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Abstract

The actin fold is found in cytoskeletal polymers, chaperones, and various metabolic enzymes. 

Many actin-fold proteins, like the carbohydrate kinases, do not polymerize. We found that Glk1, a 

Saccharomyces cerevisiae glucokinase, forms two-stranded filaments with unique ultrastructure, 

distinct from other cytoskeletal polymers. In cells, Glk1 polymerized upon sugar addition and 

depolymerized upon sugar withdrawal. Polymerization inhibits enzymatic activity; the Glk1 

monomer-polymer equilibrium sets a maximum rate of glucose phosphorylation regardless of 

Glk1 concentration. Mutation eliminating Glk1 polymerization alleviated concentration-dependent 

enzyme inhibition. Yeast containing non-polymerizing Glk1 were less fit when growing on sugars 

and more likely to die when refed glucose. Glk1 polymerization arose independently from other 

actin-related filaments and may allow yeast to rapidly modulate glucokinase activity as nutrient 

availability changes.

One-sentence summary

Yeast glucokinase activity is limited by its polymerization, which is critical for cell viability 

during glucose refeeding.
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The Actin ATPase clan (1) is a diverse group of structurally similar protein families found in 

all domains of life (2). Several of the Actin ATPase families form polymers, but the 

metabolic enzymes, such as hexose kinases, do not (3). It is unclear if polymerization 

evolved several times within this clan or if these polymerizing families descend from a 

single, ancient, polymerizing ancestor, a hypothesis suggested by phylogenetic (4) and 

structural studies (5).

Cells use several mechanisms to change enzyme activity in response to environmental 

changes, including allosteric and post-translational regulation. Enzymes can also change 

their physical state, assembling into filaments or gels, which serves as a sensitive, tunable 

way to control activity. Enzyme polymerization can regulate flux through pathways (6), 

store enzymes during starvation (7), and measure and signal cellular states (8).

Hexokinases and glucokinases of fungi are from a single family (the hexokinase family) 

within the Actin ATPase clan. Fungal glucokinases phosphorylate glucose, mannose, and 

glucosamine, while the fungal hexokinases also phosphorylate fructose. The glucokinases 

have a higher substrate affinity and lower Vmax than the hexokinases (9). S. cerevisiae has 

three hexokinase family proteins: a glucokinase (Glk1) and two hexokinases (Hxk1 and 

Hxk2). Hxk2 is expressed in glucose-rich environments and regulates the expression of the 

other two enzymes; Hxk1 and Glk1 repression is alleviated without glucose (10) (Fig. S1).

To probe the cell biology of these isozymes we made monomeric-superfolder-GFP 

(msfGFP) fusions to each at their native loci and examined their behavior in cells. Without 

glucose, Glk1-msfGFP was diffuse. When glucose-starved cells were refed glucose, Glk1-

msfGFP formed filamentous structures, which rapidly disassembled upon glucose removal 

(Fig. 1A–C; Movies S1–2). Glk1-msfGFP also polymerized upon refeeding other Glk1 

substrates: mannose or glucosamine (Fig. S2; S3). Hxk1-msfGFP and Hxk2-msfGFP did not 

oligomerize (Fig. 1A).

To understand what regulates Glk1 polymerization, we studied it in vitro. Other enzymes 

form condensates in low pH (7), however Glk1 did not (Fig. S4). Rather, Glk1 polymerized 

in the presence of its substrates (ATP and glucose, mannose, or glucosamine) or its products 

(ADP and sugar-6-phosphate). Modest polymerization also occurred with Glk1 inhibitors 

(Fig. 1D; S5; S6) (9). Although fructose and galactose induced Glk1 polymerization in vivo, 

they did not in vitro, suggesting in vivo polymers assemble when cells convert these sugars 

into glucose-6-phosphate (G6P) (Fig. S2; S3; S7) (11, 12).

Like actin, Glk1 exhibits a critical concentration (CC) for polymerization. Beneath 2 μM 

Glk1 there was no polymerization. Above 2 μM the concentration of Glk1 polymer 

increased, while unpolymerized Glk1 remained constant (Fig. 1E). This is consistent with 

the lack of polymers in fermenting cells where Glk1 expression is suppressed by glucose. 

