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Abstract 

Pin1 belongs to the peptidyl-prolyl cis-trans isomerases (PPIases) superfamily and catalyzes the cis-trans 
conversion of proline in target substrates to modulate diverse cellular functions including cell cycle 
progression, cell motility, and apoptosis. Dysregulation of Pin1 has wide-ranging influences on the fate of 
cells; therefore, it is closely related to the occurrence and development of various diseases. This review 
summarizes the current knowledge of Pin1 in disease pathogenesis. 
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Introduction 
Some proteins exhibit either a cis or a trans state 

due to the presence of proline, which imparts distinct 
conformations and biological functions. The peptidyl- 
prolyl cis-trans isomerases (PPIases) superfamily [1] 
comprises four families according to their structural 
differences: cyclophilins, FK506-binding proteins 
(FKBPs), parvulins, and the protein phosphatase 
(PPase) 2A phosphatase activator (PTPA) [2-6]. 

In the human parvulin family, there are two 
genes: PIN1 and PIN4 [7-9]. The coded product of 
PIN1, PPIase NIMA-interacting 1 (Pin1) protein, was 
identified in 1996 by Lu et al. as a protein interacting 
with NIMA kinase [7]. PIN4 encodes the isoforms 
parvulin 14 (Par14) and parvulin 17 (Par17) [9, 10]. 
Parvulin 14 consists of 131 amino acids, while 
parvulin 17 is an N-terminal extended version of 
Par14 with an additional 25 amino acids. Among the 
three members of the human parvulin family, current 
research on the function of Pin1 and its role in disease 
pathogenesis is the most in-depth. Pin1 consists of 163 
amino acid residues with a relative molecular mass of 

18 kDa and contains 1 nuclear localization signal and 
2 functional domains. The amino terminus 
(N-terminus) is the tryptophan-tryptophan central 
domain (WW domain), which is responsible for 
recognition and binding to the pSer/Thr-Pro motif of 
the substrate, while the C-terminal PPIase catalytic 
domain performs the function of cis-trans 
isomerization [7, 11]. The two domains are fastened 
by a flexible linker of 15 residues. Although they 
belong to the same family, Pin1 differs from 
parvulin-type PPIases in that Pin1 specifically 
catalyzes the isomerization of phosphorylated Ser-Pro 
or Thr-Pro (pSer-Pro or pThr-Pro) peptides, whereas 
Par14/Par17 show no preference for phosphorylated 
substrates [9, 12, 13]. 

Since Pin1 isomerizes phosphorylated substrates 
and phosphorylation and post-phosphorylation 
events play important roles in cell signaling 
pathways, Pin1 is involved in a variety of cellular 
processes such as cell cycle, cell proliferation, cell 
motility, and apoptosis [13-18]. In most cases, Pin1 
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functions as a molecular timer or switch that 
modulates proteins or entire signaling pathways. 
Dysregulation of Pin1 is closely related to the 
development of multiple diseases. In this review, we 
will discuss the role of Pin1 in the pathogenesis of 
various related diseases. 

