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Abstract

Purpose: To systematically assess the feasibility and performance of a highly accelerated 

compressed sensing (CS) 4D flow MRI framework at three different acceleration factors (R) for 

the quantification of aortic flow dynamics and wall shear stress (WSS) in patients with aortic 

disease.

Methods: Twenty patients with aortic disease (58 ± 15 y old; 19 M) underwent four 4D flow 

scans: one conventional (GRAPPA, R = 2) and three CS 4D flows with R = 5.7, 7.7, and 10.2. All 

scans were acquired with otherwise equivalent imaging parameters on a 1.5T scanner. Peak-

systolic velocity (Vmax), peak flow (Qmax), and net flow (Qnet) were quantified at the ascending 

aorta (AAo), arch, and descending aorta (DAo). WSS was calculated at six regions within the AAo 

and arch.

Results: Mean scan times for the conventional and CS 4D flows with R = 5.7, 7.7, and 10.2 were 

9:58 ± 2:58 min, 3:40 ± 1:19 min, 2:50 ± 0:56 min, and 2:05 ± 0:42 min, respectively. Vmax, Qmax, 

and Qnet were significantly underestimated by all CS protocols (underestimation ≤ −7%, −9%, and 

−10% by CS, R = 5.7, 7.7, and 10.2, respectively). WSS measurements showed the highest 

underestimation by all CS protocols (underestimation ≤ −9%, −12%, and −14% by CS, R = 5.7, 

7.7, and 10.2).

Conclusions: Highly accelerated aortic CS 4D flow at R = 5.7, 7.7, and 10.2 showed moderate 

agreement with the conventional 4D flow, despite systematically underestimating various 
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hemodynamic parameters. The shortened scan time may enable the clinical translation of CS 4D 

flow, although potential hemodynamic underestimation should be considered when interpreting the 

results.
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1 | INTRODUCTION

Three-dimensional time-resolved cine phase-contrast MRI with three-directional velocity 

encoding, also known as 4D flow MRI, has evolved rapidly over the past several decades, 

with its utility as an investigational tool expanding into a wider clinical role in the recent 

past. When used in cardiovascular imaging, 4D flow MRI helps in the evaluation and 

characterization of various congenital1–4 and adult heart diseases,5–8 particularly several 

aortic diseases.9–12 The unique ability of 4D flow MRI to measure advanced metrics such as 

flow energetics and wall shear stress (WSS) has given newer insights into disease 

pathophysiology that could not be obtained through other existing imaging modalities.13–17 

However, these benefits come at the expense of long scan times associated with multi-

dimensional imaging, hindering the adoption of 4D flow MRI into routine clinical imaging. 

In cardiothoracic applications, the scan times are further increased by the need for 

respiratory motion compensation, where typically a respiratory navigator follows the 

movement of the diaphragm, and only accepts data acquired in end-expiration.

In the past decade, compressed sensing (CS), a signal processing technique that efficiently 

exploits the inherent sparsity of MRI data to recover signals from accelerated measurements, 

is being used along with various parallel imaging techniques to accelerate 4D flow MRI 

acquisitions.18–27 Even though previous studies showed that CS significantly reduced scan 

times compared to parallel imaging strategies, the clinical translation of this technique was 

hindered by long offline reconstructions.18–23,27 Recently, Ma et al demonstrated the 

feasibility of a CS accelerated 4D flow MRI framework that allowed imaging of the thoracic 

aorta in under 2 min with inline image reconstruction.25 While this study evaluated CS-

accelerated 4D flow in a pulsatile flow phantom at nine different acceleration factors (R), 

ranging from R = 5.4 to R = 14.1, the human subject studies were limited to the investigation 

of one acceleration factor, R = 7.7. Thus, the aim of the current study was to evaluate the 

performance of the previously developed CS 4D flow MRI framework at three acceleration 

factors, R = 5.7, 7.7, and 10.2, in a clinical setting. CS 4D flow of the thoracic aorta with 

these acceleration factors were used to evaluate aortic hemodynamics, including peak 

velocity (Vmax), peak flow (Qmax), net flow (Qnet), and 3D aortic WSS in a prospectively 

recruited cohort of patients with aortic disease undergoing standard-of-care 4D flow MRI.

