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Nelumbo genome database, an 
integrative resource for gene 
expression and variants of Nelumbo 
nucifera
Hui Li1,2,3,5, Xingyu Yang4,5, Yue Zhang1,2,3, Zhiyan Gao1,2,3, Yuting Liang4, Jinming Chen1,2 ✉ & 
Tao Shi   1,2 ✉

Sacred lotus (Nelumbo nucifera, or lotus) is one of the most widely grown aquatic plant species with 
important uses, such as in water gardening and in vegetable and herbal medicine. A public genomic 
database of lotus would facilitate studies of lotus and other aquatic plant species. Here, we constructed 
an integrative database: the Nelumbo Genome Database (NGD, http://nelumbo.biocloud.net). This 
database is a collection of the most updated lotus genome assembly and contains information on both 
gene expression in different tissues and coexpression networks. In the NGD, we also integrated genetic 
variants and key traits from our 62 newly sequenced lotus cultivars and 26 previously reported cultivars, 
which are valuable for lotus germplasm studies. As applications including BLAST, BLAT, Primer, 
Annotation Search, Variant and Trait Search are deployed, users can perform sequence analyses and 
gene searches via the NGD. Overall, the valuable genomic resources provided in the NGD will facilitate 
future studies on population genetics and molecular breeding of lotus.

Background & Summary
Sacred lotus (Nelumbo nucifera, or lotus) is an early-diverging eudicot with important value in terms of under-
standing the origin and evolution of eudicots1,2. Lotus has a widespread native distribution, ranging from Asia to 
northern Australia, and it is one of the most economically important aquatic plant species, with widespread uses, 
such as in water gardening and in vegetable and herbal medicine3–5. In horticulture, lotus is classified into three 
cultivated types according to their utilization: seed lotus, flower lotus and rhizome lotus. The genome of lotus 
(2n = 16, assembly size = 821.2 Mb) has been sequenced and assembled, providing an unprecedented opportunity 
for genetic studies and molecular breeding of lotus6–8.

Since the first draft genome assembly of the lotus variety China Antique was released9, many genomic studies 
have been carried out on lotus, such as whole-genome resequencing7,10,11, transcriptomic12–14, miRNA-based15–17 
and gene family studies18,19. The recent chromosome-level assembly of the China Antique genome facilitates 
genome-wide studies of functional genes and the evolution of lotus, but a web-based public database of lotus is 
still unavailable8. Due to public demand for an integrative genomic resource of lotus, we report our Nelumbo 
Genome Database (NGD, nelumbo.biocloud.net), which comprehensively houses, processes and integrates the 
newest assembly of lotus variety China Antique, the expression profiles of various tissues, genetic variants and 
phenotypes of 88 key lotus cultivars (Fig. 1).

Major datasets.  The NGD is a collection of the new lotus assembly and annotations8, of which 34,481 genes 
harbor complete ORFs (> = 30 aa). A total of 28,676 genes were defined as high-confidence genes, with 14,991, 
20,878, 15,276, 5,924, 29,095, 20,325, and 28,310 annotated genes in the KOG, PFAM, GO, KEGG, Nr, SwissProt 
and TrEMBL databases, respectively (Table 1). The NGD also houses the sequences of 150,589 unique transcript 
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isoforms based on RNA-seq and PacBio SMRT methods from our previous studies14,17. It also contains the 
sequences of 1,517 lotus transcription factors (TFs), which are classified into 56 TF (sub)families. Furthermore, 
sequence data of lotus gene families, transposable elements (TEs) and other repeats are also present in the NGD, 
and information concerning gene expression levels and highly coexpressed genes from data from a coexpression 
(WGCNA) network based on 69 RNA-seq samples from 11 lotus tissues (seed coat, cotyledon, receptacle, carpel, 
stamen, petal, rhizome, leaf, root, petiole and apical bud tissues) is present in the NGD. Furthermore, information 
concerning a total of 26,939,834 high-quality SNPs (single nucleotide polymorphisms), 4,177,974 InDels and key 
horticultural traits from 88 lotus cultivars is present in the NGD.

