVUS data, including previously-acquired images that have not been 

characterized by the VH technique due to a lack of RF signal or proprietary software, or to 

intermediate frames of VH-IVUS acquisitions between ECG-gated frames, thereby 

increasing the effective rate at which meaningful information on plaque morphology can be 

attained and reducing procedure time.

II. Materials and Methods

The proposed automated plaque characterization method consists of three steps (Fig. 2). The 

ROI is first detected, then pathological tissue is partitioned from the rest of the vessel wall 

(M) based upon domain knowledge of spatial constraints imposed by arterial physiology and 

pathology. This process imposes physically-relevant limits on the location and dimensions of 

this tissue class while also reducing the number of classes to be subsequently segmented by 

the CNN. In the final step, pixels of the ROI in the pathological area are classified into one 

of the four plaque types. To investigate the utility of leveraging domain enrichment, an 

equivalent “naïve” method was implemented where non-pathological tissue was not first 

segmented from the pathological tissue prior to CNN segmentation, but was instead 

segmented as a fifth class. The method was implemented in MATLAB (MathWorks, Natick, 

MA) using the Deep Learning Toolbox running on a NVIDIA TITAN Xp GPU (PG611) 

with 12 GB RAM.

A. Region of Interest

The region between the lumen border and the media-adventitia border where atherosclerotic 

plaques develop was denoted as the ROI. ROI segmentation is a prerequisite for subsequent 

methodological steps, though succeeding procedures are agnostic to ROI segmentation 

approach, method, or algorithm (of which there are a large and growing number). To detect 

the ROI in each frame, we here utilized a previously validated method [13] recently 

incorporated into a user-friendly software suite [34]. In brief, initial contours for the lumen 

and media-adventitia borders are estimated using basic image processing: the image is 

binarized using Otsu’s automatic thresholding algorithm [35], and the tentative borders are 

found by scanning radial projections for binary state transitions. The method subsequently 

refines the borders using active contour models [36]. Within each IVUS image I(i, j), the 

lumen border bl(θ) and media-adventitia border bma(θ) fully delineate the ROI (intima and 

media region) rim(irim,jrim).

B. Pathological Tissue Detection

The proposed method focuses on the evaluation of vessel wall morphology and the 

characterization of its phenotype, distinguishing not only plaque subtype but normal from 

pathological tissue. This concept has already been implemented in VH-IVUS, where each 
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tissue type is highlighted as a specific color and the media portrayed in gray along the rim of 

the vessel wall (Fig. 1). Physical and dimensional limits were imposed herein, leveraging 

expert recommendations for interpreting intravascular images; intima was deemed normal if 

its thickness was <360 μm, and the media was assumed have nominal thickness of 250-350 

μm [31], [37], [38]. Thus, the location and thickness of non-diseased and media tissue was 

defined such that wall regions thinner than threshold were not to be considered diseased or 

analyzed as such, and the media layer approximated by a band of constant thickness around 

the outer edge of the ROI. Though media thickness does vary somewhat, its range is largely 

negligible relative to that of the inner intima layer, and is furthermore at the horizon of VH-

IVUS imaging resolution (100-200 μm) [7], [9], [31].

To determine the normal wall and the media layer locations and dimensions, two 

geometrical parameters were computed for each pixel in the ROI:

Dtℎick = D1 + D2, and (1)

Douter = D1, (2)

where D1 and D2 are the Euclidian distances of the pixel (irim,jrim) from the media-adventitia 

border bma and the lumen border bl, respectively (Fig. 3 and Fig. S1). Threshold values for 

Dthick and Douter were calculated to determine whether a pixel was in a section of sufficient 

thickness to be considered pathological or sufficiently close to the media-adventitia border 

to lie within the media. All Ntot VH-IVUS images and their ROI pixels that belong to the 

media or non-pathological class (M, gray color; rimM) were considered. The pathological 

thickness threshold was calculated as the maximum rimM section thickness immediately 

adjacent to the lumen (bl):

Tℎpatℎ = max
Ntot

Dtℎick
rimM ∈ bl = max

Ntot
Douter

rimM . (3)

The maximum media thickness threshold was calculated as the minimum thickness of rimM

sections in which pathological tissue is present (i.e. Dthick ≥ Thpath):

Tℎmedia = 1
Ntot

∑1
Ntot max Douter

rimM(Dtℎick ≥ Tℎpatℎ) . (4)

Thpath was 30 pixels, and Thmedia was 11 pixels. Pixels of the ROI were classified as 

pathological tissue (ROIpath) if Douter ≥ Thmedia and Dthick ≥ Thpath (Fig. 3).