2 | METHODS

2.1 | Study cohort

Twenty-five consecutive adult patients with a history of aortic disease (mean age, 58 ± 15 y; 

range: 21 to 80 y; 19 male/6 female) scheduled for standard-of-care aortic 4D flow MRI 
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(GRAPPA R = 2) were prospectively recruited between March 2019 and June 2019. Out of 

the 25 patients, n = 20 had aortic root and ascending aortic dilation (n = 11 with tricuspid 

aortic valve [TAV] and n = 9 with bicuspid aortic valve [BAV]), n = 4 had chronic type-B 

thoracic aortic dissection and n = 1 had mechanical aortic valve replacement with ascending 

aortic aneurysm repair. The study was approved by the local Institutional Review Board. 

Written informed consent was obtained from all study participants for the additional 

research CS 4D flow acquisitions.

2.2 | MRI data acquisition and reconstruction

The 4D flow scans were acquired on a 1.5T MRI system (MAGNETOM Aera; Siemens 

Healthcare, Erlangen, Germany) following the administration of a gadolinium-based contrast 

agent (9-28 mL, 0.2 mmol/kg; Gadavist, Bayer Healthcare, Berlin, Germany), received as 

part of their standard-of-care cardiothoracic MRI. Time between Gd-contrast administration 

and 4D flow scans varied from 10 to 30 min, depending on the clinical protocol. Standard-

of-care 4D flow was acquired with GRAPPA R = 2, while prototype CS accelerated 4D flow 

scans were acquired at three different acceleration factors, R = 5.7, 7.7, and 10.2. The 

conventional GRAPPA-accelerated scans were always performed ahead of the CS scans so 

as to not disrupt the clinical workflow. All four 4D flow scans (one with GRAPPA and three 

with CS) were acquired with retrospective ECG-triggering during free breathing using 

navigator-gating and Respiratory Controlled Adaptive k-space Reordering (ReCAR)28,29 to 

minimize breathing artifacts. The volumetric coverage, spatiotemporal resolution, and 

velocity encoding (venc) were matched for all four 4D flow scans. The CS approach in this 

work used a previously described, Cartesian variable-density phyllotaxis subsampling 

pattern.30,31 The CS reconstruction was done by solving the following optimization 

problem:

xt t = 1, ⋯, T = argmin{xt} ∑
t = 1

T
( ∥ Atxt − yt ∥ 2

2 + λσ( ∥ W σxt ∥ 1)

+ λτ ∥ W τ x1
⊺, ⋯, xT

⊺ ∥ 1
T

(1)

where xt denotes the frames to be reconstructed all each time points, At is the system matrix 

at each time point, t, and yt the measured data at each time point. Spatial and temporal L1-

regularization was done using Haar wavelet transform where Wσ and Wτ denotes spatial and 

temporal wavelet transforms and λσ and λτ the spatial and temporal regularization 

parameters, respectively.32 Equation (1) was solved using a FISTA optimization33 with 30 

iterations with λσ = 0.0015 and λτ = 5 λσ, assuming a maximum image magnitude intensity 

of 1. To investigate if the number of FISTA iterations used for CS reconstruction was 

adequate, we performed a sub-analysis on the CS 4D flow MRIs derived from one patient 

reconstructed at 13 different iterations ranging from 5 to 100. The reconstruction pipeline 

was integrated into the MRI scanner’s data reconstruction workflow. The 4D flow MRI 

sequence parameters are listed in Table 1.

In addition, the patients also underwent standard-of-care segmented balanced steady-state 

cine MRI (bSSFP) cine acquisitions at two-chamber, three-chamber, four-chamber, and 

short-axis orientations. Imaging parameters were as follows: repetition time (TR)/echo time 
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(TE) = 2.7/1.2 ms; flip angle = 58-70°; voxel size = 2.1 x 2.1 x 8.0 mm3; slice thickness = 6 

mm; bandwidth = 930 Hz/pixel; GRAPPA with R = 2 acceleration. Each myocardial slice 

was acquired during a breath-hold at end-expiration using retrospective electrocardiograph 

(ECG)-triggering (with 25 retrospectively constructed cardiac phases).

2.3 | MRI data analysis

4D flow MRI data preprocessing for the conventional and CS 4D flows included inline 

correction for Maxwell terms34 and encoding errors due to gradient field distortions.35 This 

was followed by offline pre-processing including first-order background phase correction, 

noise-filtering, and velocity anti-aliasing using in-house software programmed in MATLAB 

(version R2017b; The MathWorks, Natick, MA, USA).36–38 A 3D phase-contrast MR 

angiogram (PC-MRA) was calculated from 4D flow data as previously described.39 The 3D 

segmentations of the thoracic aorta were generated to mask the blood flow velocities in the 

thoracic aorta either manually (Mimics; Materialise, Leuven, Belgium) or automatically 

using an in-house deep learning-based method.40 These segmentations were used to create 

peak-systolic velocity maximum intensity projections (MIPs)41 to quantify Vmax in three 

contiguous regions of interest (ROIs) for each scan: the ascending aorta (AAo), aortic arch 

