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SUMMARY

In cancer epidemiology using population-based data, regression models for the excess mortality hazard is
a useful method to estimate cancer survival and to describe the association between prognosis factors and
excess mortality. This method requires expected mortality rates from general population life tables: each
cancer patient is assigned an expected (background) mortality rate obtained from the life tables, typically
at least according to their age and sex, from the population they belong to. However, those life tables
may be insufficiently stratified, as some characteristics such as deprivation, ethnicity, and comorbidities,
are not available in the life tables for a number of countries. This may affect the background mortality
rate allocated to each patient, and it has been shown that not including relevant information for assigning
an expected mortality rate to each patient induces a bias in the estimation of the regression parameters
of the excess hazard model. We propose two parametric corrections in excess hazard regression models,
including a single-parameter or a random effect (frailty), to account for possible mismatches in the life
table and thus misspecification of the background mortality rate. In an extensive simulation study, the
good statistical performance of the proposed approach is demonstrated, and we illustrate their use on real
population-based data of lung cancer patients. We present conditions and limitations of these methods and
provide some recommendations for their use in practice.
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1. NET SURVIVAL AND EXCESS MORTALITY HAZARD MODEL

Survival analysis after the diagnosis of cancer is an active research area in cancer epidemiology and a
primary interest of many countries. The three typical frameworks adopted to model cancer survival data
are: (i) the overall survival setting (where overall or all-cause mortality is studied), (ii) the cause-specific
setting (where the cause of death is known), and (iii) the relative survival setting. The overall survival
setting is not the optimal choice for cancer epidemiology when the main interest is on comparing two
or more populations (e.g. two countries, two periods in the same country, two groups with different
deprivation levels within the same country and at the same period, and etc.), since it is affected by other
causes of mortality, which may differ for the populations of interest. In practice, the cause of death is
typically unavailable or, in the absence of a standardized protocol, not reliable. Thus, the cause-specific
setting may not be a reasonable choice either. The relative survival setting (Pohar-Perme and others, 2016)
represents a useful alternative, where the mortality hazard associated to other causes is approximated by
the general population hazard hP(·; z), which is typically obtained from life tables based on the available
sociodemographic characteristics z (e.g. sex, region, and deprivation level) in addition to age and year.
The general population hazard is also referred to as the “expected hazard” and the “background mortality
rate.” While defined in a hypothetical world, where patients could only die from the cancer under study, net
survival (the main object of interest in the relative survival setting) represents a useful way of reporting and
comparing the probability of survival of cancer patients since this quantity is not affected by differences in
expected mortality (due to other causes) between populations. The basic idea behind net survival consists
of decomposing the hazard function associated to an individual, ho(t; x), as the sum of the hazard associated
to the disease of interest (e.g. a specific cancer), hE(t; x), and the hazard associated to other causes in the
population of interest, hOther(t; z). The hazard associated to other causes is approximated with the general
population hazard hP(t; z), assuming that the contribution in the general population hazard of a specific
cancer type is small compared to all other causes of death. This is:

ho(t; x) = hP(A + t; y + t; z) + hE(t; x), (1.1)

where x and z are vectors of covariates, and z typically corresponds to a subset of covariates of x. The
variables “A” and “y” represent the age at diagnosis and the year of diagnosis, respectively, thus A + t and
y + t represent the age and the year at time t after diagnosis. This model is also known as excess hazard
model (Esteve and others, 1990). The net survival is defined as the survival function associated to the excess
hazard function hE(·; x). Estimation of the net survival function has been largely studied from parametric,
semiparametric, and non-parametric perspectives (see Remontet and others, 2007; Pohar Perme and
others, 2009; Perme and others, 2012; Rubio and others, 2018).

In practice, a limitation of quantities derived in the relative survival setting (Perme and others, 2012),
such as the excess hazard, is that patients need to be matched to groups of the general population sharing
the available characteristics z in order to obtain the background mortality rates hP(·; z) from the life
tables. The number of available characteristics z varies for different countries, and there exist certain
characteristics that are not available at the population level that may affect the background mortality rates
such as deprivation, ethnicity, drug use (tobacco, alcohol, and etc.), comorbidities, among others. For
instance, it has been shown that deprivation levels are associated with life expectancy in some populations
(Woods and others, 2005). Thus, if life tables are obtained without a proper stratification of deprivation
levels, this will imply that two individuals with different deprivation levels (e.g. most affluent vs. most



Excess hazard models for insufficiently stratified life tables 53

deprived), but sharing other sociodemographic characteristics, will be assigned the same background
mortality. We will refer to the case when the life table is not sufficiently stratified as a “mismatch in the
life table.” This mismatch may also apply to other characteristics (e.g. smoking status), thus potentially
impacting the comparison ability of the net survival measure (Pavlič and Pohar-Perme, 2018). Moreover,
Dickman and others (1998) and Grafféo and others (2012) showed that not including relevant information
for matching the mortality rates of patients induces a bias in the estimation of the parameters in net survival
models (even for other variables than those included in the life tables). Concerns about the implications
of this kind of mismatches in the life tables have recently been discussed in Pavlič and Pohar-Perme
(2018) and Bower and others (2018). Thus, it is desirable to produce models that can capture possible
mismatching information in the background mortality rates associated to each patient, and that allow the
assessment of the impact of this mismatch. In this work, we study an existing model for correcting the
background mortality using a single correction parameter (Cheuvart and Ryan, 1991), and extend it to a
general hazard structure for excess hazard regression models (Rubio and others, 2018). We also propose
a correction model using a random effect (instead of a single parameter). For each of these models, we
study the properties of maximum likelihood estimation of the corresponding parameters. We assess the
performance of this inferential procedure in an extensive simulation study. We apply and compare these
methods using a lung cancer data example. We conclude with some practical advice and summarize the
conditions and limitations of these methods, as well as potential directions for further research.

