
1Scientific Data |            (2021) 8:36  | https://doi.org/10.1038/s41597-021-00806-0

www.nature.com/scientificdata

Synthetic skull bone defects 
for automatic patient-specific 
craniofacial implant design
Jianning Li1,2, Christina Gsaxner   1,2,3, Antonio Pepe1,2, Ana Morais4,5, Victor Alves   5, 
Gord von Campe6, Jürgen Wallner3 ✉ & Jan Egger1,2,3 ✉

Patient-specific craniofacial implants are used to repair skull bone defects after trauma or surgery. 
Currently, cranial implants are designed and produced by third-party suppliers, which is usually 
time-consuming and expensive. Recent advances in additive manufacturing made the in-hospital 
or in-operation-room fabrication of personalized implants feasible. However, the implants are still 
manufactured by external companies. To facilitate an optimized workflow, fast and automatic implant 
manufacturing is highly desirable. Data-driven approaches, such as deep learning, show currently 
great potential towards automatic implant design. However, a considerable amount of data is needed 
to train such algorithms, which is, especially in the medical domain, often a bottleneck. Therefore, we 
present CT-imaging data of the craniofacial complex from 24 patients, in which we injected various 
artificial cranial defects, resulting in 240 data pairs and 240 corresponding implants. Based on this work, 
automatic implant design and manufacturing processes can be trained. Additionally, the data of this 
work build a solid base for researchers to work on automatic cranial implant designs.

Background & Summary
Anatomically, the human skull is the skeletal structure of the head and can be divided into two main parts: the 
neurocranium, which forms the protective cranial cavity that surrounds and houses the brain and brainstem, and 
the facial skeleton, formed by the bones supporting the face1,2. All skull bones are immovably joined together 
except for the mandible3.

Skull bones are made of two types of bone tissue: trabecular bone, which is highly porous, and cortical, which 
is homogeneous and dense. This porosity within the bone plays an important role in the overall response of the 
skull to fractures and trauma4. The skull is able to protect the brain structures from injury due to its hard unyield-
ingness, being considered one of the least deformable structures found in nature5.

Cranial bone defects can heavily affect a patient’s life quality. Such defects can originate from infections of 
the calvaria, from heavy craniofacial traumas such as traffic and sport accidents and other physical assaults or 
occur due to congenital craniofacial deformities or as side effects after neurosurgical or maxillofacial procedures.
procedures6–11.

According to the Centers for Disease Control and Prevention (2013) from the United States, the majority 
of craniofacial injuries were because of falls. These are most common among young children (ages 0–4 years), 
adolescents (15–19 years), and the elderly (over 65 years). Additional causes vary, but prominent among these 
are automobile and motorcycle accidents2. Moreover, subjects with cranial defects might suffer from seizures or 
visual impairment which makes them even more susceptible to trauma12.

Cranioplasty refers to the surgical procedure where a bone defect or deformity in the skull is repaired, which 
can be achieved through the use of cranial implants13,14. The reconstruction of such defects is mostly performed 
to re-establish the structure and function of the missing cranial bone. A faultless cranial bone is crucial to assure 
biomechanical protection of the underlying soft tissues of the brain, as well as to normalize intracranial pressure 
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and restore normal cerebrospinal fluid flow dynamics10,15,16. In addition, in children patients, an intact cranial 
vault is crucial for the normal growth and development of the brain17.

To ensure the clinical success, cranial implants must fit precisely against all surrounding borders of the bone 
defect in a way that subsequent movement is avoided, while also successfully restoring the patient’s natural cra-
nial aesthetic shape. In order the cranial implant has to fulfil both functional and aesthetic aspects when used for 
defect reconstruction11,12.

The workflow of the reconstruction of cranial defects with customized patient-specific implants can be divided 
into four main phases: (1) medical imaging based on radiological data, (2) image processing, (3) computer-aided 
design and (4) rapid prototyping18.

In general, the process starts with acquiring medical 3D imaging data usually from computed tomography 
(CT) or magnetic resonance imaging (MRI) scans that are converted to Digital Imaging and Communications in 
Medicine (DICOM) files. Then, the DICOM data is further processed with a medical image processing software 
to create a 3D model of the scanned defective cranial bone. The 3D model file is then imported into a design soft-
ware to create the virtual 3D model of the implant, which can, in turn, be manufactured by a Rapid Prototyping 
(RP) process such as 3D printing19. This workflow has shown to be a reliable method for precise craniofacial 
reconstruction and may even be useful for bone reconstruction at other sites20,21.

