Skip to main content
. Author manuscript; available in PMC: 2022 Feb 1.
Published in final edited form as: Med Image Anal. 2020 Dec 16;68:101896. doi: 10.1016/j.media.2020.101896

Table 1.

Number of trainable parameters per layer in each model.

Layer Iterative method with 3-D convolutions Iterative method with 2-D convolutions 2-D method 3-D method

1 896 1152 384 896
2 55,488 55,872 18,624 55,488
3 221,568 222,336 74,112 221,568
4 885,504 887,040 295,680 885,504
5 295,296 885,120 295,296 885,120
6 442,752 1,032,576 442,752 1,327,488
7 147,648 295,104 147,648 442,550
8 36,960 73,824 36,960 110,688
9 9264 18,480 9264 13,872
10 588 588 588 1740
11 78 78 78 222
12 19 19 19 55
Total 2,096,061 3,472,189 1,321,405 3,945,191