2. CORRECTIONS OF THE BACKGROUND MORTALITY IN EXCESS HAZARD REGRESSION

In this section, we present two parametric corrections that can account for mismatches in the life table.
The first one corresponds to the single parameter correction proposed by Cheuvart and Ryan (1991). The
second one corresponds to our proposal, which assumes that the correction to the background mortality
is random and can be modeled with a parametric distribution. Next, we present a brief summary of these
methods, as well as some of their properties and limitations.

2.1. Single parameter correction: Cheuvart and Ryan’s approach

In the context of clinical trials, Cheuvart and Ryan (1991) proposed an extension of model (1.1) in which
they allowed for a constant correction on the population hazard: the overall hazard after t years of follow-up
for a patient who entered the trial at age A in year y and with covariates x was assumed to be

hC
o (t; x) = γ hP(A + t; y + t; z) + hE(t; x), (2.2)

where γ > 0 is an unknown parameter differentiating the competing mortality of eligible patients from
that of the general population. Cheuvart and Ryan (1991) employ the proportional excess hazard model
hE(t; x) = hE,0(t; η) exp(z�β), where hE,0(·; η) is the baseline excess hazard with parameter η,β is a vector
of regression parameters, including the effects of treatment and other prognostic factors. In the context
of clinical trials, the correction parameter can be reasonably assumed to be the same for all individuals
since the population entering the trials is selected based on their characteristics (usually patients without
comorbid conditions, and etc.).

Model (2.2) can be rewritten in terms of the cumulative hazard and the survival functions as follows:

H C
o (t; x, γ ) = γ [HP(A + t; y + t; z) − HP(A; y; z)] + HE(t; x), (2.3)

SC
o (t; x, γ ) = exp{−γ [HP(A + t; y + t; z) − HP(A; y; z)]} exp [−HE(t; x)] , (2.4)

where HP and HE are the cumulative hazard functions obtained from hP and hE , respectively.
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In principle, model (2.2) can also be used to account for mismatched life tables, as the correction is made
on the population hazard. The basic assumption behind this model is that the true competing mortality is
proportional to the mortality of the population obtained from the life tables, and the correction is the same
for all individuals. Expression (2.3) also indicates that the information used for estimating the additional
correction parameter γ comes from the differences in the cumulative hazard HP(A+t; y+t; z)−HP(A; y; z),
which are not used in the estimation of the classical model (1.1).

2.2. Frailty correction for the population hazard

One limitation of model (2.2) is that the correction γ , made on the population hazard, is assumed to
be constant across all the individuals. This assumption may not be realistic in population studies, where
the diversity of unavailable sociodemographic characteristics used to obtain the life tables may induce a
non-constant mismatch. Thus, instead of assuming that γ is constant in model (2.2), we assume that γ is
a positive continuous random variable. This implies that the correction factor γ is allowed to vary across
the different individuals. More specifically, consider the conditional hazard model

h̃o(t | γ ; x) = γ hP(A + t; y + t; z) + hE(t; x), (2.5)

γ ∼ G.

where G is an arbitrary absolutely continuous cumulative distribution function with support on R+. The
conditional overall survival function is given by

S̃o(t | x, γ ) = exp{−γ [HP(A + t; y + t; z) − HP(A; y; z)]} exp [−HE(t; x)] ,

γ ∼ G.

Then, after integrating out the frailty γ with respect to the distribution G (see Appendix of the
supplementary material available at Biostatistics online), the individual marginal overall survival function
can be written as

S̃o(t; x) = exp{−HE(t; x)}LG{HP(A + t; y + t; z) − HP(A; y; z)}, (2.6)

where LG{s} = ∫ ∞
0 e−srdG(r) denotes the Laplace transform of G evaluated at time s. Next, we consider a

specific choice for the distribution G: a Gamma distribution. This choice allows for obtaining a closed-form
expression of the marginal survival function, in addition to its appealing flexibility and interpretability of
parameters.

Gamma frailty

Consider the conditional hazard model (2.5) and suppose that γ ∼ Ga(μ, b), where Ga(μ, b) denotes a
Gamma distribution with mean parameter μ > 0, scale parameter b > 0, and probability density function

g(r; μ, b) = r
μ
b −1

�
(

μ

b

)
b

μ
b

exp
(
− r

b

)
. Then, it follows that

1. The marginal individual survival function is given by

S̃o(t; x) = exp {−HE(t; x)}
{1 + b [HP(A + t; y + t; z) − HP(A; y; z)]}μ

b
. (2.7)

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz017#supplementary-data
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2. The marginal individual hazard function is given by

h̃o(t; x) = μ hP(A + t; y + t; z)
1 + b [HP(A + t; y + t; z) − HP(A; y; z)]

+ hE(t; x). (2.8)

Expression (2.8) provides a nice interpretation of our approach since the observed hazard can be seen

as a model with a correction function ω1(t, z; μ, b) = μ

1 + b [HP(A + t; y + t; z) − HP(A; y; z)]
, which is

identifiable and provides a functional form that involves the mean correction, the scale or spread of the
correction, and the differences on the population cumulative hazards. Another property of the correction
function is that limb→0 ω1(t, z; μ, b) = μ, which indicates that the correction model (2.2) is a limit
case. This property, however, does not imply that the correction parameter in (2.2) represents the mean
correction when b > 0, as shown in our simulations. We can also observe that if two patients have
the same sociodemographic characteristics (or virtually the same) but different survival times, then the
corresponding value of the weight ω1 will differ since the corresponding differences in the cumulative
hazards HP(A+ t; y + t; z)−HP(A; y; z) will be different. This, intuitively, suggests that the more extreme
the survival time t of a patient is (either too small or too large), compared to other patients with the same
sociodemographic characteristics, the more likely this patient has been assigned the incorrect mortality
rate from the life table. This approach implicitly assumes that the excess hazard model hE(t; x) is correctly
specified and includes all important prognosis factors (see Section 6). It also indicates that the information
about the parameters of the frailty distribution is provided by the variability in the observed survival times
of similar individuals regarding their sociodemographic characteristics and tumor prognosis factors. This
suggests the need for a certain amount of observations for groups of patients with similar characteristics.