Pin1 and cancer 
Overall, Pin1 drives tumor progression and is 

negatively associated with clinical outcome in 
patients with cancer [19-21]. Pin1 has been shown to 
activate more than 50 oncogenic proteins and growth 
promoters and/or shut down at least 20 tumor 
suppressors and growth inhibitors through positive 
and negative feedback mechanisms [12, 22] (Table 1). 
Most tumors exhibit overexpression and/or 
activation of Pin1 compared with corresponding 
normal tissues, including breast, prostate, lung, 
ovarian, gastric, esophageal, cervical, and brain 
tumors and melanoma [21, 23-25]. Expression of Pin1 
in tumor cell lines cultured in vitro has also been 
found to be significantly higher than that in normal 
cell lines. Knockdown of the Pin1 gene inhibits cancer 
cell growth both in vitro and in vivo and results in 
cancer cell apoptosis [26, 27]. In addition, emerging 
evidence suggests that inhibitors targeting Pin1 have 
significant anti-cancer effects. These inhibitors include 
juglone [27, 28], all-trans retinoic acid (ATRA) [29, 30], 
2-{[4-(4-tert-butylbenzenesulfonamido) -1-oxo-1,4- 
dihydronaphthalen-2-yl] sulfanyl} acetic acid (KPT- 
6566) [31], epigallocatechin-3-gallate (EGCG) [32], PiB 
[33], compound 20 [34], compound 23a [35], API-1 
[36], arsenic trioxide (ATO) [37], and BJP-06-005-3 
[38]. In a recent review [22], Chen et al. elaborated on 
how Pin1 contributes to all ten hallmarks of cancer 
[39] by dysregulating multiple cancer-driving 
pathways at various levels. Pin1 induces angiogenesis 
by facilitating expression of VEGF and inhibition of 
Pin1 by RNAi significantly suppresses angiogenesis 
[40, 41]; Pin1 sustains proliferative signaling and 
evades growth suppression by activating growth- 
promoting regulators and inactivating growth- 
inhibitory regulators [22]; Pin1 promotes migration 
and invasion by regulating NOTCH1 [42], TGF-β [43], 
β-catenin [44], and BRD4 [45]; Pin1 inhibits apoptosis 
of tumor cells by increasing the anti-apoptotic 
function of anti-apoptotic proteins and suppressing 
pro-apoptotic factors [46, 47]. This concept has 
recently been greatly expanded, demonstrating that 
overactivation of Pin1 disrupts the balance between 
carcinogenic proteins and tumor suppressors, which 
pushes cells towards carcinogenesis [12] (Figure 1). 

Table 1. Oncogenic proteins/growth-promoting regulators and 
tumor suppressors/growth-inhibitory regulators as Pin1 
substrates 