After obtaining a 3D virtual model of the defective cranial bone, the cranial implant is designed by completely 
filling the missing part of the skull which corresponds to the defect. However, designing a virtual 3D model of 
a cranial implant is a challenging task, which often lacks by finding the appropriate software13 and needs ample 
professional experience.

On the one hand, there are commercial software products, such as MIMICS, 3D Doctor and Biobuild. 
However, these tend to be very license driven and financially expensive and therefore their availability in clini-
cal institutions is usually limited. On the other hand, there are freely available open-source software tools such 
as Meshmixer and Blender, but since these are not intended for designing medical implants they do not offer 
convenient tools for this task. Moreover these open-source software tools are not CE-certified for a medical use. 
Consequently, these tools are not very user-friendly for clinicians to be used during the daily routine and the 
design process can turn out to be extremely time-consuming13. As an alternative to these previously mentioned 
software products, Egger et al.13 and Chen et al.6 proposed CAD software prototypes for the interactive plan-
ning and reconstruction of cranial 3D implants. However, these approaches still need some user input and are 
somewhat time-consuming. Hence, these are also not really an option to be used intra-operatively to prepare a 
3D printing process, where a patient would be under anaesthesia until the implant is manufactured. In addition, 
the effective intra-operative 3D printing time has also to be taken in consideration. Here, a fully automated CAD 
solution that allows the design process to be less user-dependent and less time consuming, would subsequently be 
more cost-saving and convenient for both the patient and the clinicians. In that context, a few approaches towards 
an automatization of computer-aided reconstructions of cranial defects have recently been proposed22,23.

Promising approaches consist of creating a reference model and applying a deformation algorithm to approx-
imate it to the desired shape. Fuessinger et al.24, for example, proposed a data-driven approach for reconstruction 
of cranial defects based on a SSM (statistical shape model) that captures the shape variability of the cranial vault. 
Then, the knowledge about this shape variation of healthy patients was used to estimate the missing parts. In this 
approach, an SSM was generated from 131 craniofacial CT scans of patients with no cranial defects, creating a 
skull shape template. Then, when performing reconstruction, anatomical landmarks need to be manually selected 
in the defective skull’s mesh, to establish initial spatial correspondences with the template. Finally, the instance of 
the SSM that most resembles the anatomical structure of the unaffected parts of the defective skull is retrieved. 
The resulting shape is an intact cranial vault, very similar to the defective skull’s shape, however without perfectly 
fitting to the borders of the defect. In order to correct these fitting errors, diffeomorphic deformations are per-
formed to improve the final fit24. Unfortunately, to the best of our knowledge, these datasets are not freely acces-
sible. Hence, we provide a CT-based cranial bone image scan series of patients without cranial defects. In these 
scans, we injected artificial cranial defects into the cranial bones to create training and testing data for algorithms 
performing automatic cranial defect reconstruction. The image scan series consists of 24 healthy skulls with var-
ious artificial cranial defects injected into them, resulting in 240 data pairs, which can be used for training algo-
rithms for automatic cranial implant design. Furthermore the data of this work build a solid base for researchers 
to work on automatic cranial implant designs.

Methods
This study was approved by the ethics committee of the Medical University of Graz (MedUni Graz), Austria 
(EK-30–340 ex 17/18, Medical University of Graz, Austria), trial registration number DRKS00014853. Informed 
consent have been obtained for this experiment.

Figure 1 shows an overview of the workflow for data collection and preparation. First, clinical CT scans 
were retrospectively acquired. Second, the head was cropped from the scan. Third, the skull was extracted 
semi-manually from the CT scans using thresholding and case-specific post-processing strategies. Last, we con-
verted the binary skull map to a 3D model in STL format.

Data processing workflow illustrated using Case02. (a) original CT scan; (b) CT cropping; (c) thresholding 
(HU value ≥150) and CT table removal; (d) STL conversion.