This pathological tissue detection procedure is the primary mechanism by which domain 

knowledge enriched learning to address the image classification problem. Following this 

step, classification was only required for the four remaining tissue types. For the naïve 

method developed to assess the importance of this contribution, this step was not completed; 
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instead, subsequent classification routines were taught to detect this tissue type directly from 

the image patch data.

C. Classification

For the domain enriched method, pixel-centered patches were created for remaining pixels 

of the ROI after segmenting the M class (rim ∈ ROIpath), then automatically classified into 

one of the four plaque types using a CNN. For the naïve method, patches were created for all 

pixels of the ROI (rim ∈ ROI) and sorted into one of the five tissue types by the classifier.

1) CNN Algorithm—CNNs are a class of deep neural networks [39] commonly applied 

to image classification because they can leverage spatial locality and translational invariance 

to dramatically reduce the number of weighted network connections requiring optimization 

(cf. fully-connected neural networks). Their architectiue can be described by multiple layers, 

which can be categorized as input, output, or hidden. The input layer here receives the 2D 

(grayscale) image patch, the hidden layers are formed by multiple functional layers in which 

the compound image featiues are calculated and strategically pooled, and the output layer is 

the classification result. Combined in series, such a CNN can be represented by a non-linear 

function, P(I; Θ) = pi,which maps an image I ∈ ℝH × H of H × H size to a vector pi = (p1, p2, 

… , pc)T. The probability of I belonging to one of target classes i = {1, … , c} is represented 

by pi ∈ [0,1], and Θ = {Θ1, Θ2, … , ΘK} are the K parameters (weights and biases) used to 

map I to pi. CNN training is an optimization problem for a non-linear function with many 

degrees of freedom:

Θ = argminΘ ℒ I(1), I(2), …, I(Ntrain) (Θ), (5)

where ℒ(θ) ∈ [0, 1] is a loss function and Ntrain is the number of training images.

Here, we used multiclass cross-entropy loss (also known as negative log likelihood), the 

most popular choice for probabilistic classification problems:

ℒ I(1), …, I(Ntrain) (Θ) = − ∑n = 1
Ntrain ∑i = 1

c yi ln Pi(I(n); Θ) . (6)

This loss function measures the performance of the classifier P relative to the binary class 

label vector yi.

To reduce the training time for the CNN, the stochastic gradient descent (SGD) iterative 

method was used. This method approximates the dataset with a subset of samples randomly-

drawn from the frill training dataset, called a mini-batch, and uses the gradient calculated for 

the mini-batch to update the model in each iteration. SGD is known to sometimes oscillate 

along the path of steepest descent (maximum gradient) towards the optimum, rather than 

directly along the path toward the optimum, since the gradient always points towards the 

opposite side of this optimum from the current position. A solution to this problem is the 

addition of a momentum term to the parameter update to reduce oscillations:
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Θλ + 1 = Θλ − α∇ℒ(Θλ) + γ(Θλ − Θλ − 1), (7)

where λ is the iteration number, α > 0 is the learning rate, and the momentum term γ 
determines the contribution of the previous gradient step to the current iteration. Thus, the 

SGD algorithm selects a subset of the training set Dtrain, evaluates the mean gradient of the 

loss function ℒ for this mini-batch, then updates the network parameters Θ. Each evaluation 

is an iteration, and at each iteration the loss function is minimized further. The full pass of 

the training process over the whole training set, in mini-batch increments, forms an epoch.

In training the network described herein, a stochastic gradient descent with momentum 

optimizer was implemented with a constant learning rate (α) of 0.03 and momentum value 

(γ) of 0.9. A mini-batch size of 3,000 patches was utilized over 50 epochs; data were 

shuffled after each epoch. Weight decay (L2 regularization) by a factor of 0.0001 was used 

to reduce overfitting. Weights were initialized with a Glorot initializer, which independently 

samples from a uniform distribution centered around zero; biases were initialized to zero.