Substrate Function Activity of substrate  Refs 
AIB1 Oncogenic protein ↑ [158] 
AKT  Oncogenic protein ↑ [159] 
BCL2 Oncogenic protein ↑ [160] 
JUN Oncogenic protein ↑ [23] 
COX2 Oncogenic protein ↑ [161] 
FOS Oncogenic protein ↑ [162] 
FOXM1 Oncogenic protein ↑ [163] 
HER2 Oncogenic protein ↑ [164] 
MYC  Oncogenic protein ↑ [165] 
Survivin Oncogenic protein ↑ [46] 
Tax Oncogenic protein ↑ [118] 
XBP1 Oncogenic protein ↑ [166] 
AR Growth-promoting regulator ↑ [167] 
CDC25 Growth-promoting regulator ↑ [168] 
Cep55 Growth-promoting regulator ↑ [169] 
MYB Growth-promoting regulator ↑ [170] 
Cyclin D1 Growth-promoting regulator ↑ [23] 
ER  Growth-promoting regulator ↑ [164] 
FAK Growth-promoting regulator ↑ [171] 
HBx  Growth-promoting regulator ↑ [113] 
HIF1  Growth-promoting regulator ↑ [172] 
HSF1  Growth-promoting regulator ↑ [173] 
IRAK1 Growth-promoting regulator ↑ [174] 
MCL1 Growth-promoting regulator ↑ [175] 
Nanog Growth-promoting regulator ↑ [176] 
NF-κB  Growth-promoting regulator ↑ [177] 
NOTCH1 Growth-promoting regulator ↑ [178] 
NOTCH3 Growth-promoting regulator ↑ [179] 
NUR77  Growth-promoting regulator ↑ [180] 
OCT4 Growth-promoting regulator ↑ [181] 
p47phox Growth-promoting regulator ↑ [182] 
p53M Growth-promoting regulator ↑ [183] 
PGK1 Growth-promoting regulator ↑ [115] 
PKM2 Growth-promoting regulator ↑ [184] 
PLK  Growth-promoting regulator ↑ [185] 
PML-RARα Growth-promoting regulator ↑ [186] 
PTP Growth-promoting regulator ↑ [187] 
PTP-PEST Growth-promoting regulator ↑ [171] 
RAB2A Growth-promoting regulator ↑ [188] 
RAF1 Growth-promoting regulator ↑ [189] 
RSK2 Growth-promoting regulator ↑ [190] 
S642 Growth-promoting regulator ↑ [189] 
S6K Growth-promoting regulator ↑ [191] 
Separase Growth-promoting regulator ↑ [192] 
SEPT9 Growth-promoting regulator ↑ [193] 
BRD4 Growth-promoting regulator ↑ [45] 
STAT3  Growth-promoting regulator ↑ [146] 
v-Rel Growth-promoting regulator ↑ [194] 
β-catenin  Growth-promoting regulator ↑ [151] 
BAX Tumor suppressor ↓ [47] 
CDK10 Tumor suppressor ↓ [195] 
CtIP Tumor suppressor ↓ [107] 
DAXX Tumor suppressor ↓ [196] 
FADD Tumor suppressor ↓ [197] 
FBXW7 Tumor suppressor ↓ [198] 
FOXO4 Tumor suppressor ↓ [199] 
IRF3 Tumor suppressor ↓ [200] 
KLF10 Tumor suppressor ↓ [201] 
PML Tumor suppressor ↓ [202] 
pRb Tumor suppressor ↓ [203] 
RARα Tumor suppressor ↓ [186] 
RUNX3 Tumor suppressor ↓ [204] 
SMRT Tumor suppressor ↓ [205] 
AMPK Growth-inhibitory regulator ↓ [206] 
ATR Growth-inhibitory regulator ↓ [207] 
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Substrate Function Activity of substrate  Refs 
AUF1 Growth-inhibitory regulator ↓ [208] 
BTK Growth-inhibitory regulator ↓ [209] 
Che1 Growth-inhibitory regulator ↓ [210] 
GRK2 Growth-inhibitory regulator ↓ [211] 
p27 Growth-inhibitory regulator ↓ [212] 
PIP4K Growth-inhibitory regulator ↓ [213] 
RBBP8 Growth-inhibitory regulator ↓ [107] 
SMAD Growth-inhibitory regulator ↓ [55] 
Smad3 Growth-inhibitory regulator ↓ [214] 
SUV39H1 Growth-inhibitory regulator ↓ [215] 
TRF1 Growth-inhibitory regulator ↓ [216] 
XPO5 Growth-inhibitory regulator ↓ [217] 
AIB1: amplified in breast cancer 1; AKT: the serine/threonine protein kinase B; 
AMPK: AMP-activated protein kinase; AR: androgen receptor; ATR: ataxia 
telangiectasia and Rad3 related; BCL2: B-cell lymphoma 2; CDC25: cell division 
cycle 25; CDK10: cyclin-dependent kinase 10; Cep55: centrosome protein 55; COX2: 
cyclooxygenase-2; ER: estrogen receptor; FAK: focal adhesion kinase; FBXW7 : 
F-box and WD40 repeat domain containing-7; FOXM1: forkhead box M1; FOXO4: 
forkhead box O4; HBX: hepatitis B virus X-protein; HER2: human epidermal 
growth factor receptor 2; HIF-1: hypoxia-inducible transcription factor-1; HSF1: 
heat shock transcription factor 1; IRAK1: interleukin-1 receptor-associated kinase 1; 
IRF3: interferon-regulatory factor 3; KLF10: kruppel-like factor 10; MCL1: myeloid 
cell leukemia-1; NF-κB: nuclear factor kappa-light-chain- enhancer of activated B 
cells; OCT4: octamer 4; PGK1: phosphoglycerate kinase 1; PKM2: pyruvate kinase 
M2; PLK: polo-like kinase; PML: promyelocytic leukemia protein; PML-RARα: 
promyelocytic leukemia- retinoic acid receptor alpha; pRb: retinoblastoma protein; 
PTP: protein tyrosine phosphatase; RARα: retinoic acid receptor alpha; RSK2: 
ribosomal protein S6 kinase 2; RUNX3: runt-related transcription factors 3; S6K: S6 
kinase; SMRT: silencing mediator for retinoic acid and thyroid hormone receptor; 
STAT3: signal transducer and activator of transcription 3; XBP1: X-box-binding 
protein 1. 

 

Pin1 and cardiovascular diseases 
Atherosclerosis (AS) is a chronic disease and the 

main cause of coronary heart disease, cerebral 
infarction, and peripheral vascular disease [48]. The 
early stage of AS is mainly caused by endothelial 
dysfunction. Endothelial nitric oxide synthetase 
(eNOS) plays a key role in the control of blood 
pressure and prevention of atherosclerosis by 
producing the vasodilator and vascular protective 
molecule nitric oxide (NO) [49]. eNOS interacts with 
Pin1 in a phosphorylation-dependent manner in 
endothelial cells. Phosphorylation of eNOS at Ser116 
enhances this interaction, thus inhibiting eNOS 
activity and reducing NO release [50, 51]. Pin1 also 
drives diabetic vascular disease by causing 
mitochondrial oxidative stress and ROS production. 

