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Abstract

Double Electron–Electron Resonance (DEER) spectroscopy measures distance distributions 

between spin labels in proteins, yielding important structural and energetic information about 

conformational landscapes. Analysis of an experimental DEER signal in terms of a distance 

distribution is a nontrivial task due to the ill-posed nature of the underlying mathematical inversion 

problem. This work introduces a Bayesian probabilistic inference approach to analyze DEER data, 

using a multi-Gauss mixture model for the distance distribution. The method uses Markov Chain 

Monte Carlo (MCMC) sampling to determine a posterior probability distribution over model 

parameter space. This distribution contains all the information available from the data, including a 

full quantification of the uncertainty about the parameters. The corresponding uncertainty about 

the distance distribution is captured via an ensemble of posterior predictive distributions. Several 

synthetic examples illustrate the method. An experimental example shows the importance of 

model checking and comparison using residual analysis and Bayes factors. Overall, the Bayesian 

approach allows for more robust inference about protein conformations from DEER spectroscopy.

Graphical Abstract

1 Introduction

Double Electron–Electron Resonance (DEER) spectroscopy is a pulse Electron 

Paramagnetic Resonance (EPR) technique utilized for determining distances between spin 

centers on a nanometer scale,1,2 often on proteins. DEER resolves the full distribution of 

distances in an ensemble of proteins, making it possible to directly quantify conformational 

landscapes.3–5 DEER measures an oscillatory time-domain signal that depends on the 

magnitude of the magnetic dipole–dipole interactions between the spin centers. In the 

analysis, this signal is fitted with a model that includes a distance distribution. 

Mathematically, this constitutes an ill-posed inversion problem. Assessment of uncertainty 
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in the fitted distance distribution is therefore challenging, but is crucial for making sound 

conclusions about the conformational landscape.

Analysis approaches for obtaining a distance distribution range from analytical solutions6 to 

deep neural networks.7 Two methods based on least-squares fitting have seen the widest 

practical application: Tikhonov regularization and Gaussian mixture models.8–14 Tikhonov 

regularization utilizes a non-parametric distance distribution model and includes a roughness 

penalty for the distribution into the fitting objective function. Gaussian mixture models are 

parametric and represent the distribution as a linear combination of a few Gaussian 

functions. Both Tikhonov regularization and Gaussian models can be fit directly to the raw 

data in a single fitting step.15 In both approaches, however, correctly quantifying and 

visualizing uncertainty is challenging.

For Tikhonov regularization, partial uncertainty analysis is commonly conducted by 

manually varying some parameters in the analysis (background, modulation depth, noise) 

and summarizing the sensitivity of the extracted distance distribution to these parameters 

into error bands around the fitted distribution.10 Another partial approach is based on 

Bayesian inference and quantifies the uncertainty in the distribution due to the noise in the 

signal.16 Unfortunately, as currently implemented, this requires a priori background 

correction and cannot incorporate parameters beyond noise.

For Gaussian mixture models, uncertainty analysis relies primarily on parameter confidence 

intervals, which are obtained from the covariance matrix or by explicitly exploring the 

sensitivity of the objective function on the parameter values.11–13,17 The parameter 

confidence intervals are then propagated to the distance domain to yield error bars on the 

distribution. This method assumes that the error surface is quadratic and that the parameters 

are unbounded, neither of which is generally true.

Another method to obtain confidence intervals for both approaches is bootstrapping, which 

generates an ensemble of distributions by analyzing a large number of synthetically 

generated hypothetical signals based on the fitted model.15

Here, we present a Bayesian probabilistic inference approach18–20 to analyze DEER data 

using a multi-Gauss mixture model. The method models and analyses the raw DEER data 

directly and yields a full posterior probability distribution over all model parameters, 

providing complete quantitative information about uncertainty and correlations for all 

parameters, without any limiting assumptions. We also introduce distribution ensembles to 

more correctly represent uncertainty about the distance distribution, including correlations 

which are neglected when using visualizations based on error bands.

The paper is structured as follows. Section 2 presents the model used to describe the DEER 

signal. Section 3 introduces the Bayesian inference approach. Section 4 applies this method 

to a simple distribution while more realistic distributions are evaluated in Section 5. Section 

6 applies the method to experimental data, including model checking and comparison. The 

final section provides conclusions regarding the method.
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2 DEER theory

We base our analysis on the standard model for 3- and 4-pulse DEER.1 In this model, the 

noise-free DEER signal is

V M t = V 0 ⋅ V intra  t ⋅ V inter  t (1)

where t is the position of the pump pulse and V0 is the echo amplitude in the absence of the 

pump pulse.

Vintra(t) is the intra-molecular modulation function and is given by

V intra  t = 1 − λ + λ∫
0

∞
K t, r P r dr (2)

with the modulation depth λ (satisfying 0 < λ ≤ 1) and the normalized distribution P(r) of 

the spin–spin distance r (satisfying P(r) ≥ 0 and ∫0
∞P r dr = 1 . K(t, r)is the dipolar kernel 

function, given by

K t, r = ∫
0

1
cos 1 − 3z2 Dr−3t dz (3)

with the constant D = μ0/4π geμB
2/ℏ. In our implementation, the integral in Eq. (2) is 

numerically evaluated over the range 1nm ≤ r ≤ 10nm.

Vinter(t) is the inter-molecular modulation function, also called the background. In this work, 

we use

V inter  t = exp −k t (4)

Here, k is the decay rate constant k = 8π2/9 3 Dcλ, with the spin concentration c (in 

spins/m3) and the modulation depth λ.