(arch), and descending aorta (DAo). For time-resolved flow evaluation and Qmax and Qnet 

quantification, three 2D planes were placed orthogonal to the midline at the AAo, arch, and 

DAo on the segmented volume of the aorta derived from the conventional 4D flow scan 

(EnSight, version 10.0.3; CEI, Apex, NC, USA). The same planar locations were used for 

the CS accelerated scans for each patient. Qmax, Qnet, and flow-waveforms were computed 

at each of these planes for all 4D flow MRI scans. To account for the slightly different 

temporal resolutions between the conventional and CS 4D flow MRI, all CS flow data were 

temporally interpolated using a spline interpolation to the corresponding conventional 4D 

flow to calculate Qmax and Qnet. To compare the time-resolved flow across subjects, we 

temporally interpolated all flow-waveforms to a temporal resolution of 10 ms using a spline 

interpolation. This interpolated flow-waveforms from each scan at each of the three 2D 

cross-sectional planes were also averaged over all patients for comparison of flow 

hemodynamics between the four 4D flow protocols.

The 3D aortic peak WSS was calculated using a previously reported approach42,43 at six 

manually defined contiguous ROIs covering the AAo and arch. The WSS measurements 

were averaged over five cardiac time frames centered at peak-systole to reduce noise, as 

previously proposed.43,44 The ROIs were defined by the following landmarks: ROI 1, 

anterior portion of the region between the sinus of Valsalva and mid-AAo; ROI 2, posterior 

portion of the region between the sinus of Valsalva and mid-AAo; ROI 3, anterior portion of 

the region between mid-AAo and the brachiocephalic trunk; ROI 4, posterior portion of the 

region between mid-AAo and the brachiocephalic trunk; ROI 5, superior portion of the 

region between the brachiocephalic trunk and left subclavian artery; ROI 6 inferior portion 

of the region between the brachiocephalic trunk and left subclavian artery. The ratios of the 

peak WSS at the outer curvature and the inner curvature of the aorta (sum of WSS at ROI1, 

ROI3, ROI 5 divided by the sum of WSS at ROI2, ROI4, ROI 6) were also calculated to 

evaluate if the relative changes in regional peak WSS were preserved by the CS 4D flows. 

The overall 4D flow MRI data analysis workflow is summarized in Figure 1.
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To study the effects of acceleration on clinically used cardiac function indicators, as well as, 

to check for an internal consistency of the 4D flow-derived hemodynamic measurements, we 

also quantified the stroke volumes (SV) from all 4D flow MRI (total forward flow during 

cardiac cycle; EnSight) and compared it to the SV derived from the standard bSSFP cine 

MRI (cvi42; version 5.9, Circle Cardiovascular Imaging, Calgary, Canada).

2.4 | Statistical analysis

For all hemodynamic parameters, a Lilliefors test was used to evaluate normality. The results 

are expressed as mean ± SD if the parameters were normally distributed and as median 

(interquartile range) if the parameters had a skewed distribution. A two-tailed paired Student 

t-test or a Wilcoxon rank-sum test was accordingly applied for comparison of conventional 

and CS-accelerated scans. Bland-Altman analysis was performed to determine the bias and 

limits of agreement (bias ± 1.96*SD) between the absolute measurements derived from the 

four 4D flow scans at different ROIs. To compare the flow-waveforms derived from the 

different scans, an ANOVA or Freidman test was performed at each time point on the 

temporally interpolated flow measurements averaged over every subject. For the time-points 

with significant difference, a paired Student t-test or Wilcoxon rank-sum test was done to 

identify which CS acceleration factors significantly differed from the conventional 

GRAPPA-accelerated scan. Bland-Altman analysis and Pearson correlation analysis were 

performed to compare the SV derived from the 4D flow MRI and the bSSFP cine scans. The 

statistical significance level was set to P < .05.

3 | RESULTS

Out of the 25 patients recruited, 4D flow studies from 21 patients were used for analysis. 

Scans from three patients had to be excluded due to inaccurate navigator placement and 

from one patient due to incomplete coverage of the thoracic aortic volume.