2.3. Hazard structure and baseline hazard

For models (1.1), (2.2), and (2.8), we adopt the general excess hazard model (GH) proposed in Rubio and
others (2018):

hGH
E (t; xi) = h0

(
t exp(x�

i β1)
)

exp(x�
i β2), (2.9)

H GH
E (t; xi) = H0

(
t exp(x�

i β1)
)

exp(−x�
i β1 + x�

i β2),

where h0(·) is the baseline hazard. This hazard structure contains, as particular cases, the proportional
hazards (PH) model when β1 = 0, the accelerated hazards (AH) model when β2 = 0, the accelerated
failure time (AFT) model when β1 = β2, as well as combinations of these for β1 �= β2 �= 0. Thus, this
structure covers the most popular hazard structures used in the literature, allowing also to capture time-
dependent effects through β1 (i.e. effects which are not assumed to be constant over the whole follow-up
period, such as the effects estimated in PH models). For an extensive discussion on the properties of this
GH structure, we refer the reader to Rubio and others (2018).

The baseline hazard in (2.9) will be modeled using the Exponentiated Weibull (EW) distribution. The
EW distribution contains three positive parameters (κ , θ , α) (shape, scale, and power), and the correspond-
ing hazard function can capture some basic shapes: increasing, decreasing, unimodal (up-then-down),
bathtub (down-then-up), and constant. The EW density and cumulative distribution functions with shape,
scale, and power parameters (κ , θ , α) are given, respectively, by:

fEW(t) = α
κ

θ

(
t

θ

)κ−1 [
1 − exp

{
−

(
t

θ

)κ}]α−1
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Thus, the combination of the GH structure with the choice of the EW baseline hazards can capture a
variety of hazard structures, time-dependent effects (through the parameters in β1), and baseline hazard
shapes, while allowing for a parsimonious implementation of all the proposed models (Rubio and others,
2018).

3. INFERENCE

3.1. The classical model

Let ti > 0, i = 1, . . . , n, be the sample of times to event from a population of cancer patients, with
covariates xi ∈ R

p, and vital status indicators δi (1-death, 0-censored).
For the classical model (1.1), we will rely on the maximum likelihood estimation method, which has

been shown to have good inferential properties with the hazard structure detailed in (2.9) (Rubio and
others, 2018). With this model, the likelihood is defined as:

M1. Classical model (1.1):

L(ψ ; Data) =
n∏

i=1

ho(ti; xi)
δi So(ti; xi)

∝
n∏

i=1

{hP(Ai + ti; yi + ti, zi) + hE(ti; xi)}δi exp {−HE(ti; xi)} ,

where ψ represent the parameters of the excess hazard model. In our case, ψ = (κ , θ , α, β1, β2). Notice
that here for model (1.1), we omit the expected survival from the likelihood, as this quantity does not
depend on parameters.

3.2. The models with correction of the background mortality

For the models of interest, (2.2) and (2.8), we will estimate the parameters using the maximum likelihood
method. The corresponding likelihood functions are presented below for the single-parameter correction
model (2.2) and the frailty correction model (2.8)

M2. Single-parameter correction model (2.2):

LC(ψC ; Data) =
n∏

i=1

{γ hP(Ai + ti; yi + ti; zi) + hE(ti; xi)}δi exp {−HE(ti; xi)}

× exp{−[HP(Ai + ti; yi + ti; zi) − HP(Ai; yi; zi)]}γ ,

where ψC = (γ ,ψ).
M3. Frailty correction model (2.8):

LF(ψF ; Data) =
n∏

i=1

{
μ hP(Ai + ti; yi + ti; zi)

1 + b [HP(Ai + ti; yi + ti; zi) − HP(Ai; yi; zi)]
+ hE(ti; xi)

}δi

× exp {−HE(ti; xi)}
{1 + b [HP(Ai + ti; yi + ti; zi) − HP(Ai; yi; zi)]}μ

b
,

where ψF = (μ, b,ψ).
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These likelihood functions can be maximized using standard optimization routines from the R software
(e.g. “nlminb” or “optim”). In order to select between models M1–M3, we use the Akaike Information
Criterion (AIC), as these models are estimated using the maximum likelihood method.

3.3. Choice of initial points for the optimization process

For the optimization process, we consider a two-step algorithm. In the first step, we initialize the search
at the initial values: ψ (0) = (κ(0), θ(0), α(0), β(0)

1 , β(0)

2 ), where κ(0) = 1, θ(0) = 1, α(0) = 2, β
(0)

1 = β
(0)

2 = 0,
and then move from these initial values using one cycle of a coordinate descend algorithm (CDA), coupled
with the R command “nlminb” on each step of the CDA (see Wright, 2015 for more details on the CDA).
The CDA is an algorithm which successively maximizes an objective function along coordinate directions.
In our case, we first obtain a new value of the first parameter, κ(1), after maximizing the objective function
with respect to κ , while setting the other parameter values at their initial values. Then, we maximize again
the objective function, obtained by setting this time the initial values to (κ(1), θ(0), α(0), β(0)

1 , β(0)

2 ) to get
θ(1). We repeat the same process for all other parameters to finally get a vector (κ(1), θ(1), α(1), β(1)

1 , β(1)

2 ).
In the second step, we utilize the values obtained with the CDA as new initial values in a general purpose
optimization algorithm (e.g. “nlminb” or “optim” from the R software), in order to obtain the MLE ψ̂ .