Data acquisition and selection.  24 skull CT datasets have been collected retrospectively from May 2018 to 
August 2019 at the Medical University of Graz. CT data were generated according to a standard protocol, using a 
peak kilovoltage of 120 kVP. Amongst others a Siemens CT scanner (Sensation 64) was used for data generation. 
The data were originally provided in Digital Imaging and Communications in Medicine (DICOM) format. Only 
high-resolution CT scans with a voxel resolution of 512 × 512 × Z voxels, where Z ranges from 47 to 490, were 
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selected for our collection. For this work, the original DICOM scans were anonymized by converting them to the 
Nearly Raw Raster Data (NRRD) format, where all DICOM tags, like patient name, age, sex, etc. are completely 
removed.

Skull segmentation.  The segmentation of the skulls provided in our dataset were performed semi-manually 
by experts from the Medical University of Graz using the open-source software 3D Slicer (https://www.slicer.
org)25.

Skull cropping.  As a first step, the datasets, which originally covered varying regions of the patient, such as the 
whole torso or the head and neck area, were cropped to contain the region of the skull only. During cropping, it 
was made sure to retain all important structures required for cranial implant design, in particular the neurocra-
nium. Most parts of the maxilla and mandible were excluded. An example for original and cropped CT scan is 
shown in Fig. 1(a,b), respectively.

Threshold-based segmentation.  Even if the skull can be segmented from CT scans using simple thresholding, it is 
an experience-dependent task to decide for each CT scan the proper bone threshold, which also requires clinical 
knowledge in radiologic anatomy. The suitable threshold for each scan was defined in Hounsfield units (HU), 
which provide the density information of the bone. These can vary greatly with the age of the patient and possible 
comorbidities (e.g. osteoporosis). The density of calcium deposits must also be taken into account. An overview of 
the applied values for each case is given in tab:data. The result of this step is a binary map of the patient’s cranium, 
where a label of one corresponds to structures belonging to the skull, and a label of zero denotes the background.

Skull cleaning.  Parts of the CT table are sometimes included in the CT scans, which we consider as noise, 
because it does not belong to the skull bone. Furthermore, in some cases, after thresholding a considerable 
amount of noise is left inside the skull, which results from the presence of some high density matter in the brain. 
During thresholding, both the skull and the noise are categorized as foreground, since they have a similar density 
and, therefore, similar HU values. The high density matter is a calcification within the soft tissue and a reflec-
tion of inlays. This is a result of high levels of calcium in the blood (hypercalcaemia), conditioned by bad life-
style. During an infection or as part of the aging process, calcifications deposit in the soft tissue, including the 
brain. However, such calcium deposits or calcifications exist in the whole body. The resultant noise can be partly 
removed by setting the lower bound of the threshold higher, but then also parts of the skull with lower bone den-
sity will be removed. Therefore, noise, such as the CT table or speckles from calcifications within the skull were 
removed by only keeping the largest connected component from the threshold-based segmentation.

Aforementioned calcifications can also lead to uneven surfaces of the segmented skull when they are 
partly connected to it. Therefore, median smoothing with a radius of 2 mm was applied to those cases. The 
threshold-based segmentation can also lead to artifacts aside from noise, such as holes in the segmented surface 
in areas of very delicate, thin bony structures. In case of holes in the threshold-based segmentation, they were 

Fig. 1  Data processing workflow illustrated using Case02. (a) original CT scan; (b) CT cropping; (c) 
thresholding (HU value ≥ 150) and CT table removal; (d) STL conversion.
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filled manually in a slice-by-slice basis. Other artifacts, such as streaking from strongly scattering dental materials, 
were also manually removed. tab:data shows the applied post-processing strategies for every case. A final, cleaned 
skull segmentation is visualized in Fig. 1(c).

3D model creation.  Triangular meshes and point clouds are the basic data structures in computer graphics. To 
facilitate the usage of our skull datasets for researchers from the computer graphics field, we also provide 3D 
triangular meshes of the 24 skulls in the Stereolithography (STL) format with our data collection. The STL mesh 
is created from the aforementioned binary segmentation map using the open-source software 3D Slicer. After the 
binary skull map is generated, we used the’export to model’ functionality under the’Segmentations’ module of 3D 
Slicer to create the STL files with default settings. An example of the resultant mesh is shown in Fig. 1(d). Based 
on the marching cube algorithm, we also provided a python script on Github (https://github.com/Jianningli/
SciData) to automatically convert binary skull label maps (in NRRD format) into meshes (in STL format).