3.1 | Effect of number of FISTA iterations

On the sub-analysis on the CS 4D flow MRIs derived from one patient (76-y-old male with 

aortic root and AAo dilation) reconstructed at 13 different FISTA iterations (range: 5 to 

100), we found that all quantified hemodynamic parameters converged around 30 FISTA 

iterations except for an outlier (Qnet at CS, R = 10.2 at the arch showed an increase at 60 

iterations and above). Results from this analysis are depicted in Figure 2.

3.2 | Scan times

Average total scan time for the conventional 4D flow MRI was 9:58 ± 2:58 min (4:41 min to 

17:3 min), CS 4D flow with R = 5.7 was 3:40 ± 1:19 min (1:25 min to 6:32 min), CS 4D 

flow with R = 7.7 was 2:50 ± 0:56 min (1:13 min to 4:45 min), and CS 4D flow with R = 

10.2 was 2:05 ± 0:42 min (0:54 min to 3:38 min). The average scan times were reduced by 

63%, 72%, and 79% for CS 4D flows with R = 5.7, 7.7, and 10.2 respectively (P < .001) 

when compared to the conventional 4D flow.
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3.3 | Flow and WSS visualization

Figure 3 depicts an example case, showing the peak-systolic velocity MIPs, 3D WSS vector 

maps, and 3D streamlines derived from all four 4D flow scans of a 61-y-old patient with 

aortic root and AAo aneurysm. The velocity distributions of the MIPs and the complex 

hemodynamic patterns of the 3D streamlines are visually similar between the various scans. 

Some underestimation of the peak WSS at the AAo by the CS scan (black arrows) can be 

appreciated in the WSS heat maps.

Visualization of 3D hemodynamics for two patients, one with good agreement and one with 

poor agreement between the conventional and CS 4D flow (R = 10.2 is shown), is shown in 

Figure 4. On the left (Figure 4A), analysis from a 76-y-old male with aortic root and AAo 

dilatation have good agreement overall between CS and conventional GRAPPA data. The 

velocity magnitude patterns in the MIPs are visually similar and the WSS vectors have 

similar spatial patterns, although underestimation can be noted in the proximal AAo. 

Streamline visualization showed similar flow patterns and velocities, although the density of 

streamlines was reduced with CS data. On the right (Figure 4B), analysis from a 53-y-old 

male with unoperated chronic type-B aortic dissection had poorer agreement between CS 

and conventional GRAPPA data. Visible velocity underestimation by the CS 4D flow at the 

AAo and the true lumen of the DAo can be appreciated in the velocity MIPs, and while 3D 

aortic WSS vectors showed similar patterns, underestimation can be noted at the AAo and 

proximal DAo. Blood flow visualization using 3D streamlines showed visibly similar flow 

patterns, but the velocity magnitudes showed underestimation in the CS data.

3.4 | Flow and WSS quantification

Vmax was significantly (P = .001 to .039) underestimated at the AAo and arch by all three 

CS 4D flow protocols when compared to the conventional 4D flow MRI (AAo: 

underestimation of −5.9 ± 10.3%, −8.2 ± 8.6%, and −7.1 ± 10.0%; arch: −4.5 ± 11.3%, −6.3 

± 14.4%, and −7.3 ± 12.9% by CS, R = 5.7, 7.7, and 10.2, respectively). Bland-Altman 

analysis for Vmax (Figure 5A) revealed small negative biases for all three acceleration 

factors studied (bias of −0.08 m/s, −0.12 m/s, −0.12 m/s for CS, R = 5.7, 7.7, and 10.2, 

respectively). The SD of the bias remained stable across acceleration factors (0.23 m/s, 0.23 

m/s, 0.25 m/s for CS, R = 5.7, 7.7, and 10.2, respectively).

Flow-waveforms averaged over all subjects at the three evaluation planes placed at the AAo, 

arch, and DAo are shown in Figure 6. The flow-waveforms at each plane showed similar 

curve shapes, with slight blunting of the curves at every plane by all three CS acquisitions. 

Statistically significant difference of the time-resolved flow measurements can be 

appreciated (marked as *) at various time points on the averaged flow-waveforms.

Qmax was significantly (P = .001 to .009) underestimated at the arch and DAo by all three 

CS protocols (arch: underestimation of −6.5 ± 7.2%, −6.9 ± 10.1%, and −7.9 ± 8.1%; DAo: 

−6.2 ± 7.8%, −8.6 ± 8.1%, and −10.1 ± 9.1%; by CS, R = 5.7, 7.7, and 10.2, respectively). 