For model M2, we use the initial values (γ , ψ̂), with γ = 1.2, while for model M3, we employ the
initial values (μ, b, ψ̂), with μ = 1.2 and b = 0.1. In practice, we recommend running the optimization
process at several initial points in order to ensure that the global maximum of the likelihood is reached.

4. SIMULATION STUDIES

In this section, we present a simulation study where we assess the impact of mismatches in the population
hazard on the estimation of the excess hazard, as well as the performance of the proposed correction models
(M2–M3). The true values of the parameters are chosen in order to produce scenarios that resemble cancer
population studies concerning an aggressive type of cancer (relatively low 5-year net survival, seeAppendix
Table 1 of the supplementary material available at Biostatistics online), such as lung cancer, similar to the
simulations presented in Rubio and others (2018). An additional extensive simulation scenario resembling
a less aggressive type of cancer (such as colon cancer, see Appendix Table 2 of the supplementary material
available at Biostatistics online) is presented in the Appendix (Simulation design II) of the supplementary
material available at Biostatistics online.

4.1. Data generation

Briefly, in the Simulation Design I of the supplementary material available at Biostatistics online, we
simulated N = 1000 data sets of size n = 5000, 10 000, assuming the additive hazard decomposition
given in (1.1). The variable “age” was simulated as a continuous variable using a mixture of uniform
distributions with 0.25 probability on (30, 65), 0.35 probability on (65, 75), and 0.40 probability on
(75, 85) years old. The binary variables “sex” and “W” were both simulated from a binomial distribution
with probability 0.5 (the binary variable “W” could be viewed as “treatment” or “comorbidity” or “stage”
(early and late)). In all scenarios, we simulated the “other-causes” time to event using the UK life tables
based on “age” and “sex” (assuming that all patients were diagnosed on the same year). The time to event
from the excess hazard (cancer death time) was generated using the inverse transform method, assuming
effects of the three variables “age,” “sex,” and “W” and an EW distribution. We assumed either (i) only
administrative censoring at TC = 5 years, which induced approximately 25% censoring in all cases, or
(ii) an additional independent random censoring (drop-out) using an exponential distribution with rate
parameter r, inducing approximately 30% censoring in these cases. Given the GH structure (2.9) adopted

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz017#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz017#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz017#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz017#supplementary-data
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Fig. 1. Frailty distributions used in the simulation.

for the simulation, all variables affect the time scale (i.e. time-dependent effects) as well as the hazard
scale (i.e. changing the level of the hazard). We refer the reader to Rubio and others (2018) for a more
detailed discussion on the interpretation of the GH structure.

We consider four scenarios that represent mismatches in the life tables: (i) No mismatch, where the data
are generated from model (1.1); (ii) Moderate mismatch, where the data are generated from the hazard
model (2.5) with γ ∼ Ga(1.2, 0.02); (iii) Severe mismatch, where the data are generated from the hazard
model (2.5) with γ ∼ Ga(1.875, 0.075); and (iv) Wide mismatch, where the data are generated from the
hazard model (2.5) with γ ∼ Ga(6.5, 10) (see Figure 1). In all of these scenarios, we fit models M1–M3.
We also consider selecting between models M1–M3 using AIC, in order to identify the model favored
by the data. The estimates of the parameters of the excess hazard model selected using AIC are reported,
and this model is referred to as model M4. For model M4, we report the estimated correction parameter c
associated to the selected model. This is, ĉ = 1 if AIC selects model M1, ĉ = γ̂ if AIC selects model M2,
and ĉ = μ̂ if AIC selects model M3. We report coverage of the asymptotic normal confidence intervals in
all the scenarios.

4.2. Simulation results

For illustration, Table 1 and Figure 2 show the results for the scenario with n = 5000, 30% of censoring
and a Wide mismatch (iv). The results of the remaining scenarios are shown in the Appendix of the
supplementary material available at Biostatistics online, as well as the results with sample size of n =
10 000 and the simulation design II with a higher net survival. As expected, we observe that when there
is Severe and Wide mismatch (iii)–(iv), the model without correction (M1) will lead to biased parameters
estimates, as well as poor coverage (Table 1, Figure 2; Appendix Tables 5, 8, and 9 and Appendix Figures
4, 7, and 8 of the supplementary material available at Biostatistics online). This is reflected in the MLEs
of the model parameters as well as on the fitted excess hazards. The bias of the parameter estimates
and the poor coverages of M1 are more pronounced in the simulation design II with high net survival
(Appendix Tables 12, 13, 16, and 17 and Appendix Figures 11, 12, 15, and 16 of the supplementary
material available at Biostatistics online). In scenarios (i) and (ii) with No or Moderate mismatch, the