Indeed, Glk1-msfGFP polymers were observed in glucose when Glk1-msfGFP was 

expressed from a strong promoter (Fig. S9). Consistent with the rapid polymerization 

observed in vivo, in vitro Glk1 polymerization reached steady state in a matter of seconds 

(Fig. 1G).
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Polymerization can either activate or inhibit enzyme activity (6, 13), so we measured Glk1 

activity as we varied Glk1’s concentration. Beneath Glk1’s CC, G6P production rate 

increased with Glk1. Above the CC the rate of product formation was constant (Fig. 1E). 

Thus, polymerization inhibits Glk1 activity, and the monomer-polymer equilibrium caps 

monomer concentration, thereby keeping net enzymatic activity constant.

We used electron microscopy of negative stained samples to examine Glk1 oligomers. Glk1 

formed helical filaments in the presence of substrates (Fig. 1F). The micron-scale structures 

seen in vivo are likely driven by crowding (14), filament binding proteins (15, 16), or 

dimerization of the fluorescent tag (17). Similar polymers were observed when Glk1 was 

fused to other “monomeric” fluorescent proteins (Fig. S8).

To investigate why Glk1 polymerizes and Hxk1 and Hxk2 do not, we solved the crystal 

structure of Glk1 (Table S1) (18). Comparing this to the S. cerevisiae Hxk2 structure (19) 

revealed differences in key regions: the N- and C-termini and in two loops (Fig. 2A; S10; 

S11). We then used cryo-electron microscopy to determine the structure of Glk1 filaments 

(Table S2) (20). This 3.8 Å resolution structure (Fig. 2B) revealed that Glk1 formed two-

stranded, antiparallel filaments. Similar to other actin-like filaments (4), subunits were in the 

closed state and ligand bound (Fig. 2C; S13) (21), but unlike actin, did not flatten. Glk1 

homologs alternate between open and closed states during their catalytic cycle (21), thus 

Glk1 inhibition likely arises from their inability to transition between states.

The interactions between Glk1 subunits along a strand differ from the conserved interactions 

in other Actin ATPase clan polymers (5) (Fig. S14). Along the strand, the N-terminal, 

solvent-exposed Phe3 of one subunit inserts into the hydrophobic pocket at the C-terminus 

of the next (Fig. 2D–E; S15). Lateral associations between strands are mediated by the 

helix-loop-helix between residues 371–393, which binds antiparallel to the same region on 

the adjacent subunit (Fig. 2F).

Phylogenetically, the fungal glucokinases and hexokinases form separate clades. The group 

of yeast containing S. cerevisiae (the Saccharomyceteceae) arose ~200 million years ago. 

The Glk1 homologs in most Saccharomyceteceae contain four conserved motifs missing in 

both the other Glk1 homologs and all Hxk1/2 homologs. These motifs are at or near filament 

contacts: the N- and C-termini, loop 230–243, and loop 438–444. To test if these motifs 

predict polymerization, we purified different Glk1and Hxk1/2 homologs and tested their 

ability to polymerize. Only Glk1 homologs that contained all four motifs polymerized (Fig. 

S10; S16). Phylogenetic logistic regression showed these motifs correlate significantly with 

polymerization (P=0.018). These results suggest that Glk1 polymerization arose ~200 

million years ago. One ascomycete lineage, the Kluveromycetes, lost this ability (Fig. 3A) 

(22, 23).

The hexokinase family, which contains Glk1, segregates from the known polymer forming 

Actin ATPase families (Fig. 3B). This pattern is consistent with pairwise similarity between 

Hidden Markov Models of each family (Fig. S17; Table S3), and several lines of evidence 

suggest that Glk1 polymerization evolved independently of other actin-fold polymers: A) 

polymerizing Glk1 sequences form a subclade within the hexokinase family (Fig. 3A); B) 
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that broader hexokinase family is monophyletic in the global actin-fold tree ( Fig. 3B, 100% 

bootstrap, 100% SH-aLRT, 1 aBayes); C) hexokinases robustly group with the non-

polymerizing glucokinases and ROK kinases (96%, 95%, 1), and D) the monophyly of 

Glk1s with other polymerizing actins was rejected by an AU-test (P = 0.00106).