Qnet was significantly (P = .006 to .012) underestimated at the arch by all three CS protocols 

(−7.1 ± 10.5%, −6.8 ± 13.8%, and −5.0 ± 10.7% by CS, R = 5.7, 7.7, and 10.2, respectively) 

and at the DAo by CS, R = 10.2 (−5.3 ± 11.8%). Evaluation of the Qmax and Qnet at the AAo 
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did not reveal any significant underestimation. Bland-Altman analysis for Qmax and Qnet 

showed small negative biases for all three acceleration factors (Qmax: bias of −12.87 mL/s, 

−19.44 mL/s, −20.94 mL/s; Qnet: bias of −2.52 mL/s, −2.83 mL/s, −3.06 mL/s for CS, R = 

5.7, 7.7, and 10.2, respectively) (Figure 5B,C). The SD of the bias for Qmax and Qnet 

between the conventional and CS 4D flow MRIs remained consistent across acceleration 

rates as shown in Figure 5B,C.

In addition, WSS measurements also showed significant (P = .001 to .037) underestimation 

by the CS 4D flows at all ROIs quantified, with underestimation ranging from −9.0 ± 12.7% 

to −4.9 ± 10.2% by CS, R = 5.7, −12.3 ± 9.9% to −5.6 ± 10.7% by CS, R = 7.7, and −14.3 ± 

12.5% to −8.5 ± 12.6% by CS, R = 10.2. The ratios of the peak WSS were preserved by all 

three CS acceleration factors, but CS, R = 10.2 showed a trend towards underestimating the 

WSS at the inner curvature more than the outer curvature of the aorta (outer to inner peak 

WSS ratios for conventional vs. CS, R = 10.2: 0.94 ± 0.08 vs. 0.98 ± 0.12; P = .057). Bland-

Altman analysis showed moderate negative biases for all three acceleration factors (bias of 

−0.10 Pa, −0.12 Pa, −0.16 Pa for CS, R = 5.7, 7.7, and 10.2, respectively) (Figure 7). The SD 

of the bias remained relatively stable with CS, R = 10.2 showing higher SD than CS, R = 5.7 

and 7.7 (Figure 7).

Table 2 summarizes the regional aortic hemodynamic indices for the different 4D flow 

techniques.

3.5 | SV quantification

Only 19 out of the 21 subjects included in our analysis underwent bSSFP cardiac cine MRI. 

The SV derived from 4D flow MRI and bSSFP cine were not significantly different (mean 

SV from cine: 87.6 ± 21.7 mL/cycle; conventional GRAPPA-accelerated 4D flow: 87.9 ± 

23.2 mL/cycle; CS, R = 5.7: 91.3 ± 24.2 mL/cycle; CS, R = 7.7: 89.3 ± 22.9 mL/cycle; CS, 

R = 10.2: 91.4 ± 20.6 mL/cycle; P = .975). Overall, the measurements from cine and 4D 

flow MRI showed good agreement (bias: 2.39 mL/cycle; SD of bias: ±8.26 mL/cycle) and 

correlation (r2 = .864) (Figure 8).

4 | DISCUSSION

The results from our study demonstrate that: (1) hemodynamic measurements from CS 4D 

flow MRI with spatial and temporal undersampling at three different acceleration factors 

studied (R = 5.7, 7.7, and 10.2) plateaus around 30 FISTA iterations; (2) CS 4D flow at all 

three acceleration factors studied generated data of comparable quality and moderate 

agreement (mean percent underestimation for regional peak WSS ≤ −9%, −12%, and −14% 

for R = 5.7, 7.7, and 10.2, respectively) to the conventional GRAPPA-accelerated 4D flow 

MRI (R = 2); (3) the scan times were significantly reduced by 63%, 72%, and 79% for CS 

4D flows with R = 5.7, 7.7, and 10.2, respectively, when compared to the conventional 4D 

flow MRI with inline image reconstruction at the scanner taking <5 min; (4) the percent 

underestimation of various hemodynamic parameters increased with increasing acceleration 

factor, but the changes were relatively lower when compared to the inherent underestimation 

by CS; (5) among the hemodynamic parameters quantified, Qnet was the most stable and 

WSS was the most sensitive to CS imaging acceleration; (6) clinically utilized cardiac 
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function indicators like SV could be reliably quantified with all three CS acceleration 

factors.

The undersampling and reconstruction techniques used in this study were similar to that 

previously used by Ma et al. The effects of our CS reconstruction techniques, including the 

number of FISTA iterations, on hemodynamic quantifications were not reported before. Our 

analysis on one patient dataset reconstructed at a wide range of iterations demonstrates that 

30 FISTA iterations resulted in adequate convergence of the data and is suggested for future 

studies. Effects of other reconstruction parameters like spatial and temporal regularizations 

were not explored in this study, and further work is required to investigate the effects of 

spatial and temporal L1-wavelet regularizations.