Uses.  Through data collection and downstream processing, our platform provides the most complete lotus 
genome assembly for browsing via GBrowse or JBrowse20,21. Genes, DNA sequences, amino acids, SNPs and 
InDels can be viewed via GBrowse. The gene information page includes gene-splicing structures, sequences, 
and functional annotations such as those from the PFAM, KEGG, GO, KOG, SwissProt, TrEMBL and Nr data-
bases. RNA-seq-based expression profiles across different tissues are also retrievable and can be visualized via a 
heatmap. Searching genes by keywords is also possible in the NGD. Additionally, coexpressed genes of a query 
gene in the WGCNA-derived network can be retrieved by setting a weight threshold; these coexpressed genes 
are likely involved in the same biological process as the query gene. Coding sequences and genomic sequences 
can be searched based on sequence similarity via BLAST or BLAT. Primers for the PCR experiments can also be 
designed directly in the NGD.

Methods
Data processing.  Gene predictions on our chromosome-level genome assembly were performed using 
transcriptomes, gene homology and ab initio identification. A list of publicly available RNA-seq datasets, which 
mainly contain samples of the China Antique variety, were downloaded from the NCBI SRA database (Online-
only Table 1). First, the corrected consensus PacBio full-length transcripts were mapped to the lotus reference 
genome using GMAP14. RNA-seq reads (Illumina) were then mapped to the genome using the HISAT2-StringTie 
pipeline22. All the transcripts were further merged using TACO23. Coding DNA sequences (CDSs) of transcripts 
were predicted using Transdecoder (https://github.com/TransDecoder). Second, homology-based gene pre-
diction was performed using GeMoMa, which used genome sequences and gene coordinates from Arabidopsis 
thaliana24, Carica papaya25, Vitis vinifera26, Macadamia ternifolia (Proteales)27 and Brachypodium distachyon28 as 
inputs. Third, ab initio prediction was performed using Braker2, which used transcript coordinates of RNA-seq 
as a guide29. Finally, all predictions were merged, and for each gene with more than one gene model (transcripts), 
the longest one was chosen as the representative gene model. Genes with an ORF less than 30 aa were discarded. 
Further, high-confidence gene sets were defined as those whose genes that either were homologous to those 
in other plant species in Plant Plaza 4.0 (https://bioinformatics.psb.ugent.be/plaza/versions/plaza_v4_dicots/) 

Fig. 1  A schematic of the data collection and utilities for the Nelumbo Genome Database (NGD).

Database Number of annotated genes

GO 15276

KEGG 5924

KOG 14991

Pfam 20878

Swiss Prot 20325

TrEMBL 28310

Nr 29095

Table 1.  Summary of functional annotations of lotus genes in different databases.
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or were supported by RNA-seq (FPKM > 0.1). To quantify the expression of each gene in different lotus tissue 
samples, FPKM values across different RNA-seq samples were obtained via StringTie22. A coexpression network 
of different genes based on the expression profile was constructed using the WGCNA (v1.0) package in R30. 
Specifically, genes with an average FPKM > 0.1 and a coefficient of variation (CV) of gene expression (FPKM) > 2 
were retained for the WGCNA. Genes were clustered hierarchically based on Topological Overlap Matrix31 and 
were assigned to nine modules (minimum module size of 600 and minimum module similarity of 0.5). The 
weight values between genes were used to represent the connectivity between genes.

Gene functions were annotated using the Gene Ontology (GO), KEGG, KOG, Pfam, SwissProt, TrEMBL, and 
Nr databases via KOBAS 3.0, BlastKOALA, PfamScan and BLAST32,33. As protein domains are conserved units 
shared by related genes, we clustered genes into domain families (gene families) according to the HMM Pfam 
domain annotations34. In addition, all transcription factors (TFs) were predicted and clustered into TF families 
via PlantTFDB 4.035.