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz017#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz017#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz017#supplementary-data
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fitted correction models M2 and M3 are centered around the true generating model, although they exhibit
(as expected) a slightly larger variability compared to model M1 (Appendix Tables 3, 4, 6, 7, 10, 11,
14, and 15, and Appendix Figures 2, 3, 5, 6, 9, 10, 13, and 14 of the supplementary material available
at Biostatistics online). In scenario (iii) with Severe mismatch, the fitted correction models M2 and M3
properly correct the mismatch as these models are centered around the true generating model, with the
cost of higher variability. The parameters estimated with model M1 are biased with a very low coverage
(Appendix Tables 5, 8, 12, and 16 and Appendix Figures 4, 7, 11, and 15 of the supplementary material
available at Biostatistics online). In scenario (iv) with Wide mismatch, the fitted models M1 and M2 are
biased and far from the true generating model. On the other hand, model M3 can capture this mismatch
and reduce the bias properly (Table 1, Figure 2, Appendix Tables 9, 13, and 17 and Appendix Figures 8,
12, and 16 of the supplementary material available at Biostatistics online). The models selected with AIC
(M4) are also centered around the true generating model in all scenarios. In cases with no mismatch or
moderate mismatch, we observe that the bias on the estimates is small, the coverage is close to 95%, and
all models tend to be relatively close to the true generating model. In those cases, the AIC tends to favor
model M1. Table 18 in the Appendix of the supplementary material available at Biostatistics online shows
the proportion of selected models using AIC. Overall, we can see that M3 is favored in scenario (iv) with
Wide mismatch. In the scenario (iii) with Severe mismatch, the proportion of selected models depends
on the contribution of the excess hazard compared to the population hazard. In general, selecting the
models using AIC or another model selection tool is advised in order to identify the need for correcting
the population hazard. The simulation study results obtained with N = 10 000 per sample were very
similar to the ones obtained with N = 5000.

5. APPLICATION: LUNG CANCER DATA

We now analyze a dataset obtained from population-based national cancer registry of Non-Small Cell
Lung Cancer (NSCLC) patients diagnosed in 2012 in England. For deriving information on stage at
diagnosis and presence of comorbidities at the time of diagnosis, we linked these data to administrative
data (Hospital Episode Statistics [HES] and the Lung Cancer Audit data [LUCADA]) and then applied
specific algorithms (Benitez-Majano and others, 2016; Maringe and others, 2017). We used a 6-year period
up to 6 months before diagnosis to retrieve information on comorbidity. We checked for the presence of
cardiovascular comorbidity (at least one of: myocardial infarction, congestive heart failure, peripheral
vascular disease, and cerebrovascular disease) and chronic obstructive pulmonary disease (COPD). We
measured deprivation using the Income Domain from the 2010 England Indices of Multiple Deprivation,
defined at the Lower Super Output Area level (mean population 1500). The Income Domain measures the
proportion of the population in an area experiencing deprivation related to low income, and ranges from
1% to 75% in our data (https://www.gov.uk/government/statistics/english-indices-of-deprivation-2010).
Follow-up was assessed on the 31st of December 2015, at which time patients alive were censored (so the
maximum follow-up was 4 years). We restricted our analysis to men with no missing data. We observed
n = 15 688 patients with complete cases among which no = 13 603 died before the 31st of December
2015, and 17 patients were lost to follow-up (censored before the 31st of December 2015). The median
follow-up among patients censored was 3.45 years, mainly because of administrative censoring. The 25%,
50%, and 75% quantiles of the patients’ age at diagnosis was 65.8, 73.0, 80.0 while the mean was 72.5.
Among the patients, 2210 were diagnosed at Stage I, 1502 at Stage II, 3679 at Stage III, and 8297 at
Stage IV. Finally, 3224 patients were classified with a cardiovascular comorbidity and 3154 with a chronic
obstructive pulmonary disease.

We applied models M1–M3 to estimate the excess mortality hazard using deprivation-specific life
tables (detailed by sex, age, year, and Government Office Region in addition to the deprivation quintile).

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz017#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz017#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz017#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz017#supplementary-data
https://www.gov.uk/government/statistics/english-indices-of-deprivation-2010
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Table 1. Simulation results for the scenario GH with (σ , κ , α) = (1.75, 0.6, 2.5), β1 = (0.1, 0.1, 0.1),
β2 = (0.05, 0.2, 0.25), n = 5000, and wide mismatch γ ∼ Ga(6.5, 10). Mean of the MLEs (MMLE),
median of the MLEs (mMLE), empirical standard deviation (ESD), mean (estimated) standard error,
root-mean-square error (RMSE), and coverage proportions (Coverage)

Design I: γ ∼ Ga(6.5, 10)

Model Parameter MMLE mMLE ESD Mean Std error RMSE Coverage

M1

σ (1.75) 1.212 1.214 0.228 0.218 0.584 0.464
κ (0.6) 0.592 0.593 0.046 0.045 0.047 0.934
α (2.5) 2.365 2.315 0.328 0.308 0.355 0.887

β11 (0.1) 0.119 0.118 0.012 0.012 0.023 0.700
β12 (0.1) 0.409 0.405 0.214 0.220 0.376 0.711
β13 (0.1) −0.034 −0.030 0.233 0.221 0.268 0.902
β21 (0.05) 0.065 0.065 0.002 0.002 0.015 0.000
β22 (0.2) 0.296 0.296 0.047 0.045 0.107 0.449
β23 (0.25) 0.161 0.159 0.047 0.046 0.101 0.484

M2

σ (1.75) 1.284 1.308 0.232 0.243 0.520 0.741
κ (0.6) 0.625 0.635 0.060 0.065 0.065 0.845
α (2.5) 2.199 2.106 0.412 0.402 0.510 0.689

β11 (0.1) 0.119 0.118 0.012 0.013 0.023 0.715
β12 (0.1) 0.411 0.406 0.215 0.223 0.378 0.717
β13 (0.1) −0.011 −0.001 0.225 0.225 0.251 0.928
β21 (0.05) 0.066 0.067 0.003 0.003 0.017 0.004
β22 (0.2) 0.308 0.309 0.046 0.047 0.117 0.352
β23 (0.25) 0.155 0.152 0.044 0.045 0.105 0.412
γ (6.5) 0.453 0.001 0.652 0.549 6.082 0.846

M3

σ (1.75) 1.406 1.323 0.745 0.721 0.820 0.978
κ (0.6) 0.543 0.546 0.127 0.122 0.139 0.966
α (2.5) 4.082 2.992 7.019 3.070 7.192 0.970