2) CNN Architecture—To classify the pixels corresponding to pathological tissue, a 

sequence of convolutions, activations, and pooling operations were executed. To achieve the 

best classification results, different patch sizes, numbers of input patch convolution 

sequences, filters, and filter sizes were tested. A patch size of 41×41 was determined to 

perform best through parameter sensitivity analysis (Fig. S6). The network found to perform 

best, and utilized in this work, is shown in Fig. 4 and Fig. S2 (Supplemental Materials).

III. Dataset

To train and test our plaque characterization algorithm, 553 VH-IVUS frames and the 

corresponding grayscale IVUS frames were acquired from eight patients. The data were 

acquired at 20 MHz using a 3.5 F electronic probe with synthetic aperture (Eagle Eye Gold 

Catheter, Philips Healthcare, Andover, MA), in accordance with clinical standards [7], [31]. 

From the dataset, 200 frames were withheld exclusively for testing while the remaining 

frames were sampled for training and validation. From this larger subset, equal numbers of 

41-by-41 pixel patches (3.4×105) were randomly extracted for each of the five classes, and 

data augmentation was performed through reflection and rotation in 90° increments. From 

the withheld testing subset, 5×104 patches of each class were randomly selected from bulk 

regions of tissue for final testing and validation. Additional details on the dataset are 

available in the Supplemental Materials.

IV. Results

Image segmentation accurately replicating VH-IVUS classification was successfully 

achieved using only grayscale IVUS images, with the domain enriched method providing 

better results than the naïve one. Tables I and II provide the error (or confusion) matrices for 

the enriched and naïve methods, respectively, showing that the former achieved an overall 

accuracy of 93.5% and the latter 87.8%. Performance metrics by tissue class are summarized 

and compared in Fig. 5.
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Representative examples of classified images resulting from each method are shown in Fig. 

6, with detailed regions shown in Fig. 7. Both methods accurately captured major tissue 

morphology and features within the pathological region (Fig. 6). However, the naïve method 

struggled to identify non-pathological and media tissue, and occasionally generated 

physiologically implausible configurations (Fig. 7). Due to the spatial constrains imposed 

prior to CNN classification, the domain enriched method addressed non-pathological and 

media tissue very accurately, and was not disposed to violating physiological constraints. It 

captured fine features and provided sharp distinctions between various plaque types; it 

generated images that are very similar to gold standard VH-IVUS.

While the naïve method performance metrics (Table II) reflect only the five-class CNN 

classifier, as the classifier itself performs all segmentation operations, the overall domain 

enriched method metrics (Table I) depend both on (four-class) classifier performance and 

reliability of pathological tissue detection, which together share responsibility for the full 

segmentation procedure. The CNN classifiers, trained only on pixels classified by VH-

IVUS, achieved generally high precision (i.e. positive predictive value) and recall (i.e. 

sensitivity). Table SI (in Supplemental Materials) shows the error matrices for the enriched 

method’s four-class CNN classifier – the model achieved an accuracy of 92.3% (cf. naïve 

five-class classifier accuracy of 87.8%, Table II). CNN training took several weeks (roughly 

3 days per epoch for the 5-class model and somewhat less for the 4-class model). Training 

was halted once accuracy and loss plateaued, after no more than 50 epochs (Fig. S5); with 

further training, validation metrics deteriorated, indicating overfitting of the model to 

training data.

Error matrices of the classifiers illustrate some general and model-specific trends. Both 

classifiers – the five-class network supporting the naïve method and the four-class network 

supporting the domain enriched method – struggle to differentiate FFT from FT and, 

unexpectedly, DC from NC. Notably, while class confusion trends were universally observed 

for both models, performance was worse in all cases for the 5-class CNN except in the task 

of identifying calcium (DC). Furthermore, classification of the media by this model is only 

mediocre – pixels belonging to the M class are often misclassified as FT, FFT, or NC, and 

these tissues are conversely misclassified as M with moderate frequency. These findings 

show that imposing spatial constraints to determine non-pathological and media tissue prior 

to CNN classification, and excluding this class from classification, not only improved 

segmentation of this non-diseased tissue type, but that of the classified plaque as well. 