We represent the spin–spin distance distribution P(r) used in Eq. (2) as a linear combination 

of normalized Gaussian basis functions

P r = ∑
i = 1

m
AiGauss r; r0, i, wi (5)

where m is the number of Gaussians, Ai are the amplitudes (with ∑iAi = 1), r0,i are the 

centers of the Gaussians, and wi are the full widths at half maximum. In the statistical 

literature, this is called a Gaussian mixture model.

In practice, the echo amplitude is measured at a set of discrete pump pulse positions ti up to 

a maximum tmax, so that the experimental signal consists of a vector V with elements Vi = 

V(ti). In addition, the experimental signal is corrupted by measurement noise. This noise is 
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approximately Gaussian, uncorrelated, and of constant variance σ2.16 We can thus write 

each measured data point as a random sample from a Gaussian (normal) distribution

V i Normal V M ti , σ2 (6)

where ~ indicates that the quantity on the left is a random sample from the distribution on 

the right. In vector form, the full signal is modeled as a random sample from a 

multidimensional Gaussian with center VM and isotropic covariance matrix σ2I

V Normal V M, σ2I (7)

where I is the identity matrix.

The full set of parameters for this multi-Gauss DEER model includes the distribution 

parameters r0,i, wi, and Ai, the time-domain parameters k, λ, and V0, and the noise standard 

deviation σ. We collect them into a parameter vector

θ = r0, i , wi , Ai , k, λ, V 0, σ (8)

Thus, the model has N = 6, 10, 13, and 16 parameters for a one-, two-, three-, and four-

Gauss distribution, respectively. This number is much smaller than the typical number of 

experimental data points, which can be several hundred.

Figure 1 illustrates the important quantities in this model, as well as the parameters. Figure 

1A shows a synthetic distance distribution (black) that is close to Gaussian in shape and a 

one-Gaussian fit to it (red) while Fig. 1B shows the noise-free and a noisy time-domain 

signal derived from the synthetic distance distribution.

3 Bayesian inference

The goal of analyzing DEER data within the above model M is to estimate the N model 

parameters θ from the measured signal V and any additional information I that is included, 

and then to transfer the inferences about θ to inferences about the distance distribution P(r). 
The most complete information obtainable about the parameters is the probability 

distribution of θ, conditioned on the given V, M, and I. This is denoted as

p θ ∣ V , M, I (9)

and is called the posterior probability distribution, or simply posterior. It is a probability 

density defined over the entire N-dimensional 239 parameter space and quantifies how 

probable any set of parameters is. It represents the complete information that can be inferred 

about the parameters of the assumed model M from the included evidence (V and I). 
Regions in parameter space with high posterior density reveal probable sets of parameters, 

and the spread of the distribution quantifies the uncertainty. The posterior distribution also 

reveals all correlations between parameters.

To calculate the posterior, we utilize Bayes’ theorem, which in its full form is18–21
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p θ ∣ V , M, I = p(V ∣ θ, M, I) p(θ ∣ M, I)
p(V ∣ M, I) (10)

The denominator, p(V |M, I), represents the probability of a signal given the proposed 

model, integrated over all possible parameter values. Since it is independent of θ, it does not 

affect the shape of the posterior. Therefore, we can neglect it and use

p θ ∣ V , M, I ∝ p V ∣ θ, M, I ⋅ p θ ∣ M, I (11)

The first term on the right-hand side, p(V |θ, M, I), is called the likelihood and defines the 

probability of a signal given a parameter set, model choice, and additional information. In 

our case with normally distributed errors as given in Eq. (7), we use the multidimensional 

Gaussian

p θ ∣ V , M, I = Normal V ; V M θ , σ2I ∝ exp − V − V M θ 2

2σ2 (12)

with center VM and covariance matrix σ2I. This distribution quantifies the degree of fit 

between the data and the model. (Its negative logarithm is minimized in least-squares 

fitting.)

The second factor on the right-hand side in Eq. (11), p(θ|M, I), is called the prior probability 

distribution, or simply prior. It represents information about the parameters prior to taking 

the observed data V into account. If information about individual parameters θi is not 

correlated, the prior factors into a product

p θ ∣ M, I = ∏
i

p θi ∣ M, I (13)

We specify priors for all parameters in the next subsection.

3.1 Priors

To calculate the posterior from Eq. (11), both a likelihood and a full prior distribution must 

be specified. It is essential to define the prior such that it appropriately captures prior 

information, I, about the parameters but is diffuse enough to not introduce unwarranted bias 

into the analysis. In the following, we describe our choices of priors for all model 

parameters. The priors are shown on the left-hand side of Fig. 2.

Modulation depth λ.—The minimal information about λ is that it lies somewhere 

between 0 and 1, irrespective of the sample and the spectrometer. The associated prior can 

be represented as a uniform distribution

p λ ∣ M, I = Uniform λ; 0, 1 (14)

with lower bound 0 and upper bound 1. If additional information about the spectrum (e.g. 

nitroxide at Q-band) and the excitation profile of the pump pulse (e.g. a 10 ns π pulse) is 
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available, the modulation depth can be estimated. Then, a more focused probability 

distribution can be constructed that is centered at this estimated value and has sufficient 

spread to capture uncertainty in the information. We use a beta distribution

p λ ∣ M, I = Beta λ; 1.3, 2 (15)

where the two arguments are shape parameters. For our test cases, the choice of prior made 

no difference on the obtained posterior distributions. This indicates that the data itself 

contained strong information about λ.

Echo amplitude V0.—Before analysis, we rescale the signal, V = V /max(V). Therefore, 

for the rescaled signal, we know V0 has a positive value near 1. We capture this information 

with a normal distribution bounded above zero with a standard deviation of 0.2

p V 0 ∣ M, I = Bnd Normal V 0; 1, 0.22 , 0 (16)

Background decay rate k.—As prior for k, we use the gamma distribution (which 

ensures k is non-negative)

p k ∣ M, I = Gamma k; 0.5, 2μs−1 (17)

where the two arguments are the shape and the rate parameter, respectively. This distribution 

has significant density for k < 0.1μs−1, corresponding to λc < 0.1mM. If the spin 

concentration is known, a tighter prior can be formulated.