β11 (0.1) 0.099 0.099 0.028 0.024 0.028 0.913
β12 (0.1) 0.121 0.134 0.340 0.339 0.340 0.959
β13 (0.1) 0.089 0.103 0.354 0.326 0.354 0.950
β21 (0.05) 0.048 0.049 0.009 0.009 0.010 0.948
β22 (0.2) 0.187 0.198 0.089 0.089 0.090 0.954
β23 (0.25) 0.262 0.251 0.087 0.085 0.087 0.949

b (10) 13.060 9.072 12.247 10.379 12.618 0.847
μ (6.5) 7.010 7.134 1.839 1.727 1.908 0.853

M4

σ (1.75) 1.367 1.274 0.733 0.686 0.826 0.920
κ (0.6) 0.540 0.546 0.122 0.117 0.136 0.968
α (2.5) 3.992 2.978 6.479 2.694 6.645 0.960

β11 (0.1) 0.100 0.100 0.028 0.023 0.028 0.895
β12 (0.1) 0.139 0.151 0.341 0.328 0.343 0.938
β13 (0.1) 0.082 0.092 0.350 0.317 0.350 0.945
β21 (0.05) 0.049 0.049 0.010 0.008 0.010 0.859
β22 (0.2) 0.194 0.203 0.092 0.086 0.093 0.904
β23 (0.25) 0.257 0.248 0.089 0.082 0.089 0.907

c (6.5) 6.709 7.137 2.470 – 2.477 –



Excess hazard models for insufficiently stratified life tables 61

0 1 2 3 4 5

0.
0

0.
3

0.
6

0 1 2 3 4 5

0.
0

0.
3

0.
6

0 1 2 3 4 5

0.
0

0.
3

0.
6

0 1 2 3 4 5

0.
0

0.
3

0.
6

0 1 2 3 4 5

0.
0

0.
3

0.
6

0 1 2 3 4 5
0.

0
0.

3
0.

6

0 1 2 3 4 5

0.
0

0.
3

0.
6

0 1 2 3 4 5

0.
0

0.
3

0.
6

Time (years)

Ex
ce

ss
 H

az
ar

d

Fig. 2. Scenario with wide mismatch: γ ∼ Ga(6.5, 10). Models M1–M4 from top to bottom. Mean of the fitted excess
hazards (dashed lines), compared to the true generating excess hazard (continuous lines), and 1000 sample-specific
fitted excess hazards (grey lines) for n = 5000 and 30% censoring. Panels from left to right correspond to two sets of
values for the covariates (age, sex, comorbidity) = (70, 0, 0), (70, 0, 1), respectively. Design I: γ ∼ Ga(6.5, 10).

Consequently, we are implicitly assuming that the variables age, sex, deprivation, tumor stage, and comor-
bidity accurately explain the excess hazard in NSCLC patients. The regression parameter estimates for
the excess hazard models M1–M3, as well as the correction parameters (for models M2–M3), are reported
in Table 2. For illustrating the results, the excess mortality hazard and the corresponding Net Survival for
two pre-defined subgroups of patients are depicted in Figure 3.

In Table 2, between the three models (M1, M2, and M3), the AIC favors model M3 (i.e. the frailty
correction model). Differences on β estimates (regression coefficients) between M1 and M3 are substantial.
For example, the protective effect of Stage I cancer (compared to being diagnosed with a Stage IV cancer)
is even higher when accounting for mismatched life tables. This interpretation follows by noticing that
the two parameters associated with Stage I are negative (see Rubio and others, 2018 for details on those
hazard-structure models and their interpretation). The impact of the presence of a comorbidity is higher
in M3 compared to M1 and M2. Thus, correcting the population life table for unobserved predicting
variables of background mortality seems to be quite relevant in this example. An unobserved variable
which certainly affects the population mortality hazard here is smoking status. We observe that the frailty
distribution, used for correcting the population mortality in M3, cumulates 23% of the probability mass
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below 1, and 77% above 1. That is, the value 1 represents the 23% quantile of the fitted Gamma frailty
distribution with scale parameter 9.83 and mean 6.54. These values are in fact related to the proportion of
smokers (roughly 80%, which would, in principle, require a correction higher than 1) for England lung
cancer patients (Ellis and others, 2014), which provides an intuitive interpretation of the frailty distribution
parameters. This interpretation, of course, has to be taken only at an intuitive level since the correction
induced with the frailty model M3 is not interpretable in terms of a single missing characteristic, but it
represents a combination of missing characteristics such as drug use (most likely tobacco in this case), the
presence of comorbidities among other lifestyle related diseases and its impact on the general population
mortality, and etcetera.

In order to evaluate the effect of not having deprivation-specific life tables, we have also fitted excess
hazard models using life tables without the deprivation variable (i.e. national life tables). The results
obtained with the deprivation-specific life tables and those obtained with the national life tables (exclud-
ing deprivation) are very similar (see Section 5, Table 19, in the Appendix of the supplementary material
available at Biostatistics online), which is due to the high lethality of lung cancer (inducing negligi-
ble differences of population mortality between deprivation groups). Figure 1 in the Appendix of the
supplementary material available at Biostatistics online shows the net survival curves obtained for the
whole population with models M1–M3 as well as the non-parametric Pohar-Perme estimator (Perme and
others, 2012). We observe that model M1 and the Pohar-Perme estimator are virtually the same, which
indicates that M1 can properly capture time-dependent effects (Rubio and others, 2018), an assumption
made for the correction models. Model M2 produces a net survival curve which is consistently above that
obtained with M1. The net survival curve obtained with M3 is above all others, which is explained by the
fact that most of the probability mass (77%) of the frailty correction is above 1. We compared estimates
of the excess mortality hazard and the corresponding net survival for two subgroups of patients (Figure
3). For stage IV patients, the differences between each model is almost not visible (upper panels), while
the difference between models M1–M3 could be more clearly seen in stage II patients subgroup (lower
panels).