The underestimation of MRI flow-derived parameters has also been described in previous 

studies using a CS-based reconstruction approach.18,20,25,26 Underestimation of 

hemodynamic measures including Vmax, Qmax, and Qnet in our study was also seen in the 

previous work by Ma et al who used a similar CS 4D flow acquisition framework.25 The 

current study further investigated the effects of CS on peak 3D aortic WSS and found 

increased underestimation compared to the previously studied hemodynamic parameters. 

This increased underestimation of WSS is likely related to its dependence on spatiotemporal 

undersampling and regularization.45–47 The evaluation of the relative changes in regional 

WSS did not show any significant difference between the conventional and CS 4D flows, 

except with R = 10.2 CS, which showed a trend toward underestimation of the higher WSS 

at the inner curvature more than the lower WSS at the outer curvature of the aorta. A 

detailed comparison of measurements derived from the conventional and CS 4D flow MRIs 

for each patient are attached as Supporting Information Figure S1, which is available online.

Currently, there are no gold standard diagnostic and prognostic criteria that uses 4D flow-

derived hemodynamic parameters in patients with aortic disease. Therefore, it was 

challenging to understand the clinical significance of hemodynamic underestimation by CS 

4D flow when compared to the conventional GRAPPA-accelerated 4D flow. Thus, to 

evaluate the effects of this underestimation on more clinically relevant cardiac function 

parameters, we compared the 4D flow-derived SV with bSSFP cine-derived SV (clinical 

reference standard). We found good correlation and agreement between the two methods for 

the conventional GRAPPA-accelerated and all three CS 4D flows. This also helped to 

evaluate the internal consistency of the flow measurements used in the current study.

The scan times for all four 4D flow acquisitions including the conventional 4D flow showed 

a wide range. This variation in scan times was due in part to dependence on the efficient 

synchronization of the cardiac and respiratory movements. The heart rates of our cohort 

ranged from 45 bpm to 97 bpm, and the respiration navigator efficiency ranged from 42% to 

98% (mean, 69% ± 16%), resulting in a broad range of recorded scan times. Previous 

work29 describing this technique showed a mean navigator efficiency of 63.6% ± 10.5% 

(range = 47.1-79.6%), which is similar to that of our study. The ReCAR-based navigator 

gating used in the conventional as well as the CS 4D flow acquisitions has a fixed navigator 

acceptance window which may have led to this variable navigator efficiencies. Additional 

methodological development focusing on improving respiratory motion compensation to 
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have more predictable scan times and increased imaging efficiency would be desirable in 

clinical workflows.

Recently, Neuhaus et al demonstrated the feasibility of a six- to eight-fold accelerated 

Cartesian CS aortic 4D flow technique with a scan time of approximately 5 min and an 

inline reconstruction on the scanner taking around 9 min (Compressed SENSE, Ingenia, 

Philips Healthcare).26 A variable-density incoherent undersampling pattern with iterative 

L1-regularized wavelet-based reconstruction was used along with retrospective ECG 

triggering and a pencil-beam respiratory navigator. At a CS acceleration factor, R = 8, 

Neuhaus et al found a statistically significant underestimation of Qnet (mean difference of 

−2.2 ± 7.8 mL/cycle), a trend for underestimation of Qmax (mean difference of −4.6 ± 25.2 

mL/s), but statistically significant overestimation of Vmax (mean difference of 7.9 ± 13.0 

cm/s) when compared to a conventional SENSE-accelerated 4D flow acquisition. However, 

temporal correlations were not used in the reconstruction framework of Neuhaus’s study, 

thus not exploiting the full potential of a CS-based reconstruction approach. The differences 

in the undersampling pattern, regularization, patient populations, and image analysis might 

have contributed to the lesser significant differences between the conventional and CS 

approaches in Neuhas’s study.