Noise level σ.—Without taking the data into account, an appropriate prior on the noise 

standard deviation for the rescaled signal is one which skews heavily towards zero and 

diminishes towards 1. We choose a gamma distribution

p σ ∣ M, I = Gamma σ; 0.7, 2 (18)

Gaussian centers r0,i.—We choose a prior with significant density around the most 

common distances (2–6 nm) and diminished probability outside, using a beta distribution

p r0, i ∣ M, I ∝ Beta r0, i − rmin
rmax − rmin

; 2, 2 (19)

where rmin and rmax are 1.3 and 7 nm, respectively, and we disregard the normalization 

factor 1/(rmax − rmin).

Gaussian widths wi.—Based upon general knowledge of spin–spin distance distributions, 

we choose the prior to skew towards values below 1 nm but with substantial probability at 

larger widths. A bounded inverse gamma distribution captures the desired shape

p wi ∣ M, I = Bnd InvGamma wi; 0.1, 0.2nm , 0.05nm, 3nm (20)
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The distribution is truncated between 0.05 and 3 nm, since it is very unlikely to have 

distributions with widths beyond these bounds. If a sample is analyzed where these 

assumptions are possibly not satisfied, the prior can be adjusted.

Gaussian amplitudes Ai.—Since we have no prior information on Ai, we use a flat m-

dimensional Dirichlet distribution

p A1, …, Am ∣ M, I = Dirichlet 1m (21)

where 1m is the m-dimensional vector of ones. The Dirichlet distribution automatically 

satisfies 0 ≤ Ai ≤ 1 and ∑i = 1
m Ai = 1.

3.2 MCMC sampling

Although the posterior is now formulated explicitly via Eqs. (11), (12), (13), and all the 

individual prior distributions, it is a multidimensional distribution so complicated that the 

integrals necessary to determine its mean and other statistics are impossible to evaluate 

analytically. Therefore, numerical Markov Chain Monte Carlo (MCMC) sampling methods 

are used to generate a representation of the posterior in terms of a set of samples in the N-

dimensional parameter space. An MCMC sampler generates a chain of samples from the 

posterior, where each sample depends on the previous one. Once converged, the chain 

samples represent the posterior. Using this representation, calculating the above statistics 

and other analysis is straightforward.

In our previous work on Bayesian analysis, we used the Gibbs sampler.16 This sampler 

requires specific forms of the priors and is very inefficient in high-dimensional parameter 

spaces. In this work, we use the No-U-Turn Sampler (NUTS),22 a very efficient and self-

tuning Hamiltonian Monte Carlo (HMC) sampler,23 as implemented in the Python-based 

probabilistic programming package PyMC3, version 3.8.24 All MCMC simulations were run 

on standard laptop computers. The Python code that implements the DEER model and the 

MCMC sampling can be found at https://github.com/StollLab/dive.

We use NUTS to generate 5–8 independent MCMC chains. The chains are initialized with 

different starting points that are randomly sampled from the prior distribution. These points 

are then propagated for 5,000 steps to tune the sampler. The tuning steps are discarded. The 

chains are then propagated for 20,000–80,000 steps to generate a large number of posterior 

samples. The exact sampler settings are noted in the figure captions. The chains are long 

enough to provide convergence, as assessed via the rank-normalized split R statistic.25–27 R
is calculated for each parameter separately and compares the between-chains and within-

chain variances to determine whether the chains have reached equilibrium for that parameter 

(corresponding to R ≈ 1) or not R > 1 . In our approach, sampling was continued until 

R < 1.01 for all parameters.

When using MCMC sampling with mixture models such as Eq. (5), one encounters a 

phenomenon known as label switching. For example, switching the labels of the two 

Gaussians in a two-Gauss distance distribution changes the location in parameter space (θ1 ≠ 
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θ2), but does not affect the distance distribution (P(θ1) = P(θ2)) nor the likelihood or the 

posterior. This renders the posterior multi-modal, complicating both the sampling and the 

analysis of the posterior. Different approaches exist to prevent label switching.28,29 In this 

work, we take an approach similar to on-line relabeling28 and enforce the constraints r0,1 ≤ 

r0,2 ≤·…·≤ r0,m after every sample to restrict the parameter space.29 This technique worked 

well in most cases that we encountered, and typically provided clean uni-modal 

marginalized posteriors. Occasionally, due to the imposed constraints, chains get stuck in 

regions with r0,i ≈ r0,j, corresponding to the coalescence of two basis functions. Such chains 

are easily identified via how they degrade R and are removed before further analysis.

3.3 Posterior analysis

After convergence, the pooled samples from all chains represent the full N-dimensional 

posterior p(θ|V,M, I). Due to its large dimensionality, it is not possible to visualize it 

directly. Instead we examine each parameter individually using a marginalized posterior, 

which is obtained by integrating the full posterior over all other parameters. This integral is 

approximated by generating a histogram of the parameter values from all samples and 

conducting a kernel density estimation of the histogram, smoothed with a Gaussian with a 

line width of 1/5 of the standard deviation of the parameter values. This results in a one-

dimensional distribution that can easily be plotted and summarized in terms of the mean, 

mode, and spread. On the right of Fig. 2, the marginalized posteriors are shown in color, 

together with the priors in gray. In this case, they are much narrower than the corresponding 

priors. The spread of the posterior distribution is both a qualitative and quantitative measure 

of inferential uncertainty.

However, marginalization discards all information about correlation between parameters. As 

will be shown, many of the parameters in our model are correlated. Therefore, we also 

display and examine two-dimensional marginalized posteriors between pairs of parameters 

(see Sec. 4).