6. DISCUSSION

6.1. Summary of findings

Using the general hazard structure in Rubio and others (2018), we have proposed excess hazard regression
models that can account for mismatches in the life tables induced by the unavailability of information
on relevant population characteristics. The correction models based on a frailty distribution account for
non-specific mismatches in the life table, in the sense that the correction is not associated to the lack of
known specific variables for constructing the life tables, but to the effect of potentially several unavailable
characteristics, which is allowed to be different for each patient. This is the main difference with Cheuvart’s
model (2.2), which we used here for comparison purpose even though this model was mainly developed
in the context of a randomized clinical trial when a selection bias of the patient population is expected.
Thus, Cheuvart’s model assumes the same constant correction parameter for all patients, which is the
main difference with our proposed frailty correction models used in population-based cancer registry
data. We have shown that the proposed frailty correction models are able to properly identify and correct
these mismatches in several simulation scenarios, provided that the sample size is large enough (5000 or
more). Not accounting for mismatched life tables in the relative survival setting may lead to inappropriate
net survival comparisons between populations. The need for relatively large samples in order to identify
mismatches in the life tables is unsurprising, as there may be several reasons why general population life
tables are not fit for our cancer patient population (drug use, lifestyle related diseases, deprivation, ethnicity,
and etc.), and only a large enough sample would guarantee that the data contain enough information

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz017#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz017#supplementary-data
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Table 2. Regression parameter estimates (standard errors) using models M1–M3, with their corresponding
AIC on the men lung cancer dataset. Note:The time- dependent effects are indicated with -t. For model M2,
γ is estimated, while μ is estimated for model M3. Age, age at diagnosis (centered at 70, and divided by
10), Dep, Income Deprivation Score (centered at 0.1, and divided by 10); CV, CardioVascular comorbidity;
COPD, chronic obstructive pulmonary disease; AIC, Akaike information criteria (best model indicated in
bold font)

M1 M2 M3

b — — 9.83 (3.03)

γ | μ — 2.7 (0.21) 6.54(0.91)

θ 0.05 (0.01) 0.03 (0.01) 0.03 (0.01)

κ 0.38 (0.01) 0.35 (0.01) 0.34 (0.01)

α 4.64 (0.34) 5.64 (0.48) 5.92 (0.58)

Age-t 0.29 (0.04) 0.29 (0.04) 0.16 (0.05)

Dep-t 0.11 (0.04) 0.12 (0.04) 0.09 (0.04)

Stage 1-t −2.66 (0.25) −2.17 (0.32) −5.4 (1.4)

Stage 2-t −2.2 (0.2) −2 (0.22) −2.69 (0.35)

Stage 3-t −1.66 (0.11) −1.57 (0.11) −1.75 (0.13)

CV-t 0.31 (0.11) 0.31 (0.11) 0.42 (0.11)

COPD-t 0.13 (0.11) 0.08 (0.12) 0.37 (0.14)

Age 0.27 (0.01) 0.23 (0.02) 0.16 (0.02)

Dep 0.06 (0.01) 0.06 (0.01) 0.04 (0.01)

Stage 1 −2.84 (0.06) −3.13 (0.1) −3.53 (0.36)

Stage 2 −2.16 (0.06) −2.32 (0.07) −2.65 (0.1)

Stage 3 −1.23 (0.03) −1.27 (0.04) −1.36 (0.04)

CV 0.24 (0.04) 0.26 (0.04) 0.3 (0.04)

COPD 0.19 (0.04) 0.17 (0.04) 0.25 (0.05)

AIC 20 304.69 20 241.27 20 213.41

to adjust for the unavailability of those variables. Intuitively, the information about these correction
parameters is provided by the sample of differences of the population cumulative hazards HP(Ai + ti; zi)−
HP(Ai; zi). The implicit assumptions behind the proposed correction model M3 (2.8) are:

(i) The set of covariates x includes the relevant cancer-specific variables. Thus, all missing information
(if any) is produced from a mismatch of the population mortality rate.

(ii) The model hE(t; x) is properly specified. This is, the fitted excess hazard model is flexible enough
to approximate the excess hazard.

Assumption (i) reflects the fact that the model was constructed to only capture mismatches in the life
tables, since the correction parameter only affects the population mortality hazard. For instance, in our
lung cancer data example, we assume that the excess hazard is accurately explained by age, sex, deprivation,
tumor stage, and comorbidity. However, a potential risk factor that is not included there is the smoking
status, which is not available at the population level in England. This risk factor might affect both the
background mortality hazard (because of diseases or complications associated with smoking) and the
cancer-related mortality hazard, in the case that patients continue smoking after the diagnosis of cancer.
Indeed, smoking is a driver of lung cancer incidence, but its impact on cancer-related mortality hazard may
not be that clear because comorbidity conditions already accounts (at least partially) to smoking-related
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Fig. 3. Illustration for lung cancer patients: Excess mortality hazard (left panels) and the corresponding net survival
(right panels) for men aged 70 years at diagnosis, with Income Deprivation score equals to 0.1 (i.e. least deprived),
without Cardiovascular comorbidity nor COPD, and with stage IV cancer at diagnosis (upper panels) or stage II
cancer at diagnosis (lower panels). M1=solid grey lines, M2=dot-dashed black lines, M3=long-dashed black lines.