Inhibition of Pin1 by gene silencing in human aortic 
endothelial cells (HAECs) or Pin1 knockout in mice 
was found to restore NO levels and relieve vascular 
dysfunction [52]. These results indicate that Pin1 
reduces NO synthesis by inhibiting eNOS and, thus, 
exerts a negative effect in cardiovascular disease. 

However, in some conditions, Pin1 may protect 
vascular endothelial homeostasis. TGF-β stimulates 
synthesis of proteoglycan in vascular smooth muscle 
cells (VSMC), especially expression of disaccharide 
chain protein and extension of glycosaminoglycan 
(GAG) chain on biglycan, which increases lipoprotein 
binding and promotes early inflammation of 
atherosclerosis [53, 54]. It has been shown that Pin1 
enhances degradation of Smad2/3 ubiquitin 
proteasome induced by Smurf2 and inhibits TGF-β 
signal transduction [55], effectively preventing early 
occurrence of atherosclerosis [56]. Another study 
showed that Pin1 inhibition significantly suppresses 
NO production in human periodontal ligament cells 
(PDLCs) [57]. Taken together, Pin1 potentially plays a 
double-edged role in regulating the pathogenesis of 
cardiovascular diseases under different 
circumstances. Similarly, both overexpression and 
downregulation of Pin1 can reduce cardiac 
hypertrophy [58]. Further detailed investigations are 
needed to reveal the function of Pin1 in 
cardiovascular disease. 

Pin1 and metabolic diseases 
Insulin dysregulation is associated with various 

metabolic diseases including obesity, NASH, and type 
2 diabetes. Pin1 promotes insulin secretion of islet β 
cells by enhancing the activity of SIK2, and also 
promotes cell proliferation and transformation by 
regulating activation of AP1 and ERK1/2 induced by 
insulin through interaction with p70S6K [59, 60]. Pin1 
also positively regulates insulin-induced 
phosphorylation of IRS-1: Pin1 deletion inactivates 
IRS-1, thus leading to insulin resistance [61]. It can be 
concluded that Pin1 is involved in these metabolic 

 

 
Figure 1. Roles of Pin1 in cancer development. Pin1 overactivation disrupts the balance between oncogenes and tumor suppressors, which affects biological behaviors 
related to tumor development. 
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diseases partially by controlling insulin signaling. 
However, Pin1 interacts with or regulates other key 
molecules involved in metabolic diseases, including 
obesity-related factors AMPK [62-65], PPARγ [66], 
and PRDM16 [67]; osteoporosis-related factors Runx2 
[68-70] and BMP2 [71]; and Nash-related factors 
Smad2/Smad3 and the TGF-β1 pathway [72]. The 
detailed mechanisms by which Pin1 regulates 
metabolic diseases are summarized in other reviews 
[73, 74]. 

Pin1 and neurodegenerative diseases 
Although emerging evidence has shown that 

Pin1 directly or indirectly regulates neuronal proteins 
such as Tau, amyloid precursor protein (APP), and 
α-synuclein, the physiological functions of Pin1 in 

neurodegenerative diseases remain to be elucidated. 
For example, in Parkinson’s disease (PD) and 
Huntington’s disease (HD), Pin1 is a pro-apoptotic 
factor in the process of neuronal degeneration, and 
high levels of Pin1 expression have been found in the 
brain tissue of patients [75-78]. In other studies, 
downregulation of Pin1 expression was found to 
increase the likelihood of developing Alzheimer’s 
disease (AD), and low expression of Pin1 was found 
in patients with AD [74, 78-80]. 

Alzheimer’s disease 
Increased deposition of plaques and intracellular 

neurofibrillary tangles (NFTs) are the main 
mechanisms of AD pathogenesis. NFTs are micro-
tubule aggregations produced by hyper-