Next we examined how disrupting Glk1’s polymerization affected enzymatic activity and 

cell physiology. To create non-polymerizing Glk1 (NonPol-Glk1), we mutated the N-

terminal phenylalanine involved in inter-subunit contacts to serine (Glk1-F3S). This 

mutation eliminated polymerization both in vitro, and in vivo (Fig. S18A–B). NonPol-Glk1 

was enzymatically active but lacked the concentration-dependent inhibition of wild-type 

Glk1 (Fig. S18C).

To distinguish between the cellular effects of a lack of inhibition and the absence of 

polymers, we mutated the catalytic lysine (K182A) (Fig. S13B) (24) to create catalytically 

dead Glk1 (CatDead-Glk1). We combined these mutations (F3S/K182A) to create non-

polymerizing, catalytically dead Glk1 (NonPolCatDead-Glk1). CatDead-Glk1 formed 

polymers in vivo and in vitro but did not generate G6P. NonPolCatDead-Glk1 neither 

polymerized nor produced G6P (Fig. S18A–C).

When starved yeast are refed glucose, excess sugar kinase activity is toxic due to an 

imbalance between the early steps of glycolysis, which consume ATP, and the late steps, 

which generate ATP (25). Hxk1 and Hxk2 activity is inhibited by trehalose-6-phosphate, a 

transiently-accumulating metabolite (26). Because Glk1 is not inhibited by trehalose-6-

phosphate, we hypothesized that Glk1 polymerization limits activity when starved cells are 

refed glucose. Consistent with this model, when cells grown in galactose were refed glucose, 

15% of NonPol-Glk1 cells die (Fig. 4A). This death was caused by unregulated Glk1 

activity and not lack of Glk1 polymers: glk1Δ, CatDead-Glk1, or NonPolCatDead-Glk1 

behaved indistinguishably from wild-type cells. Thus, Glk1 polymerization limits the rate of 

glucose phosphorylation during glucose refeeding.

Unregulated Glk1 activity is detrimental to fitness over the entire growth cycle. We used 

differential fluorescent labeling to compare the fitness of wild-type cells against each 

mutant. We grew mixed cultures to saturation, diluted them into fresh medium every 48 

hours, and measured the proportion of strains by flow cytometry. NonPol-Glk1 cells had a 

substantial fitness defect in these conditions, averaging to a fitness cost of 6% (Fig. 4B) (27). 

In contrast, no growth defect was observed when mixed cultures were maintained in a 

glucose-rich environment (Fig. S19), suggesting that environmental changes are required to 

expose the growth defects of NonPol-Glk1 cells. Similar effects were observed competing 

these strains on other sugars (Fig. S20). Cells lacking Glk1 activity (glk1Δ, CatDead-Glk1, 

NonPolCatDead-Glk1) showed minor growth defects in acetate. Thus, Glk1 activity is 

important for growth on non-sugar sources and Glk1 polymerization prevents toxic 

overactivity during refeeding.

Glk1 polymerization governs its bulk rate of catalysis, with the Glk1 CC setting the upper 

limit of flux through the entire Glk1 pool (Fig. 4C). This mode of self-regulation is robust to 

growth state and cell-to-cell variation in protein level and it allows rapid adaptation to 
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transient perturbations. In this sense, Glk1 polymerization behaves as a molecular surge 

protector, protecting the cell against nutrient spikes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. Glk1 forms filaments in response to its substrates at high enzyme concentration.
A) Fluorescence images of stationary phase Glk1-msfGFP (left), Hxk1-msfGFP (middle), 

and Hxk2-msfGFP (right) cells before (top) or after (bottom) glucose addition. Scale bars: 

10 μm. B, C) Fluorescence images Glk1-msfGFP cells from a time-lapse video as glucose is 

added (top) or removed (bottom). Puncta in B eventually coalesce into a single, filamentous 

structure as in A and C. Scale bars: 5 μm. D) Purified Glk1 was ultracentrifuged at 436k x g 

for 30 min with different ligand combinations. The supernatant (left) and pellet (right) of 

each condition were subjected to SDS-PAGE. E) Purified Glk1 concentration was varied in 

saturating glucose and ATP and assayed for enzyme activity (glucose-6-phosphate 

production rate) or ultracentrifuged. The concentration of Glk1 in the supernatant and pellet 

was measured. N = 3. Means are connected by lines. F) Electron micrographs of negative-

stained samples: 7.5 μM Glk1 in the absence of ligands (left) or in saturating glucose and 