Artificial defect injection.  One of the aims of our data collection is to provide skulls without cranial defects 
to establish an atlas for cranial defect reconstruction. However, our collection can also be used as training and 
test set for algorithms reconstructing craniofacial defects. Therefore, we provide software scripts for the injection 
of artificial cranial defects into the healthy skulls within our data collection. The complete skulls and the skulls 
with artificially injected defects can be seen as equivalent to skulls obtained from pre-operative CT scans and 
post-operative CT scans of patients who had to undergo craniotomy. Figure 2(a,b) shows a healthy skull in 3D (A) 
and in 2D sagittal view (B). (D-E) show the corresponding defective skull in 3D (D) and 2D sagittal view (E). (F) 
shows the implant i.e., the portion removed from the healthy skull. (C) shows how the implant should match with 
the defected region on the defective skull in terms of bone thickness, boundary and shape.

Fig. 2  Illustration of defect injection to a healthy skull (Case02). A healthy skull in 3D (a) and 2D sagittal view 
(b). The corresponding defective skull in 3D (d) and 2D sagittal view (e). A portion of the skull (shown in gray) 
is removed (c). The removed portion, i.e., the implant in 3D (f).
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Artificial defect.  The artificial defects in the dataset are realistic but simplified compared to the real surgical 
defects. The shape, position and size of the real surgical defects do not have a fixed pattern and are determined 
by the pathological conditions e.g., the size and location of the brain tumor, of each specific patient. However, the 
real surgical defects do have something in common, i.e., intra-operatively an cranial drill (craniotome) is used in 
order to open the cranium of the patient and this course of action can leave a small roundish drilling gap on the 
boarder between the final implant and the defect (clinical implant offset), which does clinically not influence the 
bone healing process. On the one hand, the virtually created defects are realistic as we mimic the drilling process 
and also include a clinical implant offset, as it can be seen in Fig. 2(d). Additionally, the defect position is rand-
omized and the extent of the defect size is varying. These characteristics of the virtually created artificial defects 
are also consistent with the real clinical situation and therefore comparably with the clinical practice. On the other 
hand, the artificial defects are simplified compared to real surgical defects. The border wall of real surgical defects 
tends to be rough and irregular, due to pathological or surgical reasons. However, the automatically injected 
defects, as it can be seen in Fig. 2(c), usually have smooth and ‘straight’ border walls.

Dataset enlargement.  We create 10 random defects for each skulls. This process also artificially enlarges 
our dataset, making it applicable to training and evaluation of deep learning algorithms for automatic cranial 
reconstruction and implant generation. Figure 3 shows the ten defective skulls created out of Case02. It should 
be noted that even if the artificial defect presented in Fig. 2 does not exactly resemble the defects in a real crani-
ofacial surgery, it demonstrates the feasibility of injecting realistic defects for future researchers using these data. 
Currently, we provide the python scripts for automatic injection of varied defects (e.g., roundish, triangular, rec-
tangular, squarish and etc.) to the complete skull on Github (https://github.com/Jianningli/SciData).

However, there are limitations, when generating a large number of artificial skull defects out of a few without 
bone defect. This course of action can increase the defect variations but the variations of the skull shape are lim-
ited to the original 24 skull bones. If used for training Deep Learning algorithms, the network cannot potentially 
generalize well to varied skull shapes. Creating multiple defects that are varied in terms of shape, size and position 
on each skull can increase the defect variations, which therefore can help deep learning algorithms generalize 
well to varied skull defects. There is currently no strict theoretical nor experimental findings about a quantitative 
threshold for the enlargement process. However, based on our experience, 10 randomly generated defects tend to 
be sufficient for deep learning algorithms to learn the defect variations26. Generating an excessive high amount of 
defects, e.g., hundreds or even thousands of defects per skull, is neither efficient nor necessary as excessive defect 
generation will produce redundant information needed to learn the defect variations. However, as the shape 
variations of the skull remains unchanged, the deep learning algorithms tend to be overfitting to the 24 skull 
shapes and can not generalize well on new skull datasets. This can only be overcome by increasing the amount of 
original cases in a future work. With this work we also hope to inspire other researchers to provide their cases to 
the research community. In doing so, these additional cases would also cover (different) scanners and scanning 
protocols from other institutions, thus increasing the variety and making deep learning algorithms more robust.