phosphorylation of Tau protein [74]. 
Extracellular plaques are primarily 
composed of aggregates of 
amyloid-β-peptides (Aβ) derived 
from increased APP processing [74, 
81, 82]. In the neuronal cells of 
patients with AD, Pin1 is usually 
underexpressed and exhibits a 
negative correlation with 
degeneration of neuronal fibers [83]. 
Pin1 catalyzes the conformational 
switch of GSK-3β-mediated 
phosphorylated Tau proteins from 
the dysfunctional cis structure to the 
functional trans structure, thus 
degrading Tau proteins [84-86]. 
Additionally, Pin1 catalyzes 
phosphorylation of APP Thr668-Pro 
from the cis to trans isomer and also 
transforms APP processing to 
healthy non-amyloid formation [84]. 
Pin1 can also directly inhibit 
activation of GSK-3β by binding to 
the phosphorylated Thr330-Pro motif 
of GSK-3β and catalyzing its 
isomerization [84, 87]. Evidence 
suggests that overexpression of Pin1 
in mature neurons can prevent 
neurodegeneration caused by Tau 
hyperphosphorylation [79]. In 
general, events that decrease 
expression of Pin1 in the brain 
increase the likelihood of AD [88] 
(Figure 2A). 

Parkinson’s disease 
Lewy bodies (LBs) are the 

characteristic protein aggregates in 
tissues of PD. LBs are mainly 

 

 
Figure 2. Pin1 in the pathogenesis of neurodegenerative diseases. (A) Accumulation of NFTs and Aβ is 
one of the pathogenic factors of AD. NFTs and Aβ are products of Tau and APP processing, respectively. Pin1 
inhibits hyperphosphorylation of Tau protein and APP processing and suppresses upstream GSK-3β activity. (B) 
LBs are a characteristic protein polymer of PD. α-synuclein is the main component of LBs. Pin1 binds synphilin-1 
phosphorylated by CKII and regulates its interaction with α-synuclein, thereby co-locating with α-synuclein 
intracellularly. (C) Pin1 binds and regulates p53 phosphorylated by mHTT. Subsequently, p53 is separated from 
the apoptosis inhibitor iASSP and is cascade activated, thus inducing neuronal apoptosis. 
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composed of α-synuclein [89, 90], which is an 
unfolded protein in the natural state but can be 
induced to form an insoluble α-synuclein aggregate in 
the pathological state [91, 92]. Synphilin-1 is a protein 
that can interact with α-synuclein; this interaction 
plays a very important role in the formation of LBs 
[93-95]. Co-expression of α-synuclein and synphilin-1 
causes the formation of debris inclusion bodies in the 
cytoplasm [93, 96]. From immunohistochemical 
analysis of the brain tissue of patients with PD, Pin1 
was found to be expressed in 50-60% of LBs and was 
co-located with α-synuclein in inclusion bodies [75]. 
Due to the absence of a pSer/Thr-Pro motif in 
α-synuclein, Pin1 cannot bind to free α-synuclein but 
affects α-synuclein through indirect effects [75, 97]. 
Under the phosphorylation mediated by casein kinase 
II (CKII), Pin1 binds to phosphorylated synphilin-1 
through Ser211-Pro and Ser215-Pro motifs, thus 
indirectly interacting with α-synuclein [75]. 
Overexpression of Pin1 could inhibit degradation of 
α-synuclein, enhance the half-life and insolubility of 
α-synuclein, and contribute to the formation of debris 
inclusion bodies of α-synuclein [75] (Figure 2B). 
Therefore, it can be speculated that inhibitors 
targeting Pin1 may alleviate the process of PD. 

Huntington’s disease 
HD is a neurodegenerative disease caused by 

repeated amplification of the gene encoding CAG in 
huntingtin protein (HTT) [98]. The mutant huntingtin 
protein (mHTT) forms an endonuclear inclusion by 
misfolding and aggregating [99, 100]. mHTT is toxic, 
and its aggregation causes glial proliferation of 
astrocytes and selective loss of striatal neurons [101, 
102]. mHTT can also cause DNA damage in neurons 
(DDR) [103, 104], which is a significant pathological 
feature of HD. Studies have found that p53 mediates 
this cytotoxicity in HD cells and transgenic animal 
models, while p53 inhibitors block this process [105]. 
mHTT promotes phosphorylation of p53 at Ser46 
through HIPK2 and PKCδ, making it a target for Pin1 
binding and regulation [76]. Pin1-mediated p53 
isolates from the apoptosis-inhibiting factor iASPP, 
thus promoting the activation cascade of p53 in 
striatal neurons and increasing neuronal apoptosis 
[76, 106] (Figure 2C). Conversely, when Pin1 is 
silenced, p53 binds to iASPP regardless of mHTT 
expression and p53 fails to induce apoptosis, thereby 
preventing mHTT-dependent neurodegeneration 
[76]. Pin1 is also associated with DDR in the 
regulation of DNA double-strand fracture repair 
[107]. In one study, DNA damage signal intensity in 
Pin1-knockout mice was significantly reduced by 20% 
compared with that of the wild-type HD mouse 
model [77]. However, another study revealed that 

Pin1 is a negative regulator of mHTT aggregation and 
that Pin1 overexpression reduces mHTT aggregates in 
HEK293 cells [108]. Nevertheless, experimental 
results from human neuronal cells and HD mice 
suggest that Pin1 is a potential therapeutic target for 
HD treatment. 