However, the enriched model was still subject to compounding uncertainties arising from 

pathological tissue delineation. While delineation of pathological tissue, as defined by VH-

IVUS, was very accurate, the CNN of the enriched method was incapable of classifying M 

tissue it encountered (and typically identified it as FT; Table SI).

Execution time of the characterization method was dominated by the pixel-wise network 

classification of the ROI. Each pixel took 7.4 ± 0.4 milliseconds (mean ± standard deviation) 

to classify, though this value was found to be very sensitive to the machine on which 

classification was performed. Each ROI contained 37801 ± 22455 pixels, of which the 

enriched method determined that 26776 ± 20805 pixels were pathological and subsequently 

classified by the network. (The naïve method classified all pixels within the entire ROI.) 
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Calculation of D1 and D2, and subsequent designation of the media and non-pathological 

tissue in a frame, took just 25.5 ± 0.9 milliseconds per frame. Because the ROI delineation 

method is considered interchangeable for this method, execution time of this step was not 

determined, but several methods report execution times significantly less than 1 second per 

frame [13], [14], [17], [18]. Consequently, characterization of full frames took 200 ± 150 

seconds and 280 ± 170 seconds with the enriched and naïve methods, respectively. The 

range of execution times corresponds to the drastic variability in plaque content between 

frames; while segments with high plaque burden took several minutes to characterize, 

frames depicting cross-sections without diseased tissue (just media and/or non-pathological 

tissue) took just a fraction of a second for the enriched method. We note here that per-frame 

characterization time is reported for a scenario in which every individual pixel of the ROI is 

characterized, rather than a strategically selected subset, and furthermore neither software 

nor hardware were optimized for execution time. As such, these times should be interpreted 

as an upper bound.

Supplemental results, including those of a sensitivity analysis of patch size, as well as an 

ablation study of the enriched network’s CNN, are provided in the Supplemental Materials.

V. Discussion

The confluence of domain knowledge in vascular pathology and physiology and 

intravascular imaging, and advancements in machine learning, has enabled an enhanced 

deep learning approach to classify atherosclerosis using intravascular ultrasound grayscale 

images. This approach exceeds the performance of previously-reported methods for plaque 

segmentation in IVUS without the use of spectral signals [4], and produces maps of tissue 

morphology that closely resemble VH-IVUS. Of great importance, the method offers 

attributes that exceed those of VH-IVUS. Because no RF (spectral) data are required, the 

method’s applicability is not limited to ECG-gated frames, but can be used to extract plaque 

morphologies in any grayscale IVUS image. To acquire the same lateral resolution of plaque 

morphology using VH-IVUS would require extensive procedural time; the method is also 

not subject to the loss of temporal resolution that limits VH-IVUS [31]. Furthermore, VH-

IVUS offers lower axial spatial resolution than its grayscale counterpart [7], [9], [31], 

suggesting that a classification method based upon the grayscale information alone could 

offer superior detail and information on fine features. All of these benefits are achieved 

without the need for specialized hardware or proprietary software.

The impact of leveraging domain knowledge to distinguish pathological from non-

pathological tissue prior to CNN classification was assessed, and was found to offer 

substantial benefit. In particular, enforcing physiologically-imposed spatial constraints to 

assign the non-pathological and media tissue class not only improved classification 

performance for this class, but also benefited classification of the remaining pathological 

tissue types and decreased execution time. Application of this domain knowledge further 

prevented various forms of unrealistic morphologies that arose in the unconstrained naïve 

model. Implementing the enriched method and subjecting it to protracted training on an 

extensive dataset produced excellent results.
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While previous methods have classified tissue in grayscale IVUS images, the method 

presented here surpasses performance of the current state-of-the-art. Previous work trained 

and validated on the same dataset implemented several varieties of classification algorithms, 

including support vector machines, neural networks, and random forests, with the latter 

achieving greatest performance. This method achieved an overall accuracy of 85.65%; 

sensitivity for the five classes ranged from 63.47% to 97.31%, while specificity ranged from 