Finally, we will additionally visualize the results of the Bayesian inference in terms of a 

small set of posterior predictive samples of the noise-free signal, VM(θ(i)), and the distance 

distribution, P(θ(i)). Here, θ(i) represent a random sample from the pooled MCMC samples, 

with i indicating the associated chain sample index.

4 Basic illustration

In this and the next section, we illustrate the probabilistic analysis method on several 

synthetic distributions of increasing complexity. All of the synthetic data are based on 

distributions taken from the large simulated T4 lysozyme (T4L) test data set published by 

Edwards and Stoll in 2018.14,30 The distributions in this test data set were generated 

computationally from an in silico spin-labeled crystal structure of T4L. The indices of the 

chosen distributions are given in the figure captions. We take the distributions from the test 

data set as ground truth.

Figures 3 and 4 show the first example. It uses the distance distribution from Fig. 1A that 

resembles a single Gaussian. Two noisy signal traces generated from this distance 
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distribution are shown in Fig. 4A. The trace indicated as Vgood(t) (blue) has favorable values 

for the modulation depth, background decay rate, trace length, and noise level (λ = 0.5, k = 

0.05 μs−1, tmax = 3.2 μs, σ = 0.02). Comparatively, the trace Vpoor(t) (green) has less ideal 

values for all of these parameters (λ = 0.2, k = 0.2 μs−1, tmax = 1.6 μs, σ = 0.05), providing a 

challenging case with higher uncertainty.

Figure 3 summarizes the results of the Bayesian analysis for both cases. The top row shows 

the marginalized posteriors for each parameter for the poor case (green) while the first 

column shows the same for the good case (blue). Both cases are shown on all plots, one of 

them grayed out. The dashed lines for r0 and w indicate values obtained by directly fitting a 

Gaussian to the synthetic distribution, and for the other parameters they indicate the values 

used in generating the signal. For the longer and less noisy trace, the ground-truth 

parameters are recovered accurately, and there is very little uncertainty about the inferred 

parameters, as represented by the narrowness of the distributions. The analysis of the shorter 

and noisier trace yields posterior modes of each parameter near the expected values. The 

distributions, however, are much broader, reflecting the detrimental effect of the larger noise 

level and shorter trace length. The distributions are asymmetric, particularly for w, k, and λ.

The rest of the plot shows the marginalized posteriors of all parameter pairs for both cases, 

revealing correlations between parameters. Both the upper and lower triangle show the same 

results, mirroring one another and highlighting one case over the other. Again, the 

distributions for the good test case are significantly narrower than the ones for the poor case. 

The angle by which the distribution is skewed from a horizontal or vertical direction 

indicates the degree of correlation between the two parameters. The results show strong 

correlations for (k, λ), (λ, w), and (w, k) for the poor trace. k is negatively correlated with w 
and λ, whereas λ and w are positively correlated.

While the parameter posteriors most directly show the outcome of the Bayesian analysis, 

they are generally not the main quantities of interest. The most desired quantities are the 

distance distributions, upon which possible structural conclusions will be based, and the 

model fit in the time domain.

To show these quantities, we use ensembles of posterior predictions. We draw a small set of 

random parameter vectors θ(i) (typically 30–100) from the pooled MCMC chain samples, 

calculate the associated distance distributions P(θ(i)) and noise-free time-domain signals 

VM(θ(i)). This approach is conceptually equivalent to the “spaghetti plots” utilized to 

visualize predicted hurricane trajectories in weather forecasts.

The calculated time-domain signal ensembles for both cases are shown in Fig. 4A against 

the raw data and show a good match of model and data. The associated ensemble of 

residuals in Fig. 4B show no systematic deviation from zero, indicating that the models are 

adequately representing the data. The ensemble of MCMC-based distance distributions is 

plotted in Fig. 4C. For the good test case, there is little scatter among the distributions since 

the Bayesian analysis recovers the parameters with little uncertainty. For the poor test case, a 

significant spread of positions and widths is apparent among the members of the ensemble. 
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Consequently, the conclusion about the position or the width of the distribution cannot be 

precise.

The examination of a posterior-based ensemble of distributions is essential for fully 

visualizing the information contained in the data and extracted by the Bayesian analysis. 

Plotting only a single distribution, for instance the one corresponding to the maximum of the 

posterior (MAP), is misleading, as this discards all information about uncertainty. Also, 

despite being the point with the highest posterior probability, the MAP is not representative 

of the posterior in high-dimensional models.23

In a traditional least-squares fitting approach, a single distribution corresponding to the 

maximum of the likelihood (Eq. (12)) is shown together with error bands based on the 

curvature around this maximum. These error bands are intended to capture uncertainty, but 

can be misleading for several reasons. (1) They assume a symmetric Gaussian probability 

distribution, which is not the case in general. Even in the simple example in Fig. 3, many 

distributions are asymmetric. (2) They do not capture the strong correlations between P at 

different distances, which is due to the predetermined shape and the normalization of P. (3) 

They do not capture correlations between r0 and w. (4) They are shown for a single distance 

distribution, implying overcertainty about shape and location. Limitation (1) can be 

overcome by a bootstrapping analysis,15 but the other limitations remain. A distribution 

ensemble as shown in Fig. 4C does not suffer from these drawbacks and therefore 

constitutes a more complete and prudent way of visualizing the range of distance 

distributions compatible with the data (given the model).

The lower part of Fig. 4 summarizes the results of the parameter inference, in a form more 

condensed than Fig. 3. Panels D and E are the matrices of the pairwise Pearson correlation 

coefficients for the good case and poor case, respectively. White indicates no correlation and 

black indicating full positive or negative correlation. Panel F shows the marginalized 2D 

posterior for the width and position of both test sets. Among all the correlation plots in Fig. 