Pin1 and viral infection 
Viruses are common pathogens that cause 

infectious diseases. When a virus invades a host, the 
host activates its own immune system to fight or clear 
the infection [109]. But there are proteins in the host 
that help the virus reduce resistance from the host or 
promote the viral infection process. Some studies 
have found that Pin1 is one of these proteins and is 
closely related to viral infections [20, 110-119]. 

HIV 
Acquired immunodeficiency syndrome (AIDS) 

is caused by human immunodeficiency virus (HIV) 
infection [120]. Host protein Pin1 promotes HIV 
infection by mediating three key processes in the HIV 
replication cycle [121-123] (Figure 3A). 

First, the HIV core relies on Pin1 to remove 
capsid proteins: The HIV core is composed of 
ribonucleic acid (RNA) molecules and capsid protein. 
When HIV infects a host, it must remove the capsid 
and release RNA for subsequent reverse transcription, 
replication, and other processes [124]. The 
extracellular signal-regulated kinase 2 (ERK2) 
specifically phosphorylates Ser16-Pro17 residues on 
capsid proteins [124]. Pin1 then binds to the 
phosphorylated Ser16-Pro17 motif, which rearranges 
the structure of the capsid protein and removes the 
capsid from the HIV core [125]. 

Second, Pin1 facilitates reverse transcription of 
the HIV genome: Reverse transcription of the HIV 
genome is an important step in the life cycle of HIV, as 
DNA produced by reverse transcription can be 
incorporated into the host genome [126]. Host protein 
A3G (APOBEC3G) induces mutations in DNA during 
reverse transcription, which limits HIV replication 
[127]. But Pin1 downregulates A3G expression and 
prevents A3G from entering HIV [128]. HIV infection 
increases phosphorylation of Pin1 at Ser16 and 
enhances the inhibitory effect of Pin1 on A3G [111, 
128]. 

Third, Pin1 helps integrate HIV cDNA into the 
host DNA: HIV needs to integrate its cDNA into the 
host genome to reliably transcribe its progeny RNA 
[129]. The cellular kinase JNK phosphorylates the 
pSer57 motif of HIV integrase [130]. Pin1 then binds to 
the phosphorylated pSer57-Pro motif to activate and 
stabilize HIV integrase activity, which helps it insert 
the HIV cDNA into the host genome [130, 131]. 
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Figure 3. Roles of Pin1 in virus infection. (A) In HIV, the Ser16-Pro17 motif of the capsid protein is phosphorylated by ERK2. Pin1 specifically binds the motif and rearranges 
the capsid structure to release HIV RNA. Pin1 inhibits expression of catalytic polypeptide A3G to prevent incorrect coding of HIV cDNA during reverse transcription. Pin1 binds 
to the Ser57-Pro motif of integrase after its phosphorylation by the cellular kinase JNK, thus enhancing the stability of the integrase and promoting integration of HIV cDNA into 
the host cell DNA. (B) The viral protein NS5A/NS5B contains multiple phosphorylated Ser/Thr-Pro motifs. Interaction of overexpressed Pin1 with NS5A/NS5B increases HCV 
RNA replication and enhances HCV infection. (C) BALF5 is a key enzyme that regulates EBV DNA replication. Pin1 binds to the Thr178-Pro motif of BALF5 and actively regulates 
EBV DNA replication by regulating the conformation of the enzyme. Pin1 can also promote proliferation of EBV-infected nasopharyngeal carcinoma cells by upregulating 
expression of cyclin D1. (D) Viral oncoprotein Tax plays an important role in cell proliferation and viral replication. In HTLV-1-infected cells, Tax activates the RB/E2F pathway 
to increase expression of Pin1, which maintains the stability of Tax. Pin1 binds to the Ser160-Pro motif of Tax after its phosphorylation by mitotic kinase, which enhances the ability 
of Tax to directly bind IKKγ, activate NF-κB signaling, and finally promote cell proliferation and tumor occurrence. (E) In HPV-infected cells, overexpression of Pin1 causes 
NF-κB nuclear retention and activation of STAT3. Viral protein E2 can target and enhance the activity of Pin1 to increase the likelihood of cancer caused by HPV infection. (F) 
The viral protein HBx is a trans-activator of liver cancer. HBx activates cyclin D1 and the signaling pathway Wnt/β-catenin. Pin1 binds to the Ser41-Pro motif of HBx, which 
stabilizes the activity of HBx and induces overexpression of cyclin D1 and β-catenin, thus promoting liver cancer in HBV infection. 

