Skip to main content
. Author manuscript; available in PMC: 2021 Oct 1.
Published in final edited form as: IEEE J Sel Top Signal Process. 2020 Jun 15;14(6):1210–1220. doi: 10.1109/jstsp.2020.3002385

TABLE III.

Comparison of Current Methods & Previous Methods Reported in Literature

Method Tissue Classes a Gold Standard Validation Dataset Reported Accuracy
Zhang et al. [19] DC, NC, & FT Expert annotations 12 IVUS images Overall: 89.9%
Brunenberg et al. [20] DC, NC, & FT Expert annotations 30 IVUS images Overall: 75.82%
Athanasiou et al. [21] DC, NC, & FT Experts annotations 40 IVUS images Overall: 86.17%
Taki et al. (2010) [22] DC, NC, & FT-FFT VH-IVUS 500 VH-IVUS frames DC: 79%, NC: 52%, & FT-FFT: 81%
Taki et al. (2013) [23] DC, NC, & FT-FFT VH-IVUS 500 VH-IVUS frames DC: 84.87%, NC: 80.57%, FT: 77.4%, & FFT: 63.47%
Athanasiou et al. [24] DC, NC, FT, FFT, & M VH-IVUS 300 VH-IVUS frames DC: 84.87%, NC: 80.57%, FT: 77.4%, & FFT: 63.47%
Hwang et al. [25] DC, NC, FT, & FFT VH-IVUS 252 VH-IVUS frames Overall: 82.8%
Kim et al. [26] DC, NC, FT, & FFT VH-IVUS 252 VH-IVUS frames Overall: 85.1%
Naïve Deep Learning Approach DC, NC, FT, FFT, & M VH-IVUS 200 VH-IVUS frames DC: 98.7%, NC: 87.3%, FT: 87.5%, FFT: 89.5%, & M: 75.9%
Domain Enriched Deep Learning Approach DC, NC, FT, FFT, & M VH-IVUS 200 VH-IVUS frames DC: 98.5%, NC: 88.6%, FT: 91.1%, FFT: 90.0%, & M: 99.4%
VH-IVUS (Validation by Nair et al. [27]) DC, NC, FT, FFT, & M Histology 889 histological regions DC: 96.7%, NC: 95.8%, FT: 93.5%, & FFT: 94.1% (M not reported)
a

DC: Dense Calcium; NC: Necrotic Core; FT: Fibrous Tissue; FFT: Fibro-Fatty Tissue; M: Media/Non-Pathological