The current study uses both spatial and temporal correlations in a k-t accelerated Cartesian 

CS 4D flow framework with a variable-density phyllotaxis undersampling and L1-

regularized wavelet-based reconstruction. The feasibility of this CS 4D flow framework was 

demonstrated previously by Ma et al.25 In patients with aortic disease, Ma et al found that 

Qmax and Qnet were underestimated by −6.2 ± 10.4% and −7.1 ± 12.4% at the mid-AAo by 

this framework at CS, R = 7.7 when compared to GRAPPA, R = 2 aortic 4D flow MRI. The 

current study found a similar Qmax and Qnet underestimation of −6.0 ± 9.8% and −3.7 ± 

12.0% at CS, R = 7.7. The flow-waveforms averaged for all subjects from the CS 4D flows 

also showed slight blunting, especially at the peaks in both studies. Ma et al, as well as, the 

current study found high variability in the degree of underestimation among the patients, 

seen as high SDs in the results as shown in Table 2 and Figure 5. These high SDs remained 

stable with increasing CS acceleration. This may be due to the heterogeneous aortic 

hemodynamics in the small patient cohorts studied, variability in imaging parameters (venc-

dependent phase noise etc.), and variability in the uncontrolled effects during the scan (e.g. 

movement, heart-rate/respiratory variability). Future studies on larger cohorts are warranted 

to assess the effects of different venc and find other factors influencing this variability in 

underestimation.

Our study has several limitations. First, the study was conducted on a small and 

heterogeneous patient population studied at a single center. While the majority of the 

patients had thoracic aortic aneurysms with TAV or BAV, 20% of our patients had chronic 

aortic dissections and resulting complex blood flow hemodynamics, which would have 

influenced our results. Second, the three CS 4D flow scans were added on to the standard-

of-care CMR and was always acquired at the end of the session, immediately after the 

conventional GRAPPA-accelerated 4D flow acquisition. There is a possibility that this 

would have led to improved SNRs in the conventional GRAPPA scans influencing our 
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results. But we expect this to have lesser impact considering that all four scans were 

performed approximately 10–30 min following contrast administration.

Third, the temporal resolutions slightly varied between the GRAPPA and the CS 4D flow 

scans. This was due to variations in the number of reconstructed cardiac time frames. The k-

space data from the conventional GRAPPA-accelerated 4D flow MRI were always 

retrospectively reconstructed to yield 30 cardiac time frames as per our standard-of-care 

protocol (ie, the acquired temporal resolution was different from reconstructed temporal 

resolution). In contrast, the number of cardiac time frames for the CS accelerated 4D flow 

MRI scans had to be adapted to the subject’s heart rate to account for pseudo random 

sampling, which did not allow for retrospective interpolation to 30 time frames. If the 

reconstructed cardiac time frames were not changed based on the subject’s heart rate, the 

actual acceleration factor would not match the acceleration factor reported on the user 

interface. To account for this, we had to temporally interpolate (spline interpolation) the flow 

data from all CS accelerated 4D flow scans to the corresponding conventional GRAPPA-

accelerated 4D flow MRI. This might have introduced errors in results.

Fourth, the analysis approach for Vmax, flow, and WSS differed based on previously 

validated techniques.43,44,48,49 This was mostly because without the corrections used in 

these techniques the calculations, especially peak measurements, would be impacted heavily 

by noise. Fifth, the current study did not do a systematic analysis of the effects of different 

spatial and temporal resolutions in the CS 4D flow image quality or hemodynamics. Since 

spatiotemporal resolutions are known to impact the assessment of parameters like WSS,
45–47,50 future studies should be conducted to investigate their effects on CS 4D flow derived 

hemodynamics. Sixth, the effects of various regularization strategies were not explored in 

this study. The results from our study indicate that the effects of acceleration on 

hemodynamic quantification might be less pronounced when compared to that inherently 

induced by CS. An in-depth analysis into the effects of regularization strategies has to be 

evaluated in future studies.

5 | CONCLUSIONS

In conclusion, this study demonstrates that highly accelerated CS 4D flow MRI of the 

thoracic aorta at acceleration factors, R = 5.7, 7.7, and 10.2 generated data of moderate 

agreement to the conventional GRAPPA, R = 2 accelerated 4D flow MRI. The choice of CS 

acceleration factor to use depends on the clinical question at hand, striking a balance 

between shorter scan times and the need for accurate hemodynamic quantification. In either 

case, CS 4D flow can be used as a high-throughput method to evaluate aortic hemodynamics 

in routine clinical practice. Further investigations should be carried out in a larger multi-

centric patient population to establish reference normal ranges for aortic hemodynamic 

parameters using CS 4D flow.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
The 4D flow MRI analysis workflow. (1) Raw 4D flow MRI images were pre-processed by 

noise filtering, eddy-current corrections, and anti-aliasing, followed by 3D aortic 

segmentation either manually or using an in-house auto-segmentation tool. (2) A, Vmax was 

measured by manually defining ROIs at the AAo, arch, and DAo on the peak-systolic 

velocity Maximum Intensity Projections (MIPs). The MIPs were eroded by one pixel to 

suppress border noise. B, Qmax and Qnet were measured by placing three matching analysis 

planes (AAo, arch, and DAo) for the four 4D flow scans from each patient. C, Peak-systolic 