 

HCV 
Hepatitis C virus (HCV) is the main pathogen of 

chronic hepatitis and hepatocellular carcinoma 
(HCC). HCV is an enveloped RNA virus [132]. The 
replication process of HCV depends mainly on the 

host cell cycle and requires participation of host 
proteins [133]. Pin1 has been shown to be a necessary 
cytokine for HCV replication and can increase HCV 
infection [114]. Overexpression of Pin1 increases 
intracellular HCV RNA and intracellular viral protein 
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NS5A [114]. HCV proteins NS5A and NS5B contain 
phosphorylated Ser/Thr-Pro motifs and Pin1 
specifically interacts with NS5A and NS5B in 
immunoprecipitation experiments. NS5B can also 
increase expression of Pin1 [114, 115]. In general, host 
protein Pin1 may be utilized to increase HCV 
replication and infection (Figure 3B). 

EBV 
Epstein-Barr virus (EBV) infection is associated 

with Burkitt lymphoma and production of T-cell 
malignancies [134]. BALF5, the EBV DNA polymerase 
subunit, is a key enzyme that affects replication 
during EBV cleavage [135]. Pin1 has been shown to be 
an important factor in regulating EBV replication. 
BALF5 interacts with Pin1 in a 
phosphorylation-dependent manner at Thr178-Pro of 
the BALF5 subunit. In one study, Pin1 knockdown by 
shRNA significantly inhibited EBV replication [119]. 
Another study showed that Pin1 is overexpressed in 
all EBV-associated nasopharyngeal carcinoma (NPC) 
cells, xenografts, and primary tumors [20]. 
Overexpression of Pin1 induces tumor cell growth by 
promoting production of cyclin D1 and activating the 
MAPK/JNK pathway (Figure 3C). The Pin1 inhibitor 
Juglone has been shown to inhibit growth of 
nasopharyngeal carcinoma cells and induce their 
apoptosis [20]. 

HTLV-1 
Human T-cell leukemia virus type 1 (HTLV-1) is 

the pathogen that causes adult T-cell leukemia (ATL) 
[136]. The oncoprotein Tax encoded by HTLV-1 plays 
an important role in cell proliferation, viral gene 
replication, transformation, and tumor generation 
[137, 138]. Expression of Tax may cause 
overexpression of Pin1 in ATL [116, 118]. In cells 
infected by HTLV-1, Tax activates the E2F/RB 
pathway to increase transcription and expression of 
Pin1. Pin1 binds to the Tax phosphorylation motif 
pSer160-Pro in the presence of mitotic kinases. 
Pin1-regulated phosphorylated Tax then interacts 
with IKKγ to promote NF-κB activation [118, 139]. The 
activity of NF-κB plays an important role in cell 
transformation, cell proliferation and cancer 
development [140]. Pin1 can also inhibit both 
ubiquitination and lysosomal degradation of Tax, 
thus promoting its stability [116] (Figure 3D). 

HR-HPV 
High-risk human papillomavirus (HR-HPV) is 

closely related to cervical cancer, with HPV16 being 
the most common subtype [141]. E2 protein is a factor 
that regulates viral replication and transcription and 
can be a marker for early HPV infection [142]. Cancers 
caused by HR-HPV infection may be associated with 

activation of transcription factors NF-κB and STAT3 
[143]. Overexpression of Pin1 in cervical cancer can 
increase nuclear retention of NF-κB and promote 
transactivation of STAT3, further promoting the 
occurrence of cancer [144-146]. In one study, increased 
Pin1 expression in E2-transfected HEK293 cells was 
found to be not significant (0.3-fold increase); 
however, E2 was found to enhance the activity of Pin1 
[117]. This data indicates that E2 regulates activation 
of transcription factors NF-κB and STAT3 by targeting 
the activity of Pin1 [117], which further effects cancer 
progression (Figure 3E). 