There were 88 recorded lotus cultivars chosen in this study as representing various floral traits (color, shape, 
flowering time, etc.). Among these cultivars, 62 were sequenced in our current study, while the sequences of 26 
with detailed phenotypic records were downloaded from the NCBI database (Online-only Table 2). Genomic 
DNA was first extracted from young leaves by the CTAB method36, and then DNA libraries were constructed by 
cutting the DNA into 250~280 bp fragments using a NEBNext® Ultra DNA Library Prep Kit for Illumina (NEB, 
USA) following the manufacturer’s recommendations. Paired-end reads (PE150) were sequenced on an Illumina 
NovaSeq. 6000 (San Diego, CA, USA), which generated approximately 16 × -depth data for each cultivar sample. 
Clean reads were obtained by removing the adapters and low-quality reads, including those comprising > 10% 
N, with < 20% low-quality bases, with low-quality/ambiguous fragments at the read ends within a 5 bp win-
dow and with a quality < 20 via FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). The clean reads were 
mapped to the reference genome by BWA-men37. Variants were subsequently called by pipeline via GATK 4.0 
(Genome Analysis Toolkit) with further SNP hard-filtering parameters (“QD < 2.0 || FS > 60.0 || MQ < 40.0 || 
MQRankSum < -12.5 || ReadPosRankSum < -8.0” and InDel hard-filtering parameters of “QD < 2.0 || FS > 200.0 
|| ReadPosRankSum < -20.0”)38. The phenotypes and some images of these cultivars were collected from refer-
ence books39,40; the phenotypes were further validated across two years of field investigations. Images of floral 
traits for these cultivars displayed in the NGD were taken mostly during flowering at the Wuhan Institute of 
Landscape Architecture (Wuhan, China).

Database construction.  All genomic sequence, annotation, expression, and genetic variation data were 
stored via MySQL on a Ubuntu server. A user-friendly website was developed using HTML5 and JavaScript; this 
website which can be accessed through different browsers, such as Google Chrome and Firefox. Gene models and 
transcript isoforms are provided via GBrowse and JBrowse. Heatmaps of gene expression are plotted via R, and 
query searches are achieved via JavaScript and Java. Common utilities for genomic studies such as BLAST, BLAT 
and Primer Design are also deployed and accessible.

Data Records
The genomic raw PacBio sequencing data are available in the NCBI Sequence Read Archive (SRA) database under 
accession numbers SRR754912941 and SRR754913042, and the Illumina and Hi-C sequencing data are deposited 
under SRR761555343 and SRR763152344, which helped us in our genome assembly (Online-only Table 1). Raw 
whole-genome resequencing reads for 62 strains can be downloaded from the NCBI database under Bioproject 
accession SRP17354745, and the resequencing data of the other 22 cultivars are also accessible via the NCBI 
SRA46,47 (Online-only Table 2). The latest assembly and annotations of the ‘China Antique’ lotus variety is depos-
ited in the Nelumbo Genome Database (Download links: http://nelumbo.biocloud.net/downloadData/down-
load?path = NNU.genomic.fa and http://nelumbo.biocloud.net/downloadData/download?path = NNU.gff3).  
Additionally, this Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the acces-
sion DUZY00000000, and the version described in this paper is version DUZY0100000048. Improved gene and 
repeat (including transposable element) predictions (GFF3), coding and peptide sequences (FASTA), gene and 
transcript functional annotations, gene expression and coexpression profiles, SNP and InDel variations, pheno-
typic traits and images for 88 lotus strains have been uploaded into the Figshare database49 and deployed in the 
newly developed Nelumbo Genome Database (http://nelumbo.biocloud.net).

Technical Validation
Quality control of genome annotation, expression, and genome resequencing was performed during data pro-
cessing for the NGD.