3, this is the most relevant for inference about the distance distribution. It shows a strong 

difference in the widths for the two cases. For the poor case, the distribution is visibly 

asymmetric and correlated.

5 Multimodal distributions

Most spin–spin distance distributions encountered in DEER spectroscopy of proteins are 

asymmetric and multimodel and poorly approximated by a single Gaussian. Therefore, we 

next apply the method to distributions of higher complexity.

First, we analyze a noisy time trace generated from a bimodal distribution from the T4L test 

set, with two distinct modes, one significantly weaker than the other. The noisy signal is 

shown in Fig. 5A (black), and the underlying distribution is shown in Fig. 5C (black). The 

results of the Bayesian analysis using a two-Gaussian model (m = 2 in Eq. 5) are also shown 

in Fig. 5. Panels A–C show a subset of posterior samples randomly selected from the 

MCMC chains. The model works quite well at representing the signal, as evidenced by the 

good overlap with the data (panel A) and by the absence of any systematic deviation in the 
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ensemble of residuals (panel B). The distribution ensemble is in good agreement with the the 

true distribution (panel C), and the uncertainty is relatively low given the small scatter of the 

MCMC distributions. There is increased uncertainty in the region of the minor peak, due to 

the low amplitude in this region, so that conclusions about location or width of this 

secondary feature are not precise. Position and width of the major peak are inferred with 

high confidence, but there is some uncertainty in its amplitude, a consequence of the 

uncertainty in the amplitude of the minor peak and A1 + A2 = 1.

Again, a valuable output of this method are the parameter correlations, visually summarized 

in panel D. All distribution parameters (r0,i, wi, Ai) are heavily correlated with one another 

while there is little correlation between distribution and time-domain parameters. The 

strongest correlation among time-domain parameters is between V0 and λ. Panels E and F 

show the obtained 2D marginalized posteriors for the distance distribution parameters. As 

the position of the short-distance component increases, we see a corresponding increase in 

its width and in its amplitude. The posteriors for the longer-distance component are very 

tight, indicating high certainty. There is slight anticorrelation between position and both 

width and amplitude.

The next synthetic example, shown in Fig. 6, is a challenging, broad distribution with several 

poorly-resolved modes with similar intensities. The Bayesian analysis was conducted using 

a three-Gaussian distribution model. The ensemble of MCMC samples drawn from the 

posterior are shown in Fig. 6A, the ensemble of residuals in B, and the distribution ensemble 

in C. Although the model fits the data well (panels A and B), there is substantial scatter in 

the ensemble of distance distributions (panel C). This shows that the uncertainty about the 

shape is significant over the entire distribution. The long-distance edge at 4 nm is fairly well 

defined, but the location of the short-distance edge around 2 nm is less clear. The 

distribution ensemble shows that the data are not strong enough (i.e. too noisy or too short) 

to either exclude or confirm modes at 2.8 and 3.9 nm—although they reveal the possibility 

of such modes. Also, the location of the mode around 3.4 nm is uncertain. This shows again 

that it is important to consider a distribution ensemble instead of a single distribution in 

order to make robust conclusions.

The correlations between distribution parameters (Fig. 6D) vary but, as in the previous 

examples, the correlation between V0 and λ is substantial. The 2D marginalized posteriors 

for the distribution parameters (Fig. 6E–F) show that there is significant uncertainty about 

the positions, widths, and amplitudes of the three Gaussian components. The reason for this 

uncertainty is that in the time-domain signal the noise level is significant relative to the 

shallow amplitude of the oscillations after the initial drop. The oscillations are shallow 

because of the large width of the underlying distribution.

6 Experimental example

So far, we have utilized synthetic data where we were able to pick ground-truth distributions 

that can be well approximated by a certain number of Gaussians. In this section, we 

demonstrate the method with experimental data, where this is not possible.
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This brings up an important aspect of DEER data analysis, model checking and comparison.
19 When the ground-truth distribution is not known, is is important to check whether a multi-

Gauss model fits the data and to compare the quality of models with different numbers of 

Gaussians.

Figure 7A shows the DEER trace (black) that was collected to determine inter-subunit 

distances in SthK, a tetrameric bacterial cyclic nucleotide-gated (CNG) ion channel.31 Here 

we analyze the DEER trace using multi-Gauss models with 1 to 4 Gaussians (abbreviated as 

1G, 2G, 3G, and 4G). Resulting ensembles of MCMC samples of signals, residuals, and 

distributions are shown in blue in Fig. 7A–C. Based on the systematic deviation of its 

residuals at early times, it is clear that the 1G model is inappropriate, even though it provides 

an apparently precise P(r) given how tight the distribution ensemble is. This is consistent 

with the fact that the ion channel is a homotetramer, and the distribution is expected to be at 

least bimodal. The 2G model matches the data better, but shows some systematic deviation 

in the residuals as well. The 3G and 4G models describe the signal similarly well, as their 

residuals are visually free of systematic deviations.

The distance distribution ensembles in Fig. 7C reveal some important details. In the 3G 

model, two components are quite certain, but the third at about 5 nm has large uncertainty in 

its width. In the 4G model, three of the components model the distribution below about 4 

nm, and the fourth component is at long distances and is very uncertain both in width and 

position. This is also evident from the 2D marginalized posteriors shown in Fig. 7. Whereas 

all parameter posteriors are relatively tight for the 3G model, the posterior for the long-

distance component of the 4G model is very delocalized in position and width. Overall, this 

suggests that the 4G model is likely overfitting the data.