complications. Thus, the main interest of including smoking status in the predictor variables of the cancer-
related mortality hazard would be for patients who continue smoking after the diagnosis of cancer, and it
would certainly be interesting to explore the effect of including this variable in the model once it becomes
available. Assumption (ii) is important since model misspecification can also affect the correction made
on the population hazard. If a covariate which appears in z and x is wrongly modeled in hE(t; x) (e.g. not
accounting for time-dependent effects), this may also affect the correction. In principle, this is not an
onerous condition since one would usually aim at properly modeling the excess hazard, which is typically
the main function of interest. Moreover, recent developments in the use of splines and parametric models
(Royston and Parmar, 2002; Giorgi and others, 2003; Nelson and others, 2007; Remontet and others,
2007, 2018; Charvat and others, 2016; Rubio and others, 2018) allow for a tractable inclusion of non-linear
and time-dependent effects in excess hazard models. We also assume that there is enough heterogeneity
about the unobserved variables of interest. For instance, if we want to assess the impact of mismatched life
tables in terms of deprivation, we assume that the sample contains large enough numbers of individuals
with different deprivation levels. The amount of data required to accurately estimate the parameters of
the correction models has been explored through a simulation study. Certainly, we would not recommend
trying to correct for mismatches in the life tables in samples containing substantially fewer than 5000
observations, or with high censoring rates (e.g. higher than 50%). Overall, we have found that model M3
is a good option for accounting for mismatches in the life tables, provided a large enough sample. Its use
however is not automatic and should be analyzed on a case by case basis. Comparing the results between
corrected (M3) and uncorrected (M1) models, as well as the non-parametric Pohar-Perme estimator, is
advisable in practice, in addition to the use of expert knowledge from clinicians or epidemiologists in
order to understand and explain the source of the mismatches.
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6.2. Other models in the literature: shared and correlated frailty models

Zahl (1997) describes two extensions of long-term excess hazards models, where the main goal is to
account for an increased risk of dying of other diseases in patients with certain cancers. The first extension
consists of a shared frailty model in which a random effect (frailty) is multiplied by the population hazard
and the excess hazard as follows:

hS
o(t; x | γ ) = [hP(A + t; y + t, z) + hE(t; x)]γ , (6.10)

where γ ∼ G, and G is a distribution with positive support, typically chosen to be a Gamma distribution
with unknown shape and scale parameters. Perhaps unsurprisingly, the induced model is non-identifiable
unless the random effect has unit mean. Given that the Gamma distribution is asymmetric, the assumption
of unit mean implies that P(γ ≤ 1) > P(γ > 1), which may not be a reasonable assumption in some
scenarios since this implies that there is a higher probability of requiring a shrinking correction to the
population hazard (γ ≤ 1) than an increasing one (γ > 1). For a general framework of frailty hazard
models we refer the reader to Aalen and others (2008).

Zahl (1997) proposed a correlated frailty model, by using frailties on both the population hazard and
the excess hazard:

hZ
o (t; x | γ1, γ2) = hP(A + t; y + t, z)γ1 + hE(t; x)γ2, (6.11)

where (γ1, γ2) ∼ G2, and G2 is a bivariate distribution with support on the positive quadrant. Intuitively,
it is difficult (if at all feasible) to obtain information about the factors affecting the population hazard and
the excess hazard (which is typically a flexible parametric model), and the dependencies between them,
simultaneously. In fact, Zahl (1997) found that the maximum likelihood estimators of the parameters
of model (6.11) do not exist, suggestive of identifiability issues of this model. Zahl (1997) proposed a
number of restrictions of the parameter space (to a compact set) in order to alleviate these estimation
issues. However, even after those restrictions, the MLE was on the boundary of the restricted parameter
space, which suggests remaining lack of identifiability.

6.3. Further research

From the results of our simulation study, we have observed a larger variability in the estimators of additional
parameters corresponding to the correction of the background mortality hazard. In order to reduce this
variability, penalized maximum likelihood estimation methods could be used to shrink the correction
parameter (i.e. for M2 or for M3) towards the value 1. This will be explored in future research.

From the simulation study, the coverage proportions of the additional parameter correcting the life table
were lower than the nominal value. Using a robust estimator of the variance for this additional parameter
may be an option to reach a better coverage, as may be calculating profile likelihood intervals.

Another extension of model (2.2) consists of modeling the correction parameters γ and μ in terms of
a set of covariates, say w. A related approach has recently been studied in Touraine and others (2019).
Possible limitations include the inferential challenges in estimating q ≥ 2 (the dimension of w) when the
sample size is not large enough. In addition, the assumption of proportional population hazards is often
too restrictive in the cancer survival field. In practice, one natural question is whether the Gamma frailty
distribution is flexible enough to model the random correction. Using maximum likelihood estimation
implies that the estimators of the parameters of the frailty distribution will converge to the values that
minimize the distance (in fact, the Kullback–Leibler divergence) to the true generating model. Section
6, Appendix Tables 20–21 and Appendix Figures 17 and 18 of the supplementary material available at
Biostatistics online, shows a simulated example where the random correction is simulated from a lognormal

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz017#supplementary-data
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distribution (instead of Gamma). This example indicates that model M3 has a good performance even if the
random corrections are not generated from a Gamma distribution, but as long as the Gamma distribution
can approximate the shape of the true generating distribution. A possible extension consists of using a
more flexible frailty distribution with a tractable Laplace transform, in order to obtain tractable expressions
for the hazard and cumulative hazard functions. An attractive option is the power variance function (PVF)
family of distributions (Aalen and others, 2008), which contains three parameters instead of two. This, of
course, complicates the estimation process.

SOFTWARE

Software in the form of R code, together with a sample input data set and complete documentation is
available under request, and an R Markdown document entitled “Simulation design I: Excess hazard models
for insufficiently stratified life tables” is available on the website http://www.rpubs.com/FJRubio/FGH
and the GitHub repository https://github.com/FJRubio67/ExcessHazardModels.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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