93.34% to 99.29% [24]. Because neural network training data can dramatically impact 

intravascular image segmentation performance metrics [40], direct comparison with other 

work is tenuous, though performance meets or exceeds all comparable methods reported in 

literature (Table III). Standardized datasets and methods to benchmark, analyze, and thereby 

fairly compare methods of intravascular tissue characterization are still needed, as has been 

previously established for evaluating lumen and media segmentation in IVUS by Balocco et 
al. [18]. To enable independent evaluation, and in anticipation of a future community 

standard for performance assessment, full confusion matrices have been reported here in 

order to allow computation of evaluation measures that are likely to be determined for such 

purposes.

In many ways, the benefits of applying the domain knowledge to segment the non-

pathological and media tissue were foreseeable and expected. Clinical expert consensus 

reported by the American College of Cardiology and developed in collaboration with the 

European Society of Cardiology maintains that, while the trailing edge of the media (media-

adventitia border) is generally well delineated in IVUS images, the leading edge is not [7]. 

Automated edge detection therefore only extracts lumen (lumen-intima) and media-

adventitia borders, and the resulting wall area analyzed is consequently the plaque plus 

media area [7]. It is not surprising, then, that a CNN would have difficulty distinguishing the 

media from surrounding tissue within this region of a grayscale image, since the 

echoreflectivity profile is not conducive to distinctive transitions and the region is often not 

distinguishable even by trained experts. Furthermore, the spatial invariance intrinsically 

assumed by CNNs – generally one of their great assets in image processing – here is a 

liability, as the media is spatially constrained between the intima (where plaque develops) 

and the adventitia layers of a blood vessel. Therefore, utilizing a priori knowledge, derived 

previously from studies using alternative visualization modalities and mechanisms (e.g. 

histology [37], [38]), provided strong benefit. Furthermore, imposing geometric constraints 

based in physical reality made the method more robust to poor image quality and artifacts by 

preventing impossible class configurations. And finally, reducing the number of classes 

improved classification accuracy, precision, and specificity by the CNN for all but one of the 

remaining classes while also reducing the number of pixels to be classified, thereby 

decreasing execution time.

Additionally, results showed that FFT and FT were confused by both models at much higher 

rates than other pairs of classes. This can also be appreciated and anticipated through 

knowledge of the class tissue constitution. As noted before, fibro-fatty and fibrotic tissue 

both contain collagen fibers, but configured differently. The former contains collagen 

bundled in fibers [10] and collagen in the latter are loosely packed fibers embedded in lipid 

accumulations [11]. It is expected then that the similarities in composition would result in 

similar echoreflective properties that would consequently make them difficulty to distinguish 
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from each other. Indeed, several previous methods have reported similar difficulties in 

distinguishing FFT or mixed tissue from FT, and some have forgone the distinction 

altogether and lumped several classes into larger, more easily differentiated groups [4].

Another pair of tissue classes confused with moderate frequency was NC and DC, though 

not in equal portions. While just over 9% of NC pixels were misclassified as DC, only 

around 1% of DC pixels were misclassified as NC. Further insight is offered by the ablation 

study performed on the CNN, which suggested that DC and NC shared features in network 

representation (see Supplemental Materials for details). When DC class output was 

inhibited, NC sensitivity increased, though the conjugate is not true. This observation 

prompted an investigation of activation strength for each class, which revealed that the 

predicted class score for calcium was, on average, 19%p higher than that for necrotic core 

(Table SII). Due to the strong network response invoked by calcium, mild deviation in 

necrotic core appearance could be enough for the response to be eclipsed. Calcified and 

necrotic tissue often appear in tandem, and calcified structures are associated with acoustic 

shadowing [7], [31]; the imbalanced misclassification phenomenon could potentially be 

explained by such shadowing confounding the CNN as it identifies features of necrotic core 

that vary in appearance depending on its spatial position relative to the calcium. 

Accommodating such variation may result in the overall weaker activation for individual 

observations of NC tissue and consequent non-reciprocated misclassification as DC.