Within the framework of Bayesian inference, a formal approach for model comparison is 

available. Two models M1 and M2 can be compared via the ratio p(M1|V, I)/p(M2|V, I) of 

their posterior probabilities.19,32 This ratio is called the posterior odds and is calculated via

p M2 ∣ V , I
p M1 ∣ V , I
posterior odds 

= p V ∣ M2, I
p V ∣ M1, I

Bayes factor B2, 1

⋅ p M2 ∣ I
p M1 ∣ I
prior odds 

(22)

where the first ratio on the right-hand side is known as the Bayes factor, and the second ratio 

is called the prior odds. The posterior odds summarize how much one model is favored over 

the other in light of the data and prior information. The Bayes factor represents how likely 

the data are assuming one model vs. assuming the other. The prior odds quantify the odds 

for or against one model, prior to taking into account the data. In most applications, this ratio 

is set to one (encoding no preference).19 Then the Bayes factor equals the posterior odds and 

can be used to quantify how the data speak for one model over the other. As a rule of thumb, 

log10 B2,1 > 8 can be seen as relatively strong indication for M2 over M1.33 In a comparison 

of two models that belong to the same family of models, or when one model is a superset of 

the other (e.g. the 3G model is a superset of the 2G model), the Bayes factor penalises 

complicated models that might be prone to overfitting.19 In such cases, if the data are better 
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explained by the simpler model, the Bayes factor in favor of the more complex model is 

typically small.

The Bayes factors Bm,1 for all m-Gauss models relative to the 1G model are shown in Fig. 8. 

They show that the 2G model is clearly preferable over 1G, and give preference for 3G and 

4G over 2G (log10B3,2 ≈ 25 and log10B4,2 ≈ 30). However, there is only a small difference 

between 3G and 4G, and the Bayes factor log10B4,3 ≈ 5 indicates that the 4G model does not 

describe the data much better than the 3G model. In combination with the delocalized 

posterior, this is a strong indication that the 4G model is overfitting the data.

Neither residuals nor Bayes factors alone are enough for a complete analysis. While the 

latter compare two models and help with identifying overfitting, they do not contain 

information on whether the chosen models is appropriate and gives a good fit to the data. 

Instead, an inadequate model with systematic misfitting can be diagnosed through the 

residuals. Additionally, even if a model fits the data well and has the largest Bayes factor 

among a set of models, it might still be physically inappropriate, and considerations outside 

the Bayesian analysis framework must be used to determine a more appropriate model.

The model comparison outlined here allows assessment of an appropriate number m of 

Gaussians. This is analogous to selecting an appropriate α regularization parameter in 

Tikhonov regularization.14 However, although these selection methods are quantitative, they 

are not unique and therefore fully objective.

7 Conclusions

The Bayesian inference approach presented here fully quantifies the uncertainty in model 

parameters obtained from fitting DEER data using a parametric multi-Gauss distribution 

model. Its advantage over a least-squares fitting approach is that it provides the posterior 

distribution that completely quantifies model parameter uncertainty, whereas least-squares 

fitting only determines a point estimate with confidence intervals. The posterior allows the 

analysis of spread and asymmetry in the parameter distributions, and of correlations between 

model parameters.

We showed that a small ensemble of distributions drawn from the MCMC samples is well 

suited to visually capture both uncertainty and correlation in distance distribution plots. 

Therefore, it should be preferred over error bands. We also illustrated how to use a 

combination of residuals, parameter posteriors, and Bayes factors to help with model 

comparison and to identify under- and overfitting. This can be expanded to include other 

modern Bayesian methods for model comparison as well.19

Although we have presented the probabilistic approach using an exponential model for 

Vinter(t) and a multi-Gauss model for P(r), the approach is very general. It is applicable to 

any other parametric models of Vinter(t) and P(r). The background can be extended to 

include fractal dimensions34 and to allow for excluded-volume effects.35 The distance 

distribution basis functions are not limited to Gaussians; other functions such as 3D Rice 

functions can be used,36 particularly in cases where there is no clear fit to a sum of 

Gaussians via residual and Bayes factor analysis. If the noise level is known experimentally 
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(e.g. from analyzing the variance among a series of sequentially acquired traces), then it can 

be fixed and omitted as a model parameter. In the case the noise level is not constant across 

the trace, a more sophisticated noise model can be included.

In principle, the probabilistic inference methodology used here for multi-Gauss models is 

equally applicable to the non-parametric models for P(r) used in Tikhonov regularization. 

However, this requires substantially more sophisticated considerations about the prior for 

P(r) and the MCMC sampling procedure, and is therefore left for future research. Once this 

is accomplished, a meaningful quantitative and systematic comparison between multi-Gauss 

and Tikhonov models within a Bayesian framework will be possible.

Acknowledgements

This work was supported by the National Science Foundation with grant CHE-1452967 (S.S.) and by the National 
Institutes of Health with grants R01 GM125753 and R01 GM127325 (S.S.).

References

(1). Milov AD; Salikhov KM; Shchirov MD Application of the Double Resonance Method to Electron 
Spin Echo in a Study of the Spatial Distribution of Paramagnetic Centers in Solids. Sov. Phys. 
Solid State 1981, 23, 565–569.

(2). Milov AD; Tsvetkov YD Double Electron–Electron Resonance in Electron Spin Echo: 
Conformations of Spin-Labeled Poly-4-Vinylpyridine in Glassy Solutions. Appl. Magn. Reson 
1997, 12, 495–504.