3D aortic WSS was measured at 6 ROIs as shown
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FIGURE 2. 
Hemodynamic quantification results from CS 4D flow MRI (R = 5.7, R = 7.7, and R = 10.2) 

reconstructed at 13 different FISTA iterations. A, Peak velocities (Vmax). B, Peak flow 

(Qmax). C, Net flow (Qnet). and D, WSS results are shown. Except for an outlier dataset 

(Qnet at CS, R = 10.2 at the arch) that showed an increase in measurements at 60 iterations 

and above, we found that all other quantifications converged around 30 FISTA iterations
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FIGURE 3. 
Examples comparing conventional and CS 4D flow scans. A, Systolic velocity maximum 

Intensity projections (MIPs) derived from the conventional and CS 4D flow MRIs of a 

representative patient showing similar velocity patterns of the systolic jet (arrows). (◊) 

represent points of peak velocity at each ROI and (♦) represent noised pixels that were 

excluded. B, Posterior-right view of the aortic WSS vector maps from the same patient 

showing similar patterns, but underestimation marked by arrows. C, Peak-systolic 3D 

streamlines derived from the conventional and CS 4D flows for the same patient. The 
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complex flow patterns in the AAo is very well captured by the CS 4D flow scans, without 

any visually apparent underestimation in streamline velocities (arrows)
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FIGURE 4. 
Representative aortic hemodynamics of two patients, one with good agreement and one with 

poor agreement between the CS and conventional 4D flow. Panel A shows systolic velocity 

MIPs, WSS vector maps, and 3D streamlines from the GRAPPA, R = 2, and CS, R = 10.2 

4D flow scans from a 76-y-old male with aortic root and AAo dilation. There is good 

similarity between the velocity magnitude distribution on the MIPs and the 3D streamlines 

patterns, with some underestimation of WSS at the AAo. Panel B shows the results from a 

53-y-old male with unoperated chronic type-B thoracic aortic dissection. The differences in 

the systolic velocity MIPs can be well appreciated at the proximal AAo and the true lumen. 

WSS vector maps also show decreased measures at the proximal AAo in the CS 4D flow 

when compared to the GRAPPA 4D flow. The flow visualization using 3D streamlines also 

shows underestimation by the CS 4D flow

Pathrose et al. Page 19

Magn Reson Med. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 5. 
Bland-Altman plots comparing the measurements from the conventional and CS 4D flow 

scans for the Vmax (A), Qmax (B), and Qnet (C). Data from the AAo, arch, and DAo are 

marked by different markers. The mean differences and 95% confidence intervals were 

calculated from the measurements from all ROIs. We can see that the small negative bias for 

Vmax, Qmax, and Qnet increase with increasing CS acceleration factor, while the SDs remain 

relatively stable
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FIGURE 6. 
Flow-waveforms from the conventional and CS 4D flow scans averaged over all subjects at 

matched planes placed at the AAo, arch, and DAo. Each curve shows the time-resolved flow 

measurements averaged over all subjects and their standard error of the mean as error bars. 

Black (*) indicates time-points with significant differences (P < .05; ANOVA or Freidman 

test) between the measurements obtained from the four 4D flow techniques. Colored (*) 

indicates time-points with significant differences (P < .05; paired Student t-tests/Wilcoxon 

rank-sum tests) between GRAPPA and different CS 4D flows (blue: CS, R = 5.7; red: CS, R 
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= 7.7; green: CS, R = 10.2). Similar flow patterns with mild underestimation of the Qmax 

seen as blunting of the peaks by all three CS acceleration factors can be seen
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FIGURE 7. 
Bland-Altman plots comparing the measurements from the conventional and CS 4D flow 

scans for the WSS quantifications. The small-to-moderate negative bias increases with 

increasing acceleration. Data from the six different ROIs are marked by different markers. 

r1, proximal outer AAo; r2, proximal inner AAo; r3, distal outer AAo; r4, distal inner AAo; 

r5, outer arch; r6, inner arch
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FIGURE 8. 
Bland-Altman and Pearsons correlation plots comparing the stroke volumes derived from all 

four 4D flow MRI with that derived from bSSFP cine MRI. There was good agreement and 

correlation between the measurements derived from both techniques
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