Defect injection toolbox.  The current toolbox provided on Github (https://github.com/Jianningli/SciData) 
uses a cubic and spherical mask to ‘erase’ the skull bone that is overlapped with the mask. For each defect gener-
ation, the mask moves randomly within the skull to create randomized defects. Depending on where the mask 
is, the shapes of the resultant defect are not restricted to cubic and spherical, as can be seen from Fig. 3. The real 
surgical defects tends to be more irregular as it is specific to the pathological condition e.g., the position and 
size of the brain tumor of the patient. Usually, neurosurgeons use a cranial drill to open the cranium, resulting 
in a small roundish hole on the corner of the defect. Therefore, the toolbox offers, besides the normal cubic and 
spherical masks, more realistic defect masks to generate such small roundish holes on the defect corners, as can 
be seen from Figs. 2 and 3. The current toolbox can be used as a basis and can be extended to generate arbitrarily 
shaped, positioned and sized skull defects.

Fig. 3  Illustration of ten different defects for Case02.
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Data Records
The 264 skulls and 240 implants have been uploaded into a figshare repository27. Each of the 24 cases is comprised 
of a NRRD file containing the binary skull segmentation from the corresponding CT scan, a STL mesh file created 
from the NRRD file as well as a screenshot in Portable Network Graphics (PNG) format of the 3D skull model for 
a fast preview. Each case is stored in a folder name from Case01 to Case24, and the files associated with the data 
have the same name within the folder. For convenience, the 240 skulls with artificial defects and the correspond-
ing implants are provided in extra folders. Each case is compressed into a zip file (e.g., Case01 Defects.zip, Case02 
Defects.zip and Case01 Implants.zip, Case02 Implants.zip). Therefore, for each patient, three zip files are available 
in the repository, one containing the healthy data, one containing the ten injected defects, and one including the 
10 corresponding implants.

Imaging statistics.  Only high quality CT datasets with an in-plane resolution of at least 1.00 × 1.00 mm2 
and a slice thickness of maximally 3.27 mm are included within this collection. The dimensions of the 24 original 
CT scans are 512 × 512 × Z voxels, where Z ranges from 47 to 490. After cropping the scans in axial direction to 
cover the skull only, the range for Z reduces to 47 to 210. Table 1 summarizes the imaging statistics of the datasets.

Technical Validation
In28, we introduced an automated cranial implant design system in Studierfenster (http://studierfenster.icg.tugraz.
at/) and elaborated how such a system could potentially be used clinically for cranioplasty. The dataset introduced 
in this study contains 240 data pairs and can be used for training deep learning models for automatic cranial 
implant design. In essence, designing a cranial implant is equivalent to generating the complementary piece 
of a defective skull. Traditionally, the implant is designed semi-automatically with the help of CAD software6. 
The input of such a semi-automatic design workflow is the defective skull and the output is the implant. The 
deep learning-enabled automated cranial implant design workflow follows similar input/output pattern to the 
semi-automatic one, i.e., given a defective skull, predict the corresponding complete skull26,29. In this sense, the 
cranial implant can be obtained by taking the difference between the two skulls. Or, given a defective skull, predict 
the complementary piece directly29,30. The deep learning networks used to predict the complete skull or the com-
plementary piece can be trained on the dataset described in this study. The input of the networks is the defective 
skull and the output is either the complete skull or the implant.