ATP (right). Scale bar: 50 nm. G) 90-degree light scattering of 7.5 μM Glk1 mixed with 

different ligand combinations.
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Fig 2. Glk1 forms anti-parallel, two-stranded filaments in its closed state
A: Superimposition of Glk1 crystal structure (green) (residues 1–500) with Hxk2 (PDB ID: 

1IG8) (19) (white) (residues 18–486). The N-terminal helix of Glk1 extends further than that 

of Hxk2 (arrow, N), while the C-terminal helix of Hxk2 extends further (arrow, C). B: 

Surface representation of a model of Glk1 filaments reconstructed from cryo-EM (3.8 Å 

resolution). Glk1 filaments are two-stranded, anti-parallel helices. Subunits along each 

strand are either orange/yellow or blue/cyan. C: Superimposition of the Glk1 crystal 

structure (green) with the Glk1 filament conformation from the cryo-EM reconstruction 

(blue). The crystal structure is not ligand bound and is in the open state while the filament 

form is ligand bound and in the closed state. D: Cryo-EM map of four subunits in the Glk1 

filament colored by subunit. Longitudinal contact is boxed in orange, and a lateral contact is 

boxed in black. E: Closeup of longitudinal contact with Phe3 represented as van der Waals 

spheres and the next subunit represented as a surface model. Phe3 of one subunit inserts into 

the hydrophobic pocket near the next subunits C-terminus. F: Two orthogonal close-ups of 

lateral filament contact. The helix-loop-helix from residue 371–393 of one subunit (yellow) 

binds antiparallel to the same region of the adjacent subunit (blue). Cryo-EM map is 

transparent grey.
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Fig 3. Glucokinase polymerization evolved independently of other actin-related polymers
A) Tree of ascomycetes as calculated by (23) indicating which species Glk1 homologs do 

(dark orange) and do not (dark cyan) polymerize. Species whose Glk1 homologs are 

predicted to polymerize based on conserved motifs (pale orange) and those predicted to not 

polymerize (pale cyan) are also indicated. Dark orange node marks the likely origin of Glk1 

polymerization. B) Phylogeny of Actin ATPase families, summarizing phylogenetic analysis 

of 802 sequences from Actin ATPase protein families. A maximum likelihood tree was 

inferred under the LG+C20 substitution model in IQ-Tree (28). This displays the backbone 

structure of that ML tree with each family collapsed. Support values indicated are ultrafast 

bootstrap / SH-LRT / aBayes. Much of the backbone is uncertain; bootstrap supports shown 

when SH-LRT (middle value) > 70. This tree suggests the hexokinase family, which contains 

Glk1, forms a clade with ROK kinases and glucokinases, and is only distantly related to 

other polymer forming actin families. Families that do not polymerize are cyan while 

families that do polymerize are orange. The full phylogeny is available online.
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Fig 4. Elimination of Glk1 polymerization reduces fitness.
A) Cells were pre-conditioned in citrate buffered synthetic (CBS) medium with galactose 

and refed either glucose or galactose. The ratio of the resulting colonies are reported here. 

Mean +/− SD (N = 4). B) Wild-type cells expressing mCherry were competed against cells 

expressing GFP with different Glk1 genotypes through growth and dilution cycles in 

synthetic medium with glucose. The proportion of strains was measured after dilution by 

flow cytometry. Mean +/− SD (N = 5). C) Schematic of how Glk1 polymerization affects 

glucokinase activity. When Glk1 concentration is high and glucose increases, Glk1 
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polymerizes until the monomer concentration equals the CC. Glk1 polymers lack enzyme 

activity: regardless of Glk1 concentration, the concentration of active enzyme is the same 

after glucose addition. When Glk1’s ability to polymerize is disrupted, it’s glucokinase 

activity is unconstrained, leading to fitness and viability defects.
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