(3). Pannier M; Veit S; Godt A; Jeschke G; Spiess HW Dead-Time Free Measurement of Dipole–
Dipole Interactions between Electron Spins. J. Magn. Reson 2000, 142, 331–340. [PubMed: 
10648151] 

(4). Jeschke G; Polyhach Y Distance Measurements on Spin-Labelled Biomacromolecules by Pulsed 
Electron Paramagnetic Resonance. Phys. Chem. Chem. Phys 2007, 9, 1895–1910. [PubMed: 
17431518] 

(5). Jeschke G DEER Distance Measurements on Proteins. Annu. Rev. Phys. Chem 2012, 63, 419–446. 
[PubMed: 22404592] 

(6). Matveeva AG; Nekrasov VM; Maryasov AG Analytical Solution of the PELDOR Inverse Problem 
Using the Integral Mellin Transform. Phys. Chem. Chem. Phys 2018, 19, 32381–32388.

(7). Worswick SG; Spencer JA; Jeschke G; Kuprov I Deep Neural Network Processing of DEER Data. 
Sci. Adv 2018, 4, eaat5218. [PubMed: 30151430] 

(8). Jeschke G; Koch A; Jonas U; Godt A Direct Conversion of EPR Dipolar Time Evolution Data to 
Distance Distributions. J. Magn. Reson 2002, 155, 75–82.

(9). Chiang Y-W; Borbat PP; Freed JH Maximum Entropy: A Complement to Tikhonov Regularization 
for Determination of Pair Distance Distributions by Pulsed ESR. J. Magn. Reson 2005, 177, 184–
196. [PubMed: 16137901] 

(10). Jeschke G; Chechik V; Ionita P; Godt A; Zimmermann H; Banham J; Timmel CR; Hilger D; Jung 
H Deer-Analysis2006—A Comprehensive Software Package for Analyzing Pulsed ELDOR Data. 
Appl. Magn. Reson 2006, 30, 473–498.

(11). Sen KI; Logan TM; Fajer PG Protein Dynamics and Monomer-Monomer Interactions in AntR 
Activation by Electron Paramagnetic Resonance and Double Electron-Electron Resonance. 
Biochem. 2009, 46, 11639–11649.

(12). Brandon S; Beth AH; Hustedt EJ The Global Analysis of DEER Data. J. Magn. Reson 2012, 218, 
93–104. [PubMed: 22578560] 

(13). Stein RA; Beth AH; Hustedt EJ A Straightforward Approach to the Analysis of Double Electron–
Electron Resonance Data. Methods Enzymol. 2015, 563, 531–567. [PubMed: 26478498] 

Sweger et al. Page 14

J Phys Chem A. Author manuscript; available in PMC 2021 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(14). Edwards TH; Stoll S Optimal Tikhonov Regularization for DEER Spectroscopy. J. Magn. Reson 
2018, 288, 58–68. [PubMed: 29414064] 

(15). Fábregas Ibáñez L; Jeschke G; Stoll S DeerLab: A Comprehensive Toolbox for Analyzing 
Dipolar EPR Spectroscopy Data. Magn. Reson 2020, in review.

(16). Edwards TH; Stoll S A Bayesian Approach to Quantifying Uncertainty from Experimental Noise 
in DEER Spectroscopy. J. Magn. Reson 2016, 270, 87–97. [PubMed: 27414762] 

(17). Hustedt EJ; Marinelli F; Stein RA; Faraldo-Gómez JD; Mchaourab HS Confidence Analysis of 
DEER Data and its Structural Interpretation with Ensemble-Biased Metadynamics. Biophys. J 
2018, 115, 1200–1216. [PubMed: 30197182] 

(18). Jaynes ET Probability Theory. The Logic of Science; Cambridge University Press: St. Louis, 
2003.

(19). Gelman A; Carlin JB; Stern HS; Dunson DB; Vehtari A; Rubin DB Bayesian Data Analysis; 
CRC Press: Boca Raton, 2014.

(20). Murphy KP Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, 2012.

(21). McElreath R Statistical Rethinking. A Bayesian Course With Examples in R and STAN; CRC 
Press: London, 2020.

(22). Hoffman MD; Gelman A The No-U-Turn Sampler: Adaptively Setting Path Lengths in 
Hamiltonian Monte Carlo. J. Mach. Learn. Res 2014, 15, 1593–1623.

(23). Betancourt M A Conceptual Introduction to Hamiltonian Monte Carlo. arXiv eprints 2017, 
arXiv:1701.02434 [stat.ME].

(24). Salvatier J; Wiecki TV; Fonnesbeck C Probabilistic Programming in Python Using PyMC3. PeerJ 
Comput. Sci 2016, 2, e55.

(25). Gelman A; Rubin DB Inference from Iterative Simulation Using Multiple Sequences. Stat. Sci 
1992, 7, 457–472.

(26). Brooks SP; Gelman A General Methods for Monitoring Convergence of Iterative Simulations. J. 
Comput. Graph. Stat 1998, 7, 434–455.

(27). Vehtari A; Gelman A; Simpson D; Carpenter B; Bürkner P-C Rank-Normalization, Folding, and 
Localization: An Improved R for Assessing Convergence of MCMC. arXiv e-prints 2019, 
arXiv:1903.08008 [stat.CO].

(28). Stephens M Dealing with Label Switching in Mixture Models. J. R. Stat. Soc. B 2000, 62, 795–
809.

(29). Jasra A; Holmes CC; Stephens DA Markov Chain Monte Carlo Methods and the Label Switching 
Problem in Bayesian Mixture Modeling. Stat. Sci 2005, 20, 50–67.

(30). Edwards TH; Stoll S Synthetic Test Data Set for DEER Spectroscopy Based on T4 Lysozyme. 
DOI: 10.6069/H5S75DCG, 2018.

(31). Evans EGB; Morgan JLW; DiMaio F; Zagotta WN; Stoll S Allosteric Conformational Change of 
a Cyclic Nucleotide-Gated Ion Channel Revealed by DEER Spectroscopy. Proc. Nat. Acad. Sci. 
USA 2020, 117, 10839–10847. [PubMed: 32358188] 

(32). Kass R; Raftery E Bayes Factors. J. Am. Stat. Assoc 1995, 90, 773–795.