As far as clinical application is concerned, the limitation of the dataset, as mentioned previously, is that the 
artificial defects are a realistic but simplified version of real craniotomy defect. Deep learning algorithms trained 
on such dataset may not generalize well to real surgical defects, if not carefully designed. However, the limitation 

Patient

Number of Slices

Inplane Resolution (mm2) Slice Thickness (mm) Cropping (yes/no) Threshold (HU) Manual post-processing (yes/no)whole cropped

1 490 87 0.98 × 0.98 2.00 yes 150 yes (artifact removal)

2 244 124 0.98 × 0.98 1.25 yes 150 yes (hole filling)

3 350 148 0.59 × 0.59 1.00 yes 200 yes (smoothing)

4 327 51 0.98 × 0.98 3.27 yes 150 yes (hole filling)

5 286 129 0.98 × 0.98 1.25 yes 150 yes (hole filling)

6 227 123 0.98 × 0.98 1.25 yes 150 no

7 268 144 0.59 × 0.59 1.00 yes 150 yes (hole filling)

8 201 135 0.98 × 0.98 1.25 yes 200 yes (smoothing)

9 175 83 0.98 × 0.98 2.00 yes 150 no

10 327 49 0.98 × 0.98 3.27 yes 150 no

11 47 47 0.98 × 0.98 3.27 no 150 yes (hole filling)

12 242 149 0.41 × 0.41 1.00 yes 150 yes (smoothing)

13 160 124 0.43 × 0.43 1.00 yes 150 yes (hole filling)

14 287 160 0.59 × 0.59 1.00 yes 200 yes (smoothing)

15 231 161 0.46 × 0.46 1.00 yes 200 yes (smoothing)

16 147 101 0.50 × 0.50 1.50 yes 150 yes (hole filling)

17 161 154 0.43 × 0.43 1.00 yes 150 yes (hole filling)

18 318 210 0.49 × 0.49 0.75 yes 150 yes (hole filling/artifact removal)

19 136 78 0.42 × 0.42 2.00 yes 150 yes (smoothing)

20 232 159 0.51 × 0.51 1.00 yes 150 yes (smoothing)

21 168 112 0.46 × 0.46 1.50 yes 200 no

22 200 155 0.46 × 0.46 1.00 yes 150 no

23 110 77 0.45 × 0.45 2.00 yes 150 yes (hole filling)

24 298 195 0.47 × 0.47 0.75 yes 150 yes (smoothing)

Table 1.  Overview of the imaging statistics of the CT scans within our collection, including parameters and 
steps used during pre-processing.
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can be overcome algorithmically, i.e., through network design, it is possible to improve the generalization ability 
of deep learning algorithms. Another straightford approach is to augment the dataset by creating realistic sur-
gical defects on the healthy skulls provided in our dataset. The provided defect injection toolbox can be further 
extended for realistic defect generation. However, since there is no fixed defect pattern in surgery, it is impractical 
to consider every possibility during the artificial defect generation process. Improving the generalization ability 
of the networks through algorithm design is therefore preferred.

Usage Notes
The data within this work is licensed under the Creative Commons Attribution 4.0 International License (CC BY 
4.0). For own research purposes, the data can be freely downloaded and used, but we kindly ask investigators to 
cite this work in their publications. The data collection provided within this work is free to share. The material 
can be copied and redistributed in any medium or format. Furthermore, the data can be freely modified - e.g., 
remixed, transformed, and built upon.

Data processing.  Single skulls in NRRD format from our dataset collection can be visualized and pro-
cessed using freely available medical imaging software, such as 3D Slicer (https://www.slicer.org), ITK-SNAP 
(http://www.itksnap.org) or the light-weight web-based medical image visualization and processing platform 
Studierfenster (http://studierfenster.at). 3D meshes in STL file format may be analyzed, manipulated and pro-
cessed with open source tools such as Blender (https://www.blender.org/), MeshLab (https://www.meshlab.net) or 
Meshmixer (http://www.meshmixer.com/). Furthermore, the data can also be processed using standard scripting 
languages such as python (https://www.python.org) and MATLAB (https://www.mathworks.com) with appropri-
ate libraries. Example scrips of processing and visualization of the datasets with python and MATLAB are given 
in our GitHub repository (https://github.com/Jianningli/SciData). This code can be used as a starting point for 
researchers wanting to work with our data.

Code availability
We provide the python scripts to inject artificial defects to the healthy skulls on GitHub (https://github.com/
Jianningli/SciData), which can serve as a starting point for future development based on our skull dataset for other 
researchers. We also provide additional python scripts for the extraction of point clouds from 3D image volumes 
and Matlab scripts to convert the triangular, surface meshes of the skulls back to voxel grids (voxelization). The 
dependencies and usage of the scripts are described in our GitHub repository.
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