HBV 
Hepatitis B virus (HBV) is a common pathogen 

in hepatocellular carcinoma (HCC) and HBV-encoded 
protein HBx is a trans-activator of liver cancer [147]. A 
study found that overexpression of Pin1 was most 
common in HBV-related HCC, and the majority of 
cases showed co-expression of Pin1 and HBx [113]. 
HBx contains two phosphorylated Ser-Pro motifs that 
are potential targets for Pin1 [148, 149]. Pin1 binds to 
the phosphorylated Ser41-Pro motif of HBx, which 
increases HBx stability and transactivation [113, 149]. 
HBx activates the oncogenic transcription factor cyclin 
D1 and the β-catenin signaling pathway associated 
with oncogenesis [150]. Overexpression of Pin1 not 
only increases expression of cyclin D1 but also 
promotes intracellular accumulation of β-catenin in 
the Wnt/β-catenin signaling pathway [151, 152]. 
These two aspects can increase expression of 
oncogenes and promote occurrence of HCC in HBV 
infection (Figure 3F). 

In summary, Pin1 promotes most viral infectious 
diseases by two broad mechanisms: (1) Pin1 is directly 
involved in the life cycle of the virus to promote viral 
infection. For example, Pin1 is involved in core 
exuviation, reverse transcription, and integration of 
the virus in HIV infection [111]. In HCV infection, 
Pin1 is involved in viral RNA replication [114]. Pin1 is 
also involved in viral DNA replication in EBV 
infection [119]. (2) Pin1 enhances the stability and 
production of oncogenic proteins. For example, Pin1 
increases the stability of Tax in HTLV-1 infection and 
mediates Tax transactivation of NF-κB factor [116, 
118]. In HBV infection, Pin1 stabilizes the oncoprotein 
HBx and increases expression of oncogenic proteins 
cyclin D1 and catenin [112, 113]. In HPV infection, 
Pin1 is involved in increased activation of 
transcription factors STAT3 and NF-κB [117]. Pin1 
also increases expression of the oncogenic protein 
cyclin D1 in EBV infection [20]. Tanaka et al. also 
found that dipentamethylene thiuram monosulfide, a 
specific inhibitor of Pin1, inhibited feline coronavirus 
(FCoV) replication [153], suggesting that targeting 
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Pin1 may provide new insights for antiviral therapy. 

Conclusions and future directions 
In summary, our review illustrates the potential 

roles of Pin1 in several common diseases. Due to the 
overexpression of Pin1 in tumor tissues and its role in 
promoting tumor progression, drugs currently under 
development for targeting Pin1, including natural 
products, chemical compounds, and peptide drugs, 
are mainly focused on cancer treatment. Although 
Pin1 inhibitors have shown tumor suppressive effects 
in cell lines, animal models, and even clinical trials, 
some inhibitors reveal a Pin1-independent 
mechanism and the side effects have yet to be 
clarified. For example, Pin1 inhibitor KPT-6566 may 
exert anti-cancer effects through at least two 
simultaneously acting mechanisms: inhibition of Pin1 
and ROS production [31]. API-1 shows significant 
anti-HCC activity, but its low water solubility and in 
vivo bioavailability limit its clinical application [154]. 
Researchers have also identified some compounds or 
peptides such as PEPTIDE [155] and benzothiophene 
[156, 157] that suppress Pin1 activity at nanomolar 
concentrations but are inactive in cell-based assays 
because of their poor membrane permeability. One 
potential countermeasure is to increase the membrane 
permeability of these compounds by optimizing their 
structure or looking for corresponding derivatives. 
Research on the application of Pin1 inhibitors and 
agonists in other related diseases is limited, and more 
detailed investigations need to be carried out for 
therapeutic potential, especially in diseases such as 
viral infection and AD in which the role of Pin1 is 
relatively clear. Studies on the upstream regulatory 
signals and downstream targets of Pin1 can also 
provide ideas for expanding treatment strategies for 
the above-mentioned diseases. 
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