(33). Thrane E; Talbot C An Introduction to Bayesian Inference in Gravitational-Wave Astronomy: 
Parameter Estimation, Model Selection, and Hierarchical Models. Publ. Astron. Soc. Aust 2019, 
36, e010.

(34). Kutsovsky YE; Mariasov AG; Aristov YI; Parmon VN Electron Spin Echo as a Tool for 
Investigation of Surface Structure of Finely Dispersed Fractal Solids. React. Kinet. Catal. Lett 
1990, 42, 19–24.

(35). Kattnig DR; Reichenwallner J; Hinderberger D Modeling Excluded Volume Effects for the 
Faithful Description of the Background Signal in Double Electron–Electron Resonance. J. Phys. 
Chem. B 2013, 117, 16542–16557. [PubMed: 24245922] 

(36). Domingo Köhler S; Spitzbarth M; Diederichs K; Exner TE; Drescher M A Short Note on the 
Analysis of Distance Measurements by Electron Paramagnetic Resonance. J. Magn. Reson 2011, 
208, 167–170. [PubMed: 21044853] 

Sweger et al. Page 15

J Phys Chem A. Author manuscript; available in PMC 2021 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://stat.CO


Figure 1: 
Quantities and parameter in the standard DEER model. A: Ptrue (black) is distribution 3992 

from the synthetic T4L test set,14 and Pfit is a one-Gaussian fit to Ptrue, with parameters r0 

and w indicated. B: Noise-less trace derived from Ptrue (black) and overlaid with noise 

(gray). Time-domain parameters k, λ, V0, and σ are indicated.
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Figure 2: 
Visualization of the Bayes process. The priors for all parameters (modulation depth (λ), 

echo amplitude (V0), background decay constant (k), noise (σ), Gaussian center (r0), and 

Gaussian width (w)) and the raw data are input into the ‘black box’ process of MCMC and 

the output is the marginalized posterior distribution for each parameter. The marginalized 

posteriors represent a probability distribution of possible values for each parameter. 

Distribution 3992 from the synthetic T4L test set was used as the true distribution from 

which parameters were derived.14

Sweger et al. Page 17

J Phys Chem A. Author manuscript; available in PMC 2021 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Plots of the marginalized parameters posteriors of the two single-Gauss test cases and all 

pairwise correlations between parameters. The results for the poor test case are indicated in 

green and those for the good test case are in blue. The dotted lines reference the true 

parameter values. Both cases are shown in every subplot for comparison. The top row and 

upper triangle show the poor test case results (green), and the first column and lower triangle 

show the good test case results (blue). Both test cases are generated from distribution 3992 

from the Edwards/Stoll test set. Contour levels are at 0.05, 0.1, 0.25, 0.5, and 0.75 of the 

maximum of the distribution. The MCMC simulation was run with 5 chains with 20,000 

posterior samples each.
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Figure 4: 
Bayesian inference with a single-Gauss distribution model. A: The two data realizations 

(black) overlaid with the fits predicted from an ensemble of 30 MCMC samples (color). B: 

Residuals for both traces for all 30 samples (color). C: Ensemble of 30 distributions (color) 

from MCMC samples plotted with Ptrue (black), distribution 3992 from the synthetic T4L 

test set.14 D: Correlation matrix of all parameters for the good trace, white indicating no 

correlation and black indicating full correlation. E: Correlation matrix of all parameters for 

the poor trace. F: 2D marginalized posteriors for Gaussian width and center for both cases.
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Figure 5: 
Bayesian inference with a two-Gaussian distribution model. A. Time-domain trace 36787 

from synthetic data set (Vtrue(t)) (black) and 100 samples from the MCMC chains (blue). B. 

Residual analysis for the 100 MCMC samples (blue). C. Ensemble of 100 MCMC 

distributions (blue) and distance distribution 3223 from synthetic data set (black). D. 

Correlation matrix of all parameters, white indicating no correlation and black indicating full 

positive or negative correlation. E. 2D marginalized posteriors for widths and positions. The 

two Gaussian components are distinguished by color. F. 2D marginalized posteriors for 

amplitudes and positions, with identical coloring as E. The MCMC simulation was run with 

5 chains with 30,000 posterior samples each.
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Figure 6: 
Bayesian inference with a three-Gaussian distribution model. A. Time-domain trace 51412 

from synthetic data set (Vtrue(t)) (black) and 100 MCMC samples (blue). B. Residual 

analysis for all MCMC samples (blue). C. MCMC ensemble (blue) and distance distribution 

4428 from synthetic data set (black). D. Correlation matrix of all parameters, white 

indicating no correlation and black indicating full positive or negative correlation. E. 2D 

marginalized posteriors for widths and positions. Individual components are distinguished 

by color. F. 2D marginalized posteriors for amplitudes and positions, with identical coloring 

as E. The MCMC simulation was run with 6 chains, with 40,000 posterior samples each.
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Figure 7: 
Bayesian inference using multi-Gauss models on a DEER trace obtained from the ion 

channel SthK D261R1.31 A. The raw experimental DEER data (black) and 50 MCMC 

ensembles from the analysis using 1-, 2-, 3-, and 4-Gaussian models (blue). B. Residuals 

based on the MCMC ensemble. C. Distance distribution ensembles for each of the four 

models. D. 2D marginalized posteriors for widths and positions for 3G and 4G models. 

Individual components are distinguished by color. Number of chains and posterior samples 

per chain for the MCMC simulations: 8 and 20,000 (1G), 5 and 30,000 (2G), 5 and 40,000 

(3G), 5 and 80,000 (4G).
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Figure 8: 
Bayes factors comparing the four models from Fig. 7 to the 1G model.
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