Segmentation of the vessel’s inner and outer border, which together circumscribe the ROI, is 

a critical prerequisite to extract the geometric information necessary for the enrichment of 

the deep learning approach, and limits the accuracy of its results. This is a limitation shared 

with VH-IVUS; just as VH-IVUS relies upon – indeed assumes – an accurate inner and 

outer border to determine plaque composition within the vessel wall [11], so too does our 

method. This is especially true of the domain enrichment employed by our method, and 

media and non-pathological tissue characterization is consequently particularly sensitive to 

ROI delineation. Any diminished performance in the ROI delineation degrades overall vessel 

characterization performance and compounds the final classification error, and as such 

contributions of this step are included in the reported errors. Indeed, a former study of 

cumulative error propagation in plaque image characterization found that image formation 

and border detection errors contribute to and increase plaque characterization error (i.e. 

decrease accuracy), but that these contributions are in acceptable limits and would not affect 

clinical decision [41]. Furthermore, accurate automated border detection algorithms are 

available, and because this segmentation is an interchangeable module on which our method 

builds, new or specialized methods may be utilized at will in concert with the presented 

domain-enriched method.

Work is warranted to extend validation of this method to ground truth histology. In the 

present work, the methods have been both trained and validated against VH-IVUS. While 

VH-IVUS has itself been validation through in vitro histopathology [28], [29], it remains a 

step removed from the ultimate aim of classifying the tissue underlying the image. 

Furthermore, expert recommendations on intravascular radiofrequency data analysis 

maintain that media thickness cannot, in fact, be measured using either grayscale IVUS or 

VH-IVUS; media labels in the VH-IVUS images are themselves based on histological 
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studies [31]. In a way, our domain enriched method emulates this approach; use of VH-

IVUS for validation may therefore somewhat exaggerate the true benefit of the approach in 

considering the goal of tissue characterization. For example, because media thickness 

actually varies [31], [37], [38], a more sophisticated method of approximating media 

thickness (rather than assuming a fixed threshold thickness) may better reflect the 

underlying imaged tissue. However, in achieving the goal of replicating the utility of VH-

IVUS without its associated restrictions and burdens, VH-IVUS itself presents a desirable, 

useful, and well-validated reference. Still, vigilance and transparency is prudent to avoid 

reinforcing potentially unfounded or weak assumptions that have guided development of 

VH-IVUS and the medical field more broadly.

Further work should also address the execution speed of the method. As currently 

implemented, the method cannot be applied in real time, limiting its usefulness. Immediate 

and drastic improvements could be achieved by exploring strategies to tactically select 

subsets and/or ordered progressions of pixels to be classified, rather than classifying every 

single pixel in the ROI sequentially by index. Updates to software, possibly including 

programming language, may also be accompanied by optimization of hardware.

Finally, as with any classification system, appropriateness of the model must be considered 

for any specific application. In particular, previous work has demonstrated that neural 

network training data profoundly impacts intravascular image segmentation [40]. Here, 

equal representation across all classes was enforced in the training dataset, and the CNN 

model was consequently optimized for balanced accuracy across all classes, rather than 

weighted by prevalence in the dataset or overall population. Therefore, other models may 

prove more appropriate for the detection of specific plaque types or in patient populations 

with plaque phenotype profiles which deviate significantly from a balanced distribution. 

Furthermore, IVUS images can vary significantly in texture and appearance depending on 

the specific imaging system (hardware and software), system settings (e.g. transducer 

frequency), and acquisition protocol; performance of analysis algorithms can vary 

commensurately [18]. Generalizability of the specific network and quantitative performance 

reported should not be assumed for other datasets, though general trends regarding the 

impact of domain enrichment are expected to hold.