Genome annotation.  We used a set of conserved single-copy plant genes from the BUSCO database to 
assess the completeness of gene annotations50. Compared with previous annotations of the lotus variety China 
Antique (BUSCOs = 74.6%), our new annotation version provides much improved, complete BUSCOs (97.5%), 
and 41,140 out of 46,713 annotated genes with either complete or partial ORFs (88%) were validated by 69 tran-
scriptome datasets (Figure S1a), which suggests relatively high quality and completeness of the genome assembly 
and gene annotations (Table 2).

Gene expression.  To ensure that the FPKMs of genes accurately reflect the gene expression in different 
tissues and at different developmental stages, hierarchical clustering of gene FPKMs across different RNA-seq 
samples of the variety China Antique was performed via Expander 6.051. All sample repeats clustered together, 
while all developmental stages from the same tissue clustered together, except for one petiole sample, and the 
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relative expression of randomly selected genes in different tissues was validated through qRT-PCR (Fig. 2 and 
Figure S1b). Therefore, we confirmed the accuracy of FPKM as an indicator of lotus gene expression.

Whole-genome resequencing.  Before genome mapping, adapters and low-quality Illumina reads were 
filtered and removed (see the Methods). Base content, error rate, insert size distribution and log-transformed 
read coverage across the lotus chromosomes were checked, all of which met the criteria for downstream analy-
ses (Fig. 3). The quality of genome mapping was also checked. The average mapping rate for cultivars from this 
study was 99.18%, while the numbers in the other cultivars collected from two previous studies were 98.98% and 
99.13% (Online-only Table 2). The average depth for the cultivars from the current study was 16.1×, while the 
depth was 12.4× and 11.8× for cultivars from the other two reports (Online-only Table 2). To ensure the final 
quality of SNPs and InDels called by the GATK pipeline, stringent hard-filtering parameters were set (see the 
Methods). Because the majority of alleles in the SNP data set are expected to be shared by at least two individuals, 
we plotted the frequency of SNPs according to the minor allele count (MAC) across the 88 cultivars. Indeed, most 
of the SNPs had MACs ≥ 2, while the SNP density peaked around MACs of four or five (Fig. 4). SNP variants 
were further validated and visualized using IGVtools (http://software.broadinstitute.org/software/igv/igvtools) 
(Figure S1c).

Gene numbera BUSCO ratioa Gene numberb BUSCO ratiob

Complete BUSCOs 1404 97.5% 1074 74.6%

Complete and single-copy BUSCOs 750 52.1% 947 65.8%

Complete and duplicated BUSCOs 654 45.4% 127 8.8%

Fragmented BUSCOs 16 1.1% 152 10.6%

Missing BUSCOs 20 1.4% 214 14.9%

Total BUSCO groups searched 1440 1440

Table 2.  BUSCO assessment of the completeness of gene annotation. aThe current genome assembly and 
annotation of var. China Antique8. bEarly genome assembly and annotation of var. China Antique9.

Fig. 2  Hierarchical clustering of different RNA-seq samples based on a gene expression matrix (FPKM) from 
the lotus variety China Antique. Note that only a small portion of the genes are shown in the heatmap.
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Fig. 3  Quality evaluation of the genome resequencing data of cultivars, including the base content (a), error 
rate (b), insert size distribution (c) and log-transformed read coverage across eight lotus chromosomes (d), 
as demonstrated by the example of lotus cultivar Xiaoxia. The resequencing quality met the criterion for 
downstream variant calling analyses.

Fig. 4  Distribution of SNPs according to the minor allele count (MAC) across 88 lotus cultivars.
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Code availability
The genomic and transcriptomic sequence data were produced by corresponding software provided by the 
sequencing platform manufacturer, and the software (including versions, parameters and settings) used for 
genome assembly was cited in the Methods section, with default parameters used when no detailed parameters 
were mentioned. The code for the NGD construction in Java is available in the Figshare database49.
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