VI. Conclusion

By leveraging domain knowledge and recent technological advances, a domain enriched 

method of classifying plaque morphology using only grayscale IVUS images has achieved 

higher accuracy than that of others previously reported. By first imposing geometric 

constrains based upon pathological studies and normal vessel morphology, segmented 

images have been produced that replicate VH-IVUS characterization with exceptional 

fidelity – without use of RF signal data. The method can therefore be applied to any 

grayscale IVUS data, including previously-acquired images that have not been characterized 

by the VH technique and images in VH-IVUS acquisitions occurring between characterized 

ECG-gated frames, thereby increasing the effective information acquisition speed. While 

care must be taken to consider and convey assumptions which may be reinforced or 

perpetuated through the application of domain knowledge to learning methods for medical 
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imaging, this method offers practical, translational opportunities for immediate application-

specific deployment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Sample VH-IVUS frame: (a) Grayscale IVUS image and (b) the same image overlaid with 

plaque types characterized by VH as dense calcium (DC; white), necrotic core (NC; red), 

fibrotic tissue (FT; green), fibro-fatty tissue (FFT; light green), and media or non-

pathological tissue (M; gray).
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Fig. 2. 
Flowchart of the plaque characterization method enriched by domain knowledge. The naïve 

method does not segment the non-pathological tissue and media based upon vascular 

physiology and pathology constrains, but rather inputs the full ROI to the CNN, which must 

segment the image into all 5 classes.
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Fig. 3. 
Schematic presentation of the pathological tissue segmentation. Given borders of the lumen 

(bl) and media-adventitia (bma; top left), Euclidean distances from a pixel (rim ∈ ROI) to the 

lumen border (D2) and the media-adventitia border (D1) were calculated (bottom). Pixels 

within the ROI for which Douter < Thmedia and Dthick < Thpath correspond to media and non-

pathological tissue, respectively (right, inset). Other pixels within the ROI correspond to 

pathological tissue (ROIpath; top left, highlighted). Color in distance maps indicates relative 

magnitude of values (blue: small, red: large).
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Fig. 4. 
Progressive data processing performed by the 26-layer CNN to classify pixels within the 

pathological region of interest. (See Fig. S2 in Supplemental Materials for a detailed 

schematic of the CNN architecture.)
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Fig. 5. 
Comparison of recall (i.e. sensitivity) and precision (i.e. positive predictive value) achieved 

by the enriched and naïve methods (shown with solid and dashed borders, respectively). The 

enriched method demonstrates clear superiority, particularly, but not exclusively, in 

categorizing M class tissue. Axes range from 75% to 100% (linear scale from center to 

perimeter).
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Fig. 6. 
Representative classified IVUS image segmented by VH-IVUS (ground truth), naïve 

method, and enriched method. Both presented methods identify major pathological tissue 

morphology features, but the naïve method misclassifies much of the non-pathological and 

media tissue. The enriched method provides somewhat sharper distinctions between various 

plaque types and consequently captures finer features, and is most similar to VH-IVUS.
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Fig. 7. 
Sample classified regions of IVUS images segmented by VH-IVUS (ground truth) and the 

two presented methods. Both presented methods identify major pathological tissue 

morphology features quite well, but the enriched method demonstrates clear superiority. In 

these examples, the naïve method misclassifies much of the non-pathological and media 

tissue and proposes several variations of physiologically non-feasible morphologies. These 

physiological impossibilities include islands of non-pathological tissue embedded within a 

diseased region (A–E), exaggerated, thick segments of healthy (normally-thin) intima or 

media tissue (C), and calcified and lipid deposits within exceptionally thin wall segments (A, 

B). Light blue hash marks within each image demarcate 1 mm increments.
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TABLE I

Domain Enriched: Spatial Constraints + ROIpath Segmentation

Target Class

DC NC FT FFT M Precision

Output Class DC 49247 4664 0 0 3 91.3%

NC 664 44310 1208 0 30 95.9%

FT 0 996 45564 4761 159 88.5%

FFT 0 0 3107 45015 84 93.4%

M 89 30 121 224 49724 99.1%

Recall 98.5% 88.6% 91.1% 90.0% 99.4% 93.5%

IEEE J Sel Top Signal Process. Author manuscript; available in PMC 2021 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Olender et al. Page 26

TABLE II

Naïve: Full-ROI Segmentation

Target Class

DC NC FT FFT M Precision

Output Class DC 49371 1840 1 0 123 96.2%

NC 506 43652 978 0 2040 92.5%

FT 0 477 43747 2168 4222 86.4%

FFT 0 0 1408 44738 5686 86.3%

M 123 4031 3866 3094 37929 77.3%

Recall 98.7% 87.3% 87.5% 89.5% 75.